201
|
Canadas RF, Ren T, Tocchio A, Marques AP, Oliveira JM, Reis RL, Demirci U. Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials 2018; 181:402-414. [DOI: 10.1016/j.biomaterials.2018.07.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/06/2023]
|
202
|
Jha SC, Xia K, Schmitt JE, Ahn M, Girault JB, Murphy VA, Li G, Wang L, Shen D, Zou F, Zhu H, Styner M, Knickmeyer RC, Gilmore JH. Genetic influences on neonatal cortical thickness and surface area. Hum Brain Mapp 2018; 39:4998-5013. [PMID: 30144223 DOI: 10.1002/hbm.24340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
Genetic and environmental influences on cortical thickness (CT) and surface area (SA) are thought to vary in a complex and dynamic way across the lifespan. It has been established that CT and SA are genetically distinct in older children, adolescents, and adults, and that heritability varies across cortical regions. Very little, however, is known about how genetic and environmental factors influence infant CT and SA. Using structural MRI, we performed the first assessment of genetic and environmental influences on normal variation of SA and CT in 360 twin neonates. We observed strong and significant additive genetic influences on total SA (a2 = 0.78) and small and nonsignificant genetic influences on average CT (a2 = 0.29). Moreover, we found significant genetic overlap (genetic correlation = 0.65) between these global cortical measures. Regionally, there were minimal genetic influences across the cortex for both CT and SA measures and no distinct patterns of genetic regionalization. Overall, outcomes from this study suggest a dynamic relationship between CT and SA during the neonatal period and provide novel insights into how genetic influences shape cortical structure during early development.
Collapse
Affiliation(s)
- Shaili C Jha
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - James Eric Schmitt
- Brain Behavior Laboratory, Departments of Radiology and Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, Nevada
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Veronica A Murphy
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Gang Li
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Li Wang
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Dinggang Shen
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
203
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
204
|
Ozair MZ, Kirst C, van den Berg BL, Ruzo A, Rito T, Brivanlou AH. hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate. Cell Stem Cell 2018; 23:60-73.e6. [PMID: 29937203 DOI: 10.1016/j.stem.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.
Collapse
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christoph Kirst
- Center for Studies in Physics and Biology and Kavli Neural Systems Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bastiaan L van den Berg
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098XH Amsterdam, the Netherlands
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tiago Rito
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
205
|
The State of the NIH BRAIN Initiative. J Neurosci 2018; 38:6427-6438. [PMID: 29921715 DOI: 10.1523/jneurosci.3174-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The BRAIN Initiative arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system (CNS). As the Initiative enters its fifth year, NIH has supported >500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual laboratories, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and the National Institutes of Health continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative.
Collapse
|
206
|
Role of mTOR Complexes in Neurogenesis. Int J Mol Sci 2018; 19:ijms19051544. [PMID: 29789464 PMCID: PMC5983636 DOI: 10.3390/ijms19051544] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Collapse
|
207
|
Römer S, Bender H, Knabe W, Zimmermann E, Rübsamen R, Seeger J, Fietz SA. Neural Progenitors in the Developing Neocortex of the Northern Tree Shrew ( Tupaia belangeri) Show a Closer Relationship to Gyrencephalic Primates Than to Lissencephalic Rodents. Front Neuroanat 2018; 12:29. [PMID: 29725291 PMCID: PMC5917011 DOI: 10.3389/fnana.2018.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
The neocortex is the most complex part of the mammalian brain and as such it has undergone tremendous expansion during evolution, especially in primates. The majority of neocortical neurons originate from distinct neural stem and progenitor cells (NPCs) located in the ventricular and subventricular zone (SVZ). Previous studies revealed that the SVZ thickness as well as the abundance and distribution of NPCs, especially that of basal radial glia (bRG), differ markedly between the lissencephalic rodent and gyrencephalic primate neocortex. The northern tree shrew (Tupaia belangeri) is a rat-sized mammal with a high brain to body mass ratio, which stands phylogenetically mid-way between rodents and primates. Our study provides – for the first time – detailed data on the presence, abundance and distribution of bRG and other distinct NPCs in the developing neocortex of the northern tree shrew (Tupaia belangeri). We show that the developing tree shrew neocortex is characterized by an expanded SVZ, a high abundance of Pax6+ NPCs in the SVZ, and a relatively high percentage of bRG at peak of upper-layer neurogenesis. We further demonstrate that key features of tree shrew neocortex development, e.g., the presence, abundance and distribution of distinct NPCs, are closer related to those of gyrencephalic primates than to those of ferret and lissencephalic rodents. Together, our study provides novel insight into the evolution of bRG and other distinct NPCs in the neocortex development of Euarchontoglires and introduces the tree shrew as a potential novel model organism in the area of human brain development and developmental disorders.
Collapse
Affiliation(s)
- Sebastian Römer
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Hannah Bender
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Medizinische Fakultät, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
208
|
Abstract
The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Tomasz Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA.,Department of Anatomy, University of California, San Francisco, California 94158, USA
| |
Collapse
|
209
|
Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 2018; 358:1318-1323. [PMID: 29217575 DOI: 10.1126/science.aap8809] [Citation(s) in RCA: 610] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022]
Abstract
Systematic analyses of spatiotemporal gene expression trajectories during organogenesis have been challenging because diverse cell types at different stages of maturation and differentiation coexist in the emerging tissues. We identified discrete cell types as well as temporally and spatially restricted trajectories of radial glia maturation and neurogenesis in developing human telencephalon. These lineage-specific trajectories reveal the expression of neurogenic transcription factors in early radial glia and enriched activation of mammalian target of rapamycin signaling in outer radial glia. Across cortical areas, modest transcriptional differences among radial glia cascade into robust typological distinctions among maturing neurons. Together, our results support a mixed model of topographical, typological, and temporal hierarchies governing cell-type diversity in the developing human telencephalon, including distinct excitatory lineages emerging in rostral and caudal cerebral cortex.
Collapse
Affiliation(s)
- Tomasz J Nowakowski
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA. .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Anatomy, UCSF, San Francisco, CA, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA. .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Beatriz Alvarado
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Elizabeth Di Lullo
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | | | - Carmen Sandoval-Espinosa
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Siyuan John Liu
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Neurosurgery, UCSF, San Francisco, CA, USA
| | - Dmitry Velmeshev
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
| | - Johain Ryad Ounadjela
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Anatomy, UCSF, San Francisco, CA, USA
| | - Joe Shuga
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - Xiaohui Wang
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - Daniel A Lim
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Neurosurgery, UCSF, San Francisco, CA, USA
| | - Jay A West
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - Anne A Leyrat
- New Technologies, Fluidigm, South San Francisco, CA, USA
| | - W James Kent
- Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.,Department of Anatomy, UCSF, San Francisco, CA, USA
| |
Collapse
|
210
|
Tavano S, Taverna E, Kalebic N, Haffner C, Namba T, Dahl A, Wilsch-Bräuninger M, Paridaen JT, Huttner WB. Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7. Neuron 2018; 97:1299-1314.e8. [DOI: 10.1016/j.neuron.2018.01.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/28/2017] [Accepted: 01/30/2018] [Indexed: 01/24/2023]
|
211
|
Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatr Res 2018; 83:385-396. [PMID: 29028220 DOI: 10.1038/pr.2017.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the germinal zones of the immature brain. Studies using animal models of pediatric brain injuries have provided a clearer understanding of the responses of these progenitors to injury. In this review, we have compared and contrasted the responses of the endogenous neural stem cells and progenitors of the subventricular zone in animal models of neonatal cerebral hypoxia-ischemia, neonatal stroke, congenital cardiac disease, and pediatric traumatic brain injury. We have reviewed the dynamic shifts that occur within this germinal zone with injury as well as changes in known signaling molecules that affect these progenitors. Importantly, we have summarized data on the extent to which cell replacement occurs in response to each of these injuries, opportunities available, and obstacles that will need to be overcome to improve neurological outcomes in survivors.
Collapse
|
212
|
Arai Y, Taverna E. Neural Progenitor Cell Polarity and Cortical Development. Front Cell Neurosci 2017; 11:384. [PMID: 29259543 PMCID: PMC5723293 DOI: 10.3389/fncel.2017.00384] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neurons populating the cerebral cortex are generated during embryonic development from neural stem and progenitor cells in a process called neurogenesis. Neural stem and progenitor cells are classified into several classes based on the different location of mitosis (apical or basal) and polarity features (bipolar, monopolar and non-polar). The polarized architecture of stem cells is linked to the asymmetric localization of proteins, mRNAs and organelles, such as the centrosome and the Golgi apparatus (GA). Polarity affects stem cell function and allows stem cells to integrate environmental cues from distinct niches in the developing cerebral cortex. The crucial role of polarity in neural stem and progenitor cells is highlighted by the fact that impairment of cell polarity is linked to neurodevelopmental disorders such as Down syndrome, Fragile X syndrome, autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Yoko Arai
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Elena Taverna
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPG), Leipzig, Germany
| |
Collapse
|
213
|
González-Arnay E, González-Gómez M, Meyer G. A Radial Glia Fascicle Leads Principal Neurons from the Pallial-Subpallial Boundary into the Developing Human Insula. Front Neuroanat 2017; 11:111. [PMID: 29259547 PMCID: PMC5723317 DOI: 10.3389/fnana.2017.00111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
The human insular lobe, in the depth of the Sylvian fissure, displays three main cytoarchitectonic divisions defined by the differentiation of granular layers II and IV. These comprise a rostro-ventral agranular area, an intermediate dysgranular area, and a dorso-caudal granular area. Immunohistochemistry in human embryos and fetuses using antibodies against PCNA, Vimentin, Nestin, Tbr1, and Tb2 reveals that the insular cortex is unique in that it develops far away from the ventricular zone (VZ), with most of its principal neurons deriving from the subventricular zone (SVZ) of the pallial-subpallial boundary (PSB). In human embryos (Carnegie stage 16/17), the rostro-ventral insula is the first cortical region to develop; its Tbr1+ neurons migrate from the PSB along the lateral cortical stream. From 10 gestational weeks (GW) onward, lateral ventricle, ganglionic eminences, and PSB grow forming a C-shaped curvature. The SVZ of the PSB gives rise to a distinct radial glia fiber fascicle (RGF), which courses lateral to the putamen in the external capsule. In the RGF, four components can be established: PF, descending from the prefrontal PSB to the anterior insula; FP, descending from the fronto-parietal PSB toward the intermediate insula; PT, coursing from the PSB near the parieto-temporal junction to the posterior insula, and T, ascending from the temporal PSB and merging with components FP and PT. The RGF fans out at different dorso-ventral and rostro-caudal levels of the insula, with descending fibers predominating over ascending ones. The RGF guides migrating principal neurons toward the future agranular, dysgranular, and granular insular areas, which show an adult-like definition at 32 GW. Despite the narrow subplate, and the absence of an intermediate zone except in the caudal insula, most insular subdivisions develop into a 6-layered isocortex, possibly due to the well developed outer SVZ at the PSB, which is particularly prominent at the level of the dorso-caudal insula. The small size of the initial PSB sector may, however, determine the limited surface expansion of the insula, which is in contrast to the exuberant growth of the opercula deriving from the adjacent frontal-parietal and temporal VZ/SVZ.
Collapse
Affiliation(s)
- Emilio González-Arnay
- Unit of Pathology, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Miriam González-Gómez
- Unit of Anatomy, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gundela Meyer
- Unit of Histology, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
214
|
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591:3993-4008. [PMID: 29121403 PMCID: PMC5765500 DOI: 10.1002/1873-3468.12906] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non‐cell‐autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Collapse
Affiliation(s)
- Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
215
|
Matsumoto N, Shinmyo Y, Ichikawa Y, Kawasaki H. Gyrification of the cerebral cortex requires FGF signaling in the mammalian brain. eLife 2017; 6. [PMID: 29132503 PMCID: PMC5685484 DOI: 10.7554/elife.29285] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Although it has been believed that the evolution of cortical folds was a milestone, allowing for an increase in the number of neurons in the cerebral cortex, the mechanisms underlying the formation of cortical folds are largely unknown. Here we show regional differences in the expression of fibroblast growth factor receptors (FGFRs) in the developing cerebral cortex of ferrets even before cortical folds are formed. By taking the advantage of our in utero electroporation technique for ferrets, we found that cortical folding was impaired in the ferret cerebral cortex when FGF signaling was inhibited. We also found that FGF signaling was crucial for producing Pax6-positive neural progenitors in the outer subventricular zone (OSVZ) of the developing cerebral cortex. Furthermore, we found that upper layers of the cerebral cortex were preferentially reduced by inhibiting FGF signaling. Our results shed light on the mechanisms of cortical folding in gyrencephalic mammalian brains.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yoshie Ichikawa
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
216
|
Ecker JR, Geschwind DH, Kriegstein AR, Ngai J, Osten P, Polioudakis D, Regev A, Sestan N, Wickersham IR, Zeng H. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron 2017; 96:542-557. [PMID: 29096072 PMCID: PMC5689454 DOI: 10.1016/j.neuron.2017.10.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 10/25/2022]
Abstract
A comprehensive characterization of neuronal cell types, their distributions, and patterns of connectivity is critical for understanding the properties of neural circuits and how they generate behaviors. Here we review the experiences of the BRAIN Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, in developing, validating, and scaling up emerging genomic and anatomical mapping technologies for creating a complete inventory of neuronal cell types and their connections in multiple species and during development. These projects lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans.
Collapse
Affiliation(s)
- Joseph R Ecker
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, QB3 Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Damon Polioudakis
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Department of Biology, Koch Institute of Integrative Cancer Research, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Departments of Neuroscience, Genetics, Psychiatry and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Child Study Center, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
217
|
Adegbola A, Bury LA, Fu C, Zhang M, Wynshaw-Boris A. Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases. Stem Cells Transl Med 2017; 6:2062-2070. [PMID: 29027744 PMCID: PMC5702513 DOI: 10.1002/sctm.17-0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
The major neuropsychiatric conditions of schizophrenia, affective disorders, and infantile autism are characterized by chronic symptoms of episodic, stable, or progressive nature that result in significant morbidity. Symptomatic treatments are the mainstay but do not resolve the underlying disease processes, which are themselves poorly understood. The prototype psychotropic drugs are of variable efficacy, with therapeutic mechanisms of action that are still uncertain. Thus, neuropsychiatric disorders are ripe for new technologies and approaches with the potential to revolutionize mechanistic understanding and drive the development of novel targeted treatments. The advent of methods to produce patient‐derived stem cell models and three‐dimensional organoids with the capacity to differentiate into neurons and the various neuronal cellular lineages mark such an advance. We discuss numerous techniques involved, their applications, and areas that require further optimization. Stem Cells Translational Medicine2017;6:2062–2070
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Luke A Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Chen Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Meixiang Zhang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
218
|
Cornell B, Toyo-Oka K. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Front Mol Neurosci 2017; 10:318. [PMID: 29075177 PMCID: PMC5643407 DOI: 10.3389/fnmol.2017.00318] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are highly expressed in the brain during development. Cumulatively, the seven 14-3-3 isoforms make up approximately 1% of total soluble brain protein. Over the last decade, evidence has accumulated implicating the importance of the 14-3-3 protein family in the development of the nervous system, in particular cortical development, and have more recently been recognized as key regulators in a number of neurodevelopmental processes. In this review we will discuss the known roles of each 14-3-3 isoform in the development of the cortex, their relation to human neurodevelopmental disorders, as well as the challenges and questions that are left to be answered. In particular, we focus on the 14-3-3 isoforms and their involvement in the three key stages of cortical development; neurogenesis and differentiation, neuronal migration and neuromorphogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
219
|
Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 2017; 18:573-584. [PMID: 28878372 PMCID: PMC5667942 DOI: 10.1038/nrn.2017.107] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the development and dysfunction of the human brain is a major goal of neurobiology. Much of our current understanding of human brain development has been derived from the examination of post-mortem and pathological specimens, bolstered by observations of developing non-human primates and experimental studies focused largely on mouse models. However, these tissue specimens and model systems cannot fully capture the unique and dynamic features of human brain development. Recent advances in stem cell technologies that enable the generation of human brain organoids from pluripotent stem cells (PSCs) promise to profoundly change our understanding of the development of the human brain and enable a detailed study of the pathogenesis of inherited and acquired brain diseases.
Collapse
Affiliation(s)
- Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
220
|
Turrero García M, Harwell CC. Radial glia in the ventral telencephalon. FEBS Lett 2017; 591:3942-3959. [PMID: 28862741 DOI: 10.1002/1873-3468.12829] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022]
Abstract
The ventral telencephalon is the developmental origin of the basal ganglia and the source of neuronal and glial cells that integrate into developing circuits in other areas of the brain. Radial glia in the embryonic subpallium give rise to an enormous diversity of mature cell types, either directly or through other transit-amplifying progenitors. Here, we review current knowledge about these subpallial neural stem cells and their progeny, focusing on the period of neurogenesis. We describe their cell biological features and the extrinsic and intrinsic molecular codes that guide their fate specification in defined temporal and spatial sequences. We also discuss the role of clonal lineage in the organization and specification of mature neurons.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
221
|
Qian X, Nguyen HN, Jacob F, Song H, Ming GL. Using brain organoids to understand Zika virus-induced microcephaly. Development 2017; 144:952-957. [PMID: 28292840 DOI: 10.1242/dev.140707] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.
Collapse
Affiliation(s)
- Xuyu Qian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fadi Jacob
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
222
|
Abstract
From March 27-29 2017, the RIKEN Center for Developmental Biology held a symposium entitled 'Towards Understanding Human Development, Heredity, and Evolution' in Kobe, Japan. Recent advances in technologies including stem cell culture, live imaging, single-cell approaches, next-generation sequencing and genome editing have led to an expansion in our knowledge of human development. Organized by Yoshiya Kawaguchi, Mitinori Saitou, Mototsugu Eiraku, Tomoya Kitajima, Fumio Matsuzaki, Takashi Tsuji and Edith Heard, the symposium covered a broad range of topics including human germline development, epigenetics, organogenesis and evolution. This Meeting Review provides a summary of this timely and exciting symposium, which has convinced us that we are moving into the era of science targeted on humans.
Collapse
Affiliation(s)
- Ryuichi Nishinakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minoru Takasato
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
223
|
Hatakeyama J, Sato H, Shimamura K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ 2017; 59:286-301. [PMID: 28585227 DOI: 10.1111/dgd.12371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
Abstract
The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Haruka Sato
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
224
|
Kubo KI, Deguchi K, Nagai T, Ito Y, Yoshida K, Endo T, Benner S, Shan W, Kitazawa A, Aramaki M, Ishii K, Shin M, Matsunaga Y, Hayashi K, Kakeyama M, Tohyama C, Tanaka KF, Tanaka K, Takashima S, Nakayama M, Itoh M, Hirata Y, Antalffy B, Armstrong DD, Yamada K, Inoue K, Nakajima K. Association of impaired neuronal migration with cognitive deficits in extremely preterm infants. JCI Insight 2017; 2:88609. [PMID: 28515367 DOI: 10.1172/jci.insight.88609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/18/2017] [Indexed: 12/23/2022] Open
Abstract
Many extremely preterm infants (born before 28 gestational weeks [GWs]) develop cognitive impairment in later life, although the underlying pathogenesis is not yet completely understood. Our examinations of the developing human neocortex confirmed that neuronal migration continues beyond 23 GWs, the gestational week at which extremely preterm infants have live births. We observed larger numbers of ectopic neurons in the white matter of the neocortex in human extremely preterm infants with brain injury and hypothesized that altered neuronal migration may be associated with cognitive impairment in later life. To confirm whether preterm brain injury affects neuronal migration, we produced brain damage in mouse embryos by occluding the maternal uterine arteries. The mice showed delayed neuronal migration, ectopic neurons in the white matter, altered neuronal alignment, and abnormal corticocortical axonal wiring. Similar to human extremely preterm infants with brain injury, the surviving mice exhibited cognitive deficits. Activation of the affected medial prefrontal cortices of the surviving mice improved working memory deficits, indicating that decreased neuronal activity caused the cognitive deficits. These findings suggest that altered neuronal migration altered by brain injury might contribute to the subsequent development of cognitive impairment in extremely preterm infants.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kimiko Deguchi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko Ito
- Department of Molecular Neuroscience, Medical Research Institute/School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seico Benner
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Michihiko Aramaki
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Ishii
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Minkyung Shin
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Matsunaga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Laboratory for Systems Neuroscience & Preventive Medicine, Waseda University Faculty of Human Sciences, Tokorozawa, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute/School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachio Takashima
- Division of Child Neurology, Yanagawa Institute of Developmental Disabilities, Yanagawa, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yukio Hirata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Barbara Antalffy
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Dawna D Armstrong
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
225
|
Ortega JA, Memi F, Radonjic N, Filipovic R, Bagasrawala I, Zecevic N, Jakovcevski I. The Subventricular Zone: A Key Player in Human Neocortical Development. Neuroscientist 2017; 24:156-170. [PMID: 29254416 DOI: 10.1177/1073858417691009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the main characteristics of the developing brain is that all neurons and the majority of macroglia originate first in the ventricular zone (VZ), next to the lumen of the cerebral ventricles, and later on in a secondary germinal area above the VZ, the subventricular zone (SVZ). The SVZ is a transient compartment mitotically active in humans for several gestational months. It serves as a major source of cortical projection neurons as well as an additional source of glial cells and potentially some interneuron subpopulations. The SVZ is subdivided into the smaller inner (iSVZ) and the expanded outer SVZ (oSVZ). The enlargement of the SVZ and, in particular, the emergence of the oSVZ are evolutionary adaptations that were critical to the expansion and unique cellular composition of the primate cerebral cortex. In this review, we discuss the cell types and organization of the human SVZ during the first half of the 40 weeks of gestation that comprise intrauterine development. We focus on this period as it is when the bulk of neurogenesis in the human cerebral cortex takes place. We consider how the survival and fate of SVZ cells depend on environmental influences, by analyzing the results from in vitro experiments with human cortical progenitor cells. This in vitro model is a powerful tool to better understand human neocortex formation and the etiology of neurodevelopmental disorders, which in turn will facilitate the design of targeted preventive and/or therapeutic strategies.
Collapse
Affiliation(s)
- J Alberto Ortega
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Fani Memi
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nevena Radonjic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.,2 Psychiatry Department, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Radmila Filipovic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Inseyah Bagasrawala
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nada Zecevic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Igor Jakovcevski
- 3 Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany.,4 Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
226
|
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell 2017; 20:435-449.e4. [PMID: 28111201 DOI: 10.1016/j.stem.2016.12.007] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/16/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia, a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study, therefore, deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Bershteyn
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aishwarya Nene
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony Wynshaw-Boris
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
227
|
Florio M, Borrell V, Huttner WB. Human-specific genomic signatures of neocortical expansion. Curr Opin Neurobiol 2016; 42:33-44. [PMID: 27912138 DOI: 10.1016/j.conb.2016.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
Neocortex evolutionary expansion is primarily due to increased proliferative capacity of neural progenitor cells during cortical development. Exploiting insights into the cell biology of cortical progenitors gained during the past two decades, recent studies uncovered a variety of gene expression differences that underlie differential cortical progenitor behavior. These comprise both, differences between cortical areas that likely provide a molecular basis for cortical folding, and differences across species thought to be responsible for increases in neocortex size. Human-specific signatures have been identified for gene regulatory elements, non-coding gene products, and protein-encoding genes, and have been functionally examined in in vivo as well as novel in vitro model systems.
Collapse
Affiliation(s)
- Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| |
Collapse
|