201
|
Rosenblat JD, Kurdyak P, Cosci F, Berk M, Maes M, Brunoni AR, Li M, Rodin G, McIntyre RS, Carvalho AF. Depression in the medically ill. Aust N Z J Psychiatry 2020; 54:346-366. [PMID: 31749372 DOI: 10.1177/0004867419888576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depressive disorders are significantly more common in the medically ill compared to the general population. Depression is associated with worsening of physical symptoms, greater healthcare utilization and poorer treatment adherence. The present paper provides a critical review on the assessment and management of depression in the medically ill. METHODS Relevant articles pertaining to depression in the medically ill were identified, reviewed and synthesized qualitatively. A systematic review was not performed due to the large breadth of this topic, making a meaningful summary of all published and unpublished studies not feasible. Notable studies were reviewed and synthesized by a diverse set of experts to provide a balanced summary. RESULTS Depression is frequently under-recognized in medical settings. Differential diagnoses include delirium, personality disorders and depressive disorders secondary to substances, medications or another medical condition. Depressive symptoms in the context of an adjustment disorder should be initially managed by supportive psychological approaches. Once a mild to moderate major depressive episode is identified, a stepped care approach should be implemented, starting with general psychoeducation, psychosocial interventions and ongoing monitoring. For moderate to severe symptoms, or mild symptoms that are not responding to low-intensity interventions, the use of antidepressants or higher intensity psychotherapeutic interventions should be considered. Psychotherapeutic interventions have demonstrated benefits with small to moderate effect sizes. Antidepressant medications have also demonstrated benefits with moderate effect sizes; however, special caution is needed in evaluating side effects, drug-drug interactions as well as dose adjustments due to impairment in hepatic metabolism and/or renal clearance. Novel interventions for the treatment of depression and other illness-related psychological symptoms (e.g. death anxiety, loss of dignity) are under investigation. LIMITATIONS Non-systematic review of the literature. CONCLUSION Replicated evidence has demonstrated a bidirectional interaction between depression and medical illness. Screening and stepped care using pharmacological and non-pharmacological interventions is merited.
Collapse
Affiliation(s)
- Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Kurdyak
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute for Clinical Evaluative Sciences (ICES), Toronto, ON, Canada
| | - Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy.,Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, VIC, Australia.,The University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, VIC, Australia.,Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia.,Centre of Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Madeline Li
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Supportive Care, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Gary Rodin
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Supportive Care, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
202
|
Li X, Run X, Wei Z, Zeng K, Liang Z, Huang F, Ke D, Wang Q, Wang JZ, Liu R, Zhang B, Wang X. Intranasal Insulin Prevents Anesthesia-induced Cognitive Impairments in Aged Mice. Curr Alzheimer Res 2020; 16:8-18. [PMID: 30381076 DOI: 10.2174/1567205015666181031145045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preclinical and clinical evidence suggests that elderly individuals are at increased risk of cognitive decline after general anesthesia. General anesthesia is also believed to be a risk factor for Postoperative Cognitive Dysfunction (POCD) and Alzheimer's Disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, how insulin treatment improves cognitive function is poorly understood. METHODS Aged mice were pretreated with intranasal insulin or saline before anesthesia. Propofol was added intraperitoneally to the mice from 7th day of insulin/saline treatment, and general anesthesia was induced and maintained for 2 hours/day for 5 consecutive days. Mice were evaluated at 26th day when the mice were continued on insulin or saline administration for another 15 days. RESULTS We found that intranasal insulin treatment prevented anesthesia-induced cognitive impairments, as measured by novel object recognition test and contextual-dependent fear conditioning test. Insulin treatment also increased the expression level of Post-synaptic Density Protein 95 (PSD95), as well as upregulated Microtubule-associated Protein-2 (MAP-2) in the dentate gyrus of the hippocampus. Furthermore, we found that insulin treatment restored insulin signaling disturbed by anesthesia via activating PI3K/PDK1/AKT pathway, and attenuated anesthesia-induced hyperphosphorylation of tau at multiple AD-associated sites. We found the attenuation of tau hyperphosphorylation occurred by increasing the level of GSK3β phosphorylated at Ser9, which leads to inactivation of GSK-3β. CONCLUSION Intranasal insulin administration might be a promising therapy to prevent anesthesiainduced cognitive deficit in elderly individuals.
Collapse
Affiliation(s)
- Xing Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqin Run
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kuan Zeng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| |
Collapse
|
203
|
Mantantzis K, Drewelies J, Duezel S, Buchmann N, Steinhagen-Thiessen E, Wagner GG, Raz N, Lindenberger U, Demuth I, Gerstorf D. Poor glucose regulation is associated with declines in well-being among older men, but not women. Psychol Aging 2020; 35:204-211. [PMID: 31724413 PMCID: PMC7042050 DOI: 10.1037/pag0000404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucose regulation is a key aspect of healthy aging and has been linked to brain functioning and cognition. Here we examined the role of glucose regulation for within-person longitudinal trajectories of well-being. We applied growth models to data from the Berlin Aging Study II (N = 955), using insulin resistance as an index of glucoregulatory capacity. We found that poor glucose regulation (higher insulin resistance) was consistently associated with lower levels of well-being among older men but not women. Our study provides novel evidence for the relevance of glucose regulation for well-being among older men. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | - Gert G. Wagner
- Max Planck Institute for Human Development
- German Institute for Economic Research (DIW) Berlin
| | - Naftali Raz
- Max Planck Institute for Human Development
- Wayne State University, USA
| | - Ulman Lindenberger
- Max Planck Institute for Human Development
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin
| | | | - Denis Gerstorf
- Humboldt University Berlin
- German Institute for Economic Research (DIW) Berlin
| |
Collapse
|
204
|
Ohyagi Y, Takei SI. Insulin signaling as a therapeutic target in Alzheimer’s disease: Efficacy of apomorphine. ACTA ACUST UNITED AC 2020. [DOI: 10.1111/ncn3.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine Graduate School of Medicine Ehime University Ehime Japan
| | - Satoko I. Takei
- Department of Neurology and Geriatric Medicine Graduate School of Medicine Ehime University Ehime Japan
| |
Collapse
|
205
|
Insulin BBB pharmacokinetics in young apoE male and female transgenic mice. PLoS One 2020; 15:e0228455. [PMID: 32004344 PMCID: PMC6993976 DOI: 10.1371/journal.pone.0228455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
In addition to age, apolipoprotein E4 (E4), female sex, or a combination of both synergistically increase the risk for the development of Alzheimer’s disease (AD). Why these risk factors predispose an individual to developing AD later in life is the target of the current investigation. Central nervous system (CNS) insulin resistance is associated with cognitive impairment and AD. CNS insulin is acquired primarily from the circulation and therefore must negotiate the blood-brain barrier (BBB). Thus, changes in BBB transport of insulin could lead to alterations in CNS insulin signaling and resistance, which would then lead to changes in cognition. There has been recent evidence suggesting the relationship between CNS insulin; E4, a risk factor to develop AD as compared to E3; and the female sex in aged individuals and in pre-clinical models. However, this relationship has been largely unexplored at a younger age, in which some of these risk factors could predispose an individual to dysregulation of CNS insulin later in life. Here, we present the first findings of BBB insulin pharmacokinetics in young E3 and E4 male and female targeted replacement (TR) mice. We found that levels of insulin binding the vasculature at the BBB are different due to genotype and sex which could impact the function of the brain endothelial cell. These early alterations could contribute to or fully explain the age-related cognitive changes observed due to CNS insulin signaling in E4 and/or female individuals.
Collapse
|
206
|
Obesity Is Less Frequently Associated with Cognitive Impairment in Elderly Individuals: A Cross-Sectional Study in Yogyakarta, Indonesia. Nutrients 2020; 12:nu12020367. [PMID: 32019161 PMCID: PMC7071195 DOI: 10.3390/nu12020367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity is one of the factors associated with cognitive impairment. However, obesity may differently affect cognitive function in different age groups, and scarce data are available from low- and middle-income countries. This cross-sectional study aimed to identify the association between obesity and cognitive impairment among 143 elderly individuals in Yogyakarta. We recorded the sociodemographic factors and some comorbidities, also measured the body mass index as a parameter of obesity, cognitive function using Montreal Cognitive Assessment—Indonesia, mood condition and depression status using geriatric depression scale-short form, as well as the daily life function using Activity of Daily Living and Instrumental Activity of Daily Living. After adjustment for the sociodemographic and comorbidities, we found that subjects with older age were more likely to have cognitive impairment (odds ratio [OR] 3.544, 95%CI: 1.36–9.22, p < 0.01) and compared with elderly individuals with normal weight, obese elderly individuals were 40% less likely to have cognitive impairment (OR 0.604, 95%CI: 0.39–0.95, p < 0.05). This study suggests that obesity in elderly individuals is less frequently associated with cognitive impairment. These findings support the reverse causation mechanism related to body mass index (BMI) and cognitive impairment in low/middle-income countries.
Collapse
|
207
|
Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:79-110. [PMID: 32739015 PMCID: PMC9989941 DOI: 10.1016/bs.irn.2020.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To meet its high energy demands, the brain mostly utilizes glucose. However, the brain has evolved to exploit additional fuels, such as ketones, especially during prolonged fasting. With aging and neurodegenerative diseases (NDDs), the brain becomes inefficient at utilizing glucose due to changes in glia and neurons that involve glucose transport, glycolytic and Krebs cycle enzyme activities, and insulin signaling. Positron emission tomography and magnetic resonance spectroscopy studies have identified glucose metabolism abnormalities in aging, Alzheimer's disease (AD) and other NDDs in vivo. Despite glucose hypometabolism, brain cells can utilize ketones efficiently, thereby providing a rationale for the development of therapeutic ketogenic interventions in AD and other NDDs. This review compares available ketogenic interventions and discusses the potential of the potent oral Ketone Ester for future therapeutic use in AD and other NDDs characterized by inefficient glucose utilization.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
208
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
209
|
Nash Y, Frenkel D. Inflammation and insulin resistance in Alzheimer’s disease. GENETICS, NEUROLOGY, BEHAVIOR, AND DIET IN DEMENTIA 2020:389-405. [DOI: 10.1016/b978-0-12-815868-5.00025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
210
|
Lombardo SM, Schneider M, Türeli AE, Günday Türeli N. Key for crossing the BBB with nanoparticles: the rational design. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:866-883. [PMID: 32551212 PMCID: PMC7277618 DOI: 10.3762/bjnano.11.72] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/08/2020] [Indexed: 05/15/2023]
Abstract
Central nervous system diseases are a heavy burden on society and health care systems. Hence, the delivery of drugs to the brain has gained more and more interest. The brain is protected by the blood-brain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels, which at the same time acts as a bottleneck for drug delivery by preventing the vast majority of drugs to reach the brain. To overcome this obstacle, drugs can be loaded inside nanoparticles that can carry the drug through the BBB. However, not all particles are able to cross the BBB and a multitude of factors needs to be taken into account when developing a carrier system for this purpose. Depending on the chosen pathway to cross the BBB, nanoparticle material, size and surface properties such as functionalization and charge should be tailored to fit the specific route of BBB crossing.
Collapse
Affiliation(s)
- Sonia M Lombardo
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Akif E Türeli
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
| | | |
Collapse
|
211
|
Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019; 132:104580. [PMID: 31454547 PMCID: PMC6834913 DOI: 10.1016/j.nbd.2019.104580] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction. Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the development of cognitive impairment. In this review, we present evidence from clinical and preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead to cognitive impairment through induction of endothelial dysfunction and disruption of the blood brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and bariatric surgery in circumventing the impacts of obesity on cognitive function.
Collapse
Affiliation(s)
- Joy Jones Buie
- WISSDOM Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Luke S Watson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Crystal J Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
212
|
Yu F, Han W, Zhan G, Li S, Jiang X, Xiang S, Zhu B, Yang L, Hua D, Luo A, Hua F, Yang C. Differential Levels of Hippo Signaling in Selected Brain and Peripheral Tissues in Streptozotocin-Induced Cognitive Dysfunction in Mice. Neuroscience 2019; 421:48-58. [PMID: 31682826 DOI: 10.1016/j.neuroscience.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/28/2022]
Abstract
Increasing studies have revealed that metabolic disorders, especially diabetes, are high risk factors for the development of Alzheimer's disease (AD) and other neurodegenerative diseases. It has been reported that patients with diabetes are prone to suffer from cognitive dysfunction (CD). Although abnormal glucose metabolism and deposition of amyloid β (Aβ) are proven to have a closely relationship with diabetes-induced CD, its exact mechanism is still undetermined. In this study, a total of 14 mice were intraperitoneally injected with streptozotocin for 5 consecutive days to mimic diabetic models, and then hierarchical cluster analysis was adopted to classify the diabetic mice into CD and Non-CD phenotypes by the results of Morris water maze test (MWMT). Furthermore, we detected Hippo signaling including mammalian sterile 20-like protein kinases1 (MST1), large tumor suppressors 1 (LATS1), Yes-associated protein (YAP) and phosphorylation of YAP (p-YAP) in brain and peripheral tissues. As compared with control mice, the levels of MST1, LATS1 and p-YAP/YAP ratio were increased in medial prefrontal cortex (mPFC), striatum and hippocampus of CD mice, while these proteins were decreased in gut tissue of CD mice. Additionally, there were significant positive correlations between escape latency and p-YAP/YAP ratio in mPFC, anterior cingulate cortex (ACC) and hippocampus, as well as the level of LATS1 in liver, kidney and gut tissues. In conclusion, alterations in Hippo signaling may contribute to CD induced by diabetes. Therefore, therapeutic interventions improving Hippo signaling might be beneficial to the treatment of diabetes-induced CD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Shoukui Xiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
213
|
Xue M, Xu W, Ou YN, Cao XP, Tan MS, Tan L, Yu JT. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev 2019; 55:100944. [PMID: 31430566 DOI: 10.1016/j.arr.2019.100944] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Uncertainties persist about the associations of diabetes with risk of cognitive impairment and dementia. We aimed to illuminate these associations from various aspects. METHODS We identified relevant prospective studies by searching PubMed up to Jun 2019. Summary relative risks (RR) were estimated using random-effects models. Credibility of each meta-analysis was assessed. Meta-regression and subgroup analyses were conducted. RESULTS Of 28,082 identified literatures, 144 were eligible for inclusion in the systematic review, among which 122 were included in the meta-analysis. Diabetes conferred a 1.25- to 1.91-fold excess risk for cognitive disorders (cognitive impairment and dementia). Subjects with prediabetes also had higher risk for dementia. As for diabetes-related biochemical indicators, fasting plasma glucose (FPG) was non-linearly related to cognitive disorders; the elevated levels of 2 -h postload glucose (2h-PG), glycosylated hemoglobin (HbA1c), low and high levels of fasting plasma insulin (FPI) were associated with an increased risk of dementia. Encouragingly, the use of pioglitazone exhibited a 47% reduced risk of dementia in diabetic population. CONCLUSIONS Diabetes, even prediabetes and changes of diabetes-related biochemical indicators, predicted increased incidence of cognitive impairment and dementia. The protective effects of pioglitazone warrant further investigation in randomized trials.
Collapse
Affiliation(s)
- Mei Xue
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
214
|
Momtaz YA, Hamid TA, Bagat MF, Hazrati M. The Association Between Diabetes and Cognitive Function in Later Life. Curr Aging Sci 2019; 12:62-66. [PMID: 31589113 PMCID: PMC6971815 DOI: 10.2174/1874609812666190614104328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Although diabetes through several possible mechanisms such as increased microvascular pathology and inefficiency of glucose utilization during cognitive tasks can be associated with cognitive impairment, there is inconclusive evidence that shows elderly diabetic patients under therapy have higher cognitive function compared to their non-diabetics counterparts. The present study was conducted to elucidate the association between diabetes and cognitive function in later life. Methods: Data for this study, consisting of 2202 older adults aged 60 years and above, were taken from a population-based survey entitled “Identifying Psychosocial and Identifying Economic Risk Factor of Cognitive Impairment among Elderly. Data analysis was conducted using the IBM SPSS Version 23.0. Results: The mean of MMSE was found to be 22.67 (SD = 4.93). The overall prevalence of self-reported diabetes was found to be 23.6% (CI95%: 21.8% - 25.4%). The result of independent t-test showed diabetic subjects had a higher mean score of MMSE (M = 23.05, SD =4 .55) than their counterparts without diabetes (M = 22.55, SD = 5.04) (t = -2.13 p<.05). The results of multiple linear regression analysis showed that diabetes was not significantly associated with cognitive function, after controlling the possible confounding factors. Conclusions: The findings from the current study revealed that diabetes is not associated with cognitive decline. This study supports the findings that long-term treatment of diabetes may reduce the risk of cognitive decline. This finding may provide new opportunities for the prevention and management of cognitive decline.
Collapse
Affiliation(s)
- Yadollah A Momtaz
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tengku A Hamid
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohamad F Bagat
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maryam Hazrati
- Department of Nursing Geriatric, Nursing and Midwifery School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
215
|
Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol 2019; 320:113006. [DOI: 10.1016/j.expneurol.2019.113006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
|
216
|
Nowak M, Helgeson ME, Mitragotri S. Delivery of Nanoparticles and Macromolecules across the Blood–Brain Barrier. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maksymilian Nowak
- School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02318 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University 3 Blackfan Circle Boston MA 02115 USA
| | - Matthew E. Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02318 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University 3 Blackfan Circle Boston MA 02115 USA
| |
Collapse
|
217
|
Moderate protective effect of Kyotorphin against the late consequences of intracerebroventricular streptozotocin model of Alzheimer's disease. Amino Acids 2019; 51:1501-1513. [PMID: 31520285 DOI: 10.1007/s00726-019-02784-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023]
Abstract
The established decrease in the level of endogenous kyotorphin (KTP) into the cerebrospinal fluid of patients with an advanced stage of Alzheimer's disease (AD) and the found neuroprotective activity of KTP suggested its participation in the pathophysiology of the disease. We aimed to study the effects of subchronic intracerebroventricular (ICV) treatment (14 days) with KTP on the behavioral, biochemical and histological changes in rats with streptozotocin (STZ-ICV)-induced model of sporadic AD (sAD). Three months after the administration of STZ-ICV, rats developed increased locomotor activity, decreased level of anxiety, impaired spatial and working memory. Histological data from the STZ-ICV group demonstrated decreased number of neurons in the CA1 and CA3 subfields of the hippocampus. The STZ-ICV group was characterized with a decrease of total protein content in the hippocampus and the prefrontal cortex as well as increased levels of the carbonylated proteins in the hippocampus. KTP treatment of STZ-ICV rats normalized anxiety level and regained object recognition memory. KTP abolished the protein loss in prefrontal cortex and decrease the neuronal loss in the CA3 subfield of the hippocampus. STZ-ICV rats, treated with KTP, did not show significant changes in the levels of the carbonylated proteins in specific brain structures or in motor activity and spatial memory compared to the saline-treated STZ-ICV group. Our data show a moderate and selective protective effect of a subchronic ICV administration of the dipeptide KTP on the pathological changes induced by an experimental model of sAD in rats.
Collapse
|
218
|
Tornabene E, Helms HCC, Pedersen SF, Brodin B. Effects of oxygen-glucose deprivation (OGD) on barrier properties and mRNA transcript levels of selected marker proteins in brain endothelial cells/astrocyte co-cultures. PLoS One 2019; 14:e0221103. [PMID: 31425564 PMCID: PMC6699694 DOI: 10.1371/journal.pone.0221103] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke has been shown to induce breakdown of the blood-brain barrier, although these changes are not fully characterized. Oxygen-glucose deprivation (OGD) has been used to investigate the effects of ischemia in cultured brain capillary endothelial cells, however this involves a change of medium which in itself may affect the cells. The aim of the present study was to investigate the effect of OGD and simple medium exchange followed by 48 h of reperfusion on barrier properties of primary bovine endothelial cells co-cultured with rat astrocytes. Barrier properties were evaluated by transendothelial electrical resistance measurements, passive permeability of flux markers, RT-qPCR and immunocytochemistry. Both OGD and simple medium exchange caused an increase in endothelial monolayer permeability. This correlated with reduced transcript levels of a number of tight junction and tight junction-associated proteins (claudin-1, claudin-5, occludin, ZO-1, tricellulin, marveld3 and PECAM-1), as well as with altered transcript level of several transporters and receptors (GLUT-1, HB-EGF, InsR, TfR, two members of the low density lipoprotein receptor family, LDLR and LRP-1, and the efflux transporter BCRP). In contrast, effects induced specifically by OGD were transient de-localization of claudin-5 from the junction zone, increased InsR localization at the plasma membrane and transient downregulation of MRP-1 and P-gp transcript levels. In conclusion, OGD caused changes in claudin-5 and InsR localization, as well as in MRP-1 and P-gp transcript levels. Our results however also indicated that medium exchange alone caused changes in functional barrier properties and expression levels of wide range of proteins.
Collapse
Affiliation(s)
- Erica Tornabene
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Stine Falsig Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
219
|
Nakabeppu Y. Origins of Brain Insulin and Its Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:1-11. [PMID: 31062322 DOI: 10.1007/978-981-13-3540-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain or central nervous system (CNS) utilizes a vast amount of energy to sustain its basic functions, and most of the energy in the brain is derived from glucose. Whole-body energy and glucose homeostasis in the periphery of the human body are regulated by insulin, while the brain had been considered as an "insulin-insensitive" organ, because bulk brain glucose uptake is not affected by insulin in either rodents and humans. However, recently it has become clear that the actions of insulin are more widespread in the CNS and are a critical part of normal development, food intake, and energy balance, as well as plasticity throughout adulthood. Moreover, there are substantial evidence demonstrating that brain insulin is derived from pancreas, neurons, and astrocytes. In this chapter, I reviewed recent progress in roles of insulin in the brain, expression of insulin genes, and multiple origins of the brain insulin.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
220
|
Mazucanti CH, Kawamoto EM, Mattson MP, Scavone C, Camandola S. Activity-dependent neuronal Klotho enhances astrocytic aerobic glycolysis. J Cereb Blood Flow Metab 2019; 39:1544-1556. [PMID: 29493420 PMCID: PMC6681535 DOI: 10.1177/0271678x18762700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the β-glucuronidase protein α-Klotho have been associated with premature aging, and altered cognitive function. Although highly expressed in specific areas of the brain, Klotho functions in the central nervous system remain unknown. Here, we show that cultured hippocampal neurons respond to insulin and glutamate stimulation by elevating Klotho protein levels. Conversely, AMPA and NMDA antagonism suppress neuronal Klotho expression. We also provide evidence that soluble Klotho enhances astrocytic aerobic glycolysis by hindering pyruvate metabolism through the mitochondria, and stimulating its processing by lactate dehydrogenase. Pharmacological inhibition of FGFR1, Erk phosphorylation, and monocarboxylic acid transporters prevents Klotho-induced lactate release from astrocytes. Taken together, these data suggest Klotho is a potential new player in the metabolic coupling between neurons and astrocytes. Neuronal glutamatergic activity and insulin modulation elicit Klotho release, which in turn stimulates astrocytic lactate formation and release. Lactate can then be used by neurons and other cells types as a metabolic substrate.
Collapse
Affiliation(s)
- Caio H Mazucanti
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisa M Kawamoto
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mark P Mattson
- 2 Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,3 Department of Neurosciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristoforo Scavone
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simonetta Camandola
- 2 Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
221
|
Abstract
The blood-brain barrier (BBB) was first noted for its ability to prevent the unregulated exchange of substances between the blood and the central nervous system (CNS). Over time, its characterization as an interface that enables regulated exchanges between the CNS and substances that are carried in the blood in a hormone-like fashion have emerged. Therefore, communication between the CNS, BBB and peripheral tissues has many endocrine-like properties. In this Review, I examine the various ways in which the BBB exhibits endocrine-related properties. The BBB is a target for hormones, such as leptin and insulin, that affect many of its functions. The BBB is also a secretory body, releasing substances either into the blood or the interstitial fluid of the brain. The BBB selectively allows classical and non-classical hormones entry to and exit from the CNS, thus allowing the CNS to be both an endocrine target and a secretory tissue. The BBB is affected by endocrine diseases such as diabetes mellitus and can cause or participate in endocrine diseases, including those related to thyroid hormones and obesity. The endocrine-like mechanisms of the BBB can extend the definition of endocrine disease to include neurodegenerative conditions, including Alzheimer disease, and of hormones to include cytokines, triglycerides and fatty acids.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
222
|
Shi Z, Hansen KM, Bullock KM, Morofuji Y, Banks WA, Brooks VL. Resistance to the sympathoexcitatory effects of insulin and leptin in late pregnant rats. J Physiol 2019; 597:4087-4100. [PMID: 31209877 DOI: 10.1113/jp278282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Pregnancy increases sympathetic nerve activity (SNA), although the mechanisms responsible for this remain unknown. We tested whether insulin or leptin, two sympathoexcitatory hormones increased during pregnancy, contribute to this. Transport of insulin across the blood-brain barrier in some brain regions, and into the cerebrospinal fluid (CSF), was increased, although brain insulin degradation was also increased. As a result, brain and CSF insulin levels were not different between pregnant and non-pregnant rats. The sympathoexcitatory responses to insulin and leptin were abolished in pregnant rats. Blockade of arcuate nucleus insulin receptors did not lower SNA in pregnant or non-pregnant rats. Collectively, these data suggest that pregnancy renders the brain resistant to the sympathoexcitatory effects of insulin and leptin, and that these hormones do not mediate pregnancy-induced sympathoexcitation. Increased muscle SNA stimulates glucose uptake. Therefore, during pregnancy, peripheral insulin resistance coupled with blunted insulin- and leptin-induced sympathoexcitation ensures adequate delivery of glucose to the fetus. ABSTRACT Pregnancy increases basal sympathetic nerve activity (SNA), although the mechanism responsible for this remains unknown. Insulin and leptin are two sympathoexcitatory hormones that increase during pregnancy, yet, pregnancy impairs central insulin- and leptin-induced signalling. Therefore, to test whether insulin or leptin contribute to basal sympathoexcitation or, instead, whether pregnancy induces resistance to the sympathoexcitatory effects of insulin and leptin, we investigated α-chloralose anaesthetized late pregnant rats, which exhibited increases in lumbar SNA (LSNA), splanchnic SNA and heart rate (HR) compared to non-pregnant animals. In pregnant rats, transport of insulin into cerebrospinal fluid and across the blood-brain barrier in some brain regions increased, although brain insulin degradation was also increased; brain and cerebrospinal fluid insulin levels were not different between pregnant and non-pregnant rats. Although i.c.v. insulin increased LSNA and HR and baroreflex control of LSNA and HR in non-pregnant rats, these effects were abolished in pregnant rats. In parallel, pregnancy completely prevented the actions of leptin with respect to increasing lumbar, splanchnic and renal SNA, as well as baroreflex control of SNA. Blockade of insulin receptors (with S961) in the arcuate nucleus, the site of action of insulin, did not decrease LSNA in pregnant rats, despite blocking the effects of exogenous insulin. Thus, pregnancy is associated with central resistance to insulin and leptin, and these hormones are not responsible for the increased basal SNA of pregnancy. Because increases in LSNA to skeletal muscle stimulates glucose uptake, blunted insulin- and leptin-induced sympathoexcitation reinforces systemic insulin resistance, thereby increasing the delivery of glucose to the fetus.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Kim M Hansen
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Kristin M Bullock
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Yoichi Morofuji
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - William A Banks
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
223
|
Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, Tanila H, Haapasalo A, Hiltunen M, Natunen T. Altered Insulin Signaling in Alzheimer's Disease Brain - Special Emphasis on PI3K-Akt Pathway. Front Neurosci 2019; 13:629. [PMID: 31275108 PMCID: PMC6591470 DOI: 10.3389/fnins.2019.00629] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) and type 2 diabetes (T2D) are both diseases with increasing prevalence in aging populations. T2D, characterized by insulin resistance and defective insulin signaling, is a common co-morbidity and a risk factor for AD, increasing the risk approximately two to fourfold. Insulin exerts a wide variety of effects as a growth factor as well as by regulating glucose, fatty acid, and protein metabolism. Certain lifestyle factors, physical inactivity and typical Western diet (TWD) containing high fat and high sugar are strongly associated with insulin resistance and T2D. The PI3K-Akt signaling pathway is a major mediator of effects of insulin and plays a crucial role in T2D pathogenesis. Decreased levels of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) subunits as well as blunted Akt kinase phosphorylation have been observed in the AD brain, characterized by amyloid-β and tau pathologies. Furthermore, AD mouse models fed with TWD have shown to display altered levels of PI3K subunits. How impaired insulin-PI3K-Akt signaling in peripheral tissues or in the central nervous system (CNS) affects the development or progression of AD is currently poorly understood. Interestingly, enhancement of PI3K-Akt signaling in the CNS by intranasal insulin (IN) treatment has been shown to improve memory in vivo in mice and in human trials. Insulin is known to augment neuronal growth and synapse formation through the PI3K-Akt signaling pathway. However, PI3K-Akt pathway mediates signaling related to different functions also in other cell types, like microglia and astrocytes. In this review, we will discuss the most prominent molecular mechanisms related to the PI3K-Akt pathway in AD and how T2D and altered insulin signaling may affect the pathogenesis of AD.
Collapse
Affiliation(s)
- Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Simo Ryhänen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
224
|
Martini AC, Forner S, Trujillo-Estrada L, Baglietto-Vargas D, LaFerla FM. Past to Future: What Animal Models Have Taught Us About Alzheimer's Disease. J Alzheimers Dis 2019; 64:S365-S378. [PMID: 29504540 DOI: 10.3233/jad-179917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) impairs memory and causes significant cognitive deficits. The disease course is prolonged, with a poor prognosis, and thus exacts an enormous economic and social burden. Over the past two decades, genetically engineered mouse models have proven indispensable for understanding AD pathogenesis, as well as for discovering new therapeutic targets. Here we highlight significant studies from our laboratory that have helped advance the AD field by elucidating key pathogenic processes operative in AD and exploring a variety of aspects of the disease which may yield novel therapeutic strategies for combatting this burdensome disease.
Collapse
Affiliation(s)
- Alessandra C Martini
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - Stefania Forner
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - Frank M LaFerla
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
225
|
Rhea EM, Banks WA. Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Front Neurosci 2019; 13:521. [PMID: 31213970 PMCID: PMC6558081 DOI: 10.3389/fnins.2019.00521] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) mediates the communication between the periphery and the central nervous system (CNS). Recently, CNS insulin resistance has been elucidated to play a role in neurodegenerative disease. This has stimulated a wealth of information on the molecular impact of insulin in the brain, particularly in the improvement of cognition. Since the BBB regulates the transport of insulin into the brain and thus, helps to regulate CNS levels, alterations in the BBB response to insulin could impact CNS insulin resistance. In this review, we summarize the effect of insulin on some of the cell types that make up the BBB, including endothelial cells, neurons, astrocytes, and pericytes. We broadly discuss how these changes in specific cell types could ultimately impact the BBB. We also summarize how insulin can regulate levels of the pathological hallmarks of Alzheimer's disease, including amyloid beta (Aβ) and tau within each cell type. Finally, we suggest interventional approaches to overcome detrimental effects on the BBB in regards to changes in insulin transport.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
226
|
Agarwal SM, Kowalchuk C, Castellani L, Costa-Dookhan KA, Caravaggio F, Asgariroozbehani R, Chintoh A, Graff-Guerrero A, Hahn M. Brain insulin action: Implications for the treatment of schizophrenia. Neuropharmacology 2019; 168:107655. [PMID: 31152767 DOI: 10.1016/j.neuropharm.2019.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Insulin action in the central nervous system is a major regulator of energy balance and cognitive processes. The development of central insulin resistance is associated with alterations in dopaminergic reward systems and homeostatic signals affecting food intake, glucose metabolism, body weight and cognitive performance. Emerging evidence has highlighted a role for antipsychotics (APs) to modulate central insulin-mediated pathways. Although APs remain the cornerstone treatment for schizophrenia they are associated with severe metabolic complications and fail to address premorbid cognitive deficits, which characterize the disorder of schizophrenia. In this review, we first explore how the hypothesized association between schizophrenia and CNS insulin dysregulation aligns with the use of APs. We then investigate the proposed relationship between CNS insulin action and AP-mediated effects on metabolic homeostasis, and different domains of psychopathology, including cognition. We briefly discuss a potential role of CNS insulin signaling to explain the hypothesized, but somewhat controversial association between therapeutic efficacy and metabolic side effects of APs. Finally, we propose how this knowledge might inform novel treatment strategies to target difficult to treat domains of schizophrenia. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
227
|
The Relation Between Type 2 Diabetes Mellitus and Parkinson Disease Up to Date. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Parkinson’s disease is defined nowadays as a neurodegenerative disease with prominent motor symptoms accompanied by a wide range of comorbidities, some of them, like type 2 diabetes mellitus, probably implicated in the pathogenesis and progression of the disease. In order to achieve this article, which aimed to realize an up to date synthesis of published dedicated papers, a PubMed search was performed; it revealed increasing evidence that these two morbid conditions share many pathogenic pathways and current studies are trying to finally transform the accumulated knowledge into curative therapy or effective prevention for these frequent and complex diseases.
Collapse
|
228
|
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol 2019; 315:1-8. [DOI: 10.1016/j.expneurol.2019.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
|
229
|
Cordner ZA, Khambadkone SG, Boersma GJ, Song L, Summers TN, Moran TH, Tamashiro KLK. Maternal high-fat diet results in cognitive impairment and hippocampal gene expression changes in rat offspring. Exp Neurol 2019; 318:92-100. [PMID: 31051155 DOI: 10.1016/j.expneurol.2019.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Consumption of a high-fat diet has long been known to increase risk for obesity, diabetes, and the metabolic syndrome. Further evidence strongly suggests that these same metabolic disorders are associated with an increased risk of cognitive impairment later in life. Now faced with an expanding global burden of obesity and increasing prevalence of dementia due to an aging population, understanding the effects of high-fat diet consumption on cognition is of increasingly critical importance. Further, the developmental origins of many adult onset neuropsychiatric disorders have become increasingly clear, indicating a need to investigate effects of various risk factors, including diet, across the lifespan. Here, we use a rat model to assess the effects of maternal diet during pregnancy and lactation on cognition and hippocampal gene expression of offspring. Behaviorally, adult male offspring of high-fat fed dams had impaired object recognition memory and impaired spatial memory compared to offspring of chow-fed dams. In hippocampus, we found decreased expression of Insr, Lepr, and Slc2a1 (GLUT1) among offspring of high-fat fed dams at postnatal day 21. The decreased expression of Insr and Lepr persisted at postnatal day 150. Together, these data provide additional evidence to suggest that maternal exposure to high-fat diet during pregnancy and lactation can have lasting effects on the brain, behavior, and cognition on adult offspring.
Collapse
Affiliation(s)
- Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Gretha J Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Lin Song
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Tyler N Summers
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA.
| |
Collapse
|
230
|
Wingrove J, Swedrowska M, Scherließ R, Parry M, Ramjeeawon M, Taylor D, Gauthier G, Brown L, Amiel S, Zelaya F, Forbes B. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. J Control Release 2019; 302:140-147. [PMID: 30953665 DOI: 10.1016/j.jconrel.2019.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/28/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to characterise three nasal drug delivery devices to evaluate their propensity to deliver human insulin solutions to the nasal cavity for redistribution to the central nervous system. Brain delivery was evaluated using functional magnetic resonance imaging to measure regional cerebral blood flow. Intranasal insulin administration has been hypothesised to exploit nose-to-brain pathways and deliver drug directly to the brain tissue whilst limiting systemic exposure. Three nasal pump-actuator configurations were compared for delivery of 400 IU/mL insulin solution by measuring droplet size distribution, plume geometry, spray pattern and in vitro deposition in a nasal cast. The device with optimal spray properties for nose to brain delivery (spray angle between 30° and 45°; droplet size between 20 and 50 μm) also favoured high posterior-superior deposition in the nasal cast and was utilised in a pharmacological magnetic resonance imaging study. Functional magnetic resonance imaging in healthy male volunteers showed statistically significant decreases in regional cerebral blood flow within areas dense in insulin receptors (bilateral amygdala) in response to intranasally administered insulin (160 IU) compared to saline (control). These changes correspond to the expected effects of insulin in the brain and were achieved using a simple nasal spray device and solution formulation. We recommend that a thorough characterisation of nasal delivery devices and qualitative/quantitative assessment of the administered dose is reported in all studies of nose to brain delivery so that responses can be evaluated with respect to posology and comparison between studies is facilitated.
Collapse
Affiliation(s)
- Jed Wingrove
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, London SE5 8AF, UK.
| | - Magda Swedrowska
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| | - Regina Scherließ
- Kiel University, Department of Pharmaceutics and Biopharmaceutics, 24118 Kiel, Germany
| | | | | | - David Taylor
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| | | | - Louise Brown
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
| | - Stephanie Amiel
- Diabetes Research Group, King's College London, King's College Hospital Campus, Weston Education Central, London, UK; Institute of Diabetes and Obesity, King's Health Partners, London, UK
| | - Fernando Zelaya
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, London SE5 8AF, UK
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| |
Collapse
|
231
|
Erickson MA, Banks WA. Age-Associated Changes in the Immune System and Blood⁻Brain Barrier Functions. Int J Mol Sci 2019; 20:ijms20071632. [PMID: 30986918 PMCID: PMC6479894 DOI: 10.3390/ijms20071632] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Age is associated with altered immune functions that may affect the brain. Brain barriers, including the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB), are important interfaces for neuroimmune communication, and are affected by aging. In this review, we explore novel mechanisms by which the aging immune system alters central nervous system functions and neuroimmune responses, with a focus on brain barriers. Specific emphasis will be on recent works that have identified novel mechanisms by which BBB/BCSFB functions change with age, interactions of the BBB with age-associated immune factors, and contributions of the BBB to age-associated neurological disorders. Understanding how age alters BBB functions and responses to pathological insults could provide important insight on the role of the BBB in the progression of cognitive decline and neurodegenerative disease.
Collapse
Affiliation(s)
- Michelle A Erickson
- VA Puget Sound Healthcare System, Geriatric Research Education and Clinical Center, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | - William A Banks
- VA Puget Sound Healthcare System, Geriatric Research Education and Clinical Center, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|
232
|
Wardzinski EK, Friedrichsen L, Dannenberger S, Kistenmacher A, Melchert UH, Jauch-Chara K, Oltmanns KM. Double transcranial direct current stimulation of the brain increases cerebral energy levels and systemic glucose tolerance in men. J Neuroendocrinol 2019; 31:e12688. [PMID: 30659676 DOI: 10.1111/jne.12688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulatory method that has been tested experimentally and has already been used as an adjuvant therapeutic option to treat a number of neurological disorders and neuropsychiatric diseases. Beyond its well known local effects within the brain, tDCS also transiently promotes systemic glucose uptake and reduces the activity of the neurohormonal stress axes. We aimed to test whether the effects of a single tDCS application could be replicated upon double stimulation to persistently improve systemic glucose tolerance and stress axes activity in humans. In a single-blinded cross-over study, we examined 15 healthy male volunteers. Anodal tDCS vs sham was applied twice in series. Systemic glucose tolerance was investigated by the standard hyperinsulinaemic-euglycaemic glucose clamp procedure, and parameters of neurohormonal stress axes activity were measured. Because tDCS-induced brain energy consumption has been shown to be part of the mechanism underlying the assumed effects, we monitored the cerebral high-energy phosphates ATP and phosphocreatine by 31 phosphorus magnetic resonance spectroscopy. As hypothesised, analyses revealed that double anodal tDCS persistently increases glucose tolerance compared to sham. Moreover, we observed a significant rise in cerebral high-energy phosphate content upon double tDCS. Accordingly, the activity of the neurohormonal stress axes was reduced upon tDCS compared to sham. Our data demonstrate that double tDCS promotes systemic glucose uptake and reduces stress axes activity in healthy humans. These effects suggest that repetitive tDCS may be a future non-pharmacological option for combating glucose intolerance in type 2 diabetes patients.
Collapse
Affiliation(s)
- Ewelina K Wardzinski
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Lisa Friedrichsen
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Sina Dannenberger
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Alina Kistenmacher
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Uwe H Melchert
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kamila Jauch-Chara
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kerstin M Oltmanns
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| |
Collapse
|
233
|
Lyra E Silva NDM, Gonçalves RA, Boehnke SE, Forny-Germano L, Munoz DP, De Felice FG. Understanding the link between insulin resistance and Alzheimer's disease: Insights from animal models. Exp Neurol 2019; 316:1-11. [PMID: 30930096 DOI: 10.1016/j.expneurol.2019.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting millions of people worldwide. AD is characterized by a profound impairment of higher cognitive functions and still lacks any effective disease-modifying treatment. Defective insulin signaling has been implicated in AD pathophysiology, but the mechanisms underlying this process are not fully understood. Here, we review the molecular mechanisms underlying defective brain insulin signaling in rodent models of AD, and in a non-human primate (NHP) model of the disease that recapitulates features observed in AD brains. We further highlight similarities between the NHP and human brains and discuss why NHP models of AD are important to understand disease mechanisms and to improve the translation of effective therapies to humans. We discuss how studies using different animal models have contributed to elucidate the link between insulin resistance and AD.
Collapse
Affiliation(s)
| | | | - Susan E Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Brazil
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada; Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
234
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer's disease. Exp Neurol 2019; 313:79-87. [PMID: 30576640 PMCID: PMC6370304 DOI: 10.1016/j.expneurol.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.
Collapse
Affiliation(s)
- Hilaree N Frazier
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Adam O Ghoweri
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Katie L Anderson
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Ruei-Lung Lin
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Nada M Porter
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Olivier Thibault
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| |
Collapse
|
235
|
Villaseñor R, Lampe J, Schwaninger M, Collin L. Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol Life Sci 2019; 76:1081-1092. [PMID: 30523362 PMCID: PMC6513804 DOI: 10.1007/s00018-018-2982-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier is a dynamic multicellular interface that regulates the transport of molecules between the blood circulation and the brain parenchyma. Proteins and peptides required for brain homeostasis cross the blood-brain barrier via transcellular transport, but the mechanisms that control this pathway are not well characterized. Here, we highlight recent studies on intracellular transport and transcytosis across the blood-brain barrier. Endothelial cells at the blood-brain barrier possess an intricate endosomal network that allows sorting to diverse cellular destinations. Internalization from the plasma membrane, endosomal sorting, and exocytosis all contribute to the regulation of transcytosis. Transmembrane receptors and blood-borne proteins utilize different pathways and mechanisms for transport across brain endothelial cells. Alterations to intracellular transport in brain endothelial cells during diseases of the central nervous system contribute to blood-brain barrier disruption and disease progression. Harnessing the intracellular sorting mechanisms at the blood-brain barrier can help improve delivery of biotherapeutics to the brain.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland.
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
236
|
Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer's and Parkinson's Diseases. CNS Drugs 2019; 33:209-223. [PMID: 30511349 DOI: 10.1007/s40263-018-0593-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current absence of effective treatments for Alzheimer's disease (AD) and Parkinson's disease (PD) reflects an incomplete knowledge of the underlying disease processes. Considerable efforts have been made to investigate the central pathological features of these diseases, giving rise to numerous attempts to develop compounds that interfere with such features. However, further characterization of the molecular targets within the interconnected AD and PD pathways is still required. Impaired brain insulin signaling has emerged as a feature that contributes to neuronal dysfunction in both AD and PD, leading to strategies aiming at restoring this pathway in the brain. Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for treatment of type 2 diabetes mellitus have been tested and have shown encouraging protective actions in experimental models of AD and PD as well as in initial clinical trials. We review studies revealing the neuroprotective actions of GLP-1 analogues in pre-clinical models of AD and PD and promising results from recent clinical trials.
Collapse
|
237
|
Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep 2019; 9:2621. [PMID: 30796294 PMCID: PMC6385374 DOI: 10.1038/s41598-019-39191-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/16/2019] [Indexed: 01/01/2023] Open
Abstract
In the brain, insulin acts as a growth factor, regulates energy homeostasis, and is involved in learning and memory acquisition. Many central nervous system (CNS) diseases are characterized by deficits in insulin signaling. Pre-clinical studies have shown that intranasal insulin is neuroprotective in models of Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury. Clinical trials have also shown that intranasal insulin elicits beneficial cognitive effects in patients with Alzheimer’s disease. It is known that insulin can be detected in the CNS within minutes following intranasal administration. Despite these advances, the anatomical pathways that insulin utilizes to reach the CNS and the cellular CNS targets after intranasal administration are not fully understood. Here, we intranasally administered fluorescently labeled insulin and imaged its localization within the brain and trigeminal nerves. Our data indicates that intranasal insulin can reach cellular CNS targets along extracellular components of the trigeminal nerve. Upon CNS entry, we found insulin significantly increased levels of an activated form of the insulin receptor. These findings suggest that the intranasal route of administration is able to effectively deliver insulin to CNS targets in a biologically active form.
Collapse
|
238
|
Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New? Int J Mol Sci 2019; 20:ijms20040874. [PMID: 30781611 PMCID: PMC6413037 DOI: 10.3390/ijms20040874] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The latest studies have indicated a strong relationship between systemic insulin resistance (IR) and higher incidence of neurodegeneration, dementia, and mild cognitive impairment. Although some of these abnormalities could be explained by chronic hyperglycaemia, hyperinsulinemia, dyslipidaemia, and/or prolonged whole-body inflammation, the key role is attributed to the neuronal redox imbalance and oxidative damage. In this mini review, we provide a schematic overview of intracellular oxidative stress and mitochondrial abnormalities in the IR brain. We highlight important correlations found so far between brain oxidative stress, ceramide generation, β-amyloid accumulation, as well as neuronal apoptosis in the IR conditions.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| |
Collapse
|
239
|
Nierwińska K, Nowacka-Chmielewska M, Bernacki J, Jagsz S, Chalimoniuk M, Langfort J, Małecki A. The effect of endurance training and testosterone supplementation on the expression of blood spinal cord barrier proteins in rats. PLoS One 2019; 14:e0211818. [PMID: 30742658 PMCID: PMC6370194 DOI: 10.1371/journal.pone.0211818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to estimate the effect of endurance training, two doses of testosterone, and the combination of these stimuli on the level of the endothelial proteins claudin, occludin, JAM-1, VE-cadherin, ZO-1, ZO-2, and P-glycoprotein in rat spinal cords. Adult male Wistar rats were trained using a motor-driven treadmill for 6 weeks (40-60 min, 5 times per week) and/or were treated for 6 weeks with two doses of testosterone (i.m.; 8 mg/kg or 80 mg/kg body weight). Spinal cords were collected 48 hours after the last training cycle and stored at -80°C. The levels of selected proteins in whole tissue lysates of the spinal cord were measured by western blot. Testosterone-treated trained rats had significantly lower claudin levels than vehicle-treated trained rats. High doses of testosterone resulted in a significant decrease in claudin-5 in untrained rats compared to the control group. Both doses of testosterone significantly reduced occludin levels compared to those in vehicle-treated untrained rats. The JAM-1 level in the spinal cords of both trained and untrained animals receiving testosterone was decreased in a dose-dependent manner. The JAM-1 level in the trained group treated with high doses of testosterone was significantly higher than that in the untrained rats treated with 80 mg/kg of testosterone. VE-cadherin levels were decreased in all groups receiving testosterone regardless of endurance training and were also diminished in the vehicle-treated group compared to the control group. Testosterone treatment did not exert a significant effect on ZO-1 protein levels. Testosterone and/or training had no significant effects on ZO-2 protein levels in the rat spinal cords. Endurance training increased P-glycoprotein levels in the rat spinal cords. The results suggest that an excessive supply of testosterone may adversely impact the expression of endothelial proteins in the central nervous system, which, in turn, may affect the blood-brain barrier function.
Collapse
Affiliation(s)
- Katarzyna Nierwińska
- Department of Physiology, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
- * E-mail:
| | | | - Jacek Bernacki
- Department of Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Sławomir Jagsz
- Department of Biochemistry, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biala Podlaska, Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Józef Langfort
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
240
|
Salmina AB, Komleva YK, Lopatina OL, Birbrair A. Pericytes in Alzheimer's Disease: Novel Clues to Cerebral Amyloid Angiopathy Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:147-166. [PMID: 31147877 DOI: 10.1007/978-3-030-16908-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes in the central nervous system attract growing attention of neurobiologists because of obvious opportunities to use them as target cells in numerous brain diseases. Functional activity of pericytes includes control of integrity of the endothelial cell layer, regeneration of vascular cells, and regulation of microcirculation. Pericytes are well integrated in the so-called neurovascular unit (NVU) serving as a platform for effective communications of neurons, astrocytes, endothelial cells, and pericytes. Contribution of pericytes to the establishment and maintaining the structural and functional integrity of blood-brain barrier is confirmed in numerous experimental and clinical studies. The review covers current understandings on the role of pericytes in molecular pathogenesis of NVU/BBB dysfunction in Alzheimer's disease with the special focus on the development of cerebral amyloid angiopathy, deregulation of cerebral angiogenesis, and progression of BBB breakdown seen in Alzheimer's type neurodegeneration.
Collapse
Affiliation(s)
- Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia. .,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
241
|
Chen L, Zhou L, Yu P, Fang F, Jiang L, Fei J, Xiao H, Wang J. Methamphetamine exposure upregulates the amyloid precursor protein and hyperphosphorylated tau expression: The roles of insulin signaling in SH-SY5Y cell line. J Toxicol Sci 2019; 44:493-503. [PMID: 31270305 DOI: 10.2131/jts.44.493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lingling Chen
- Children’s Hospital of Nanjing Medical University, China
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, China
| | - Li Zhou
- Children’s Hospital of Nanjing Medical University, China
| | - Pengfei Yu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, China
| | - Fangfang Fang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, China
- Community Health Service Center of Rong Xiang Street, China
| | - Lei Jiang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, China
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, China
| | - Jian Fei
- Children’s Hospital of Nanjing Medical University, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, China
- China International Cooperation Center for Environment and Human Health, China
| |
Collapse
|
242
|
Carvalho C, Cardoso SM, Correia SC, Moreira PI. Tortuous Paths of Insulin Signaling and Mitochondria in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:161-183. [PMID: 31062330 DOI: 10.1007/978-981-13-3540-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the exponential growth of aging population worldwide, neurodegenerative diseases became a major public health concern. Among them, Alzheimer's disease (AD) prevails as the most common in the elderly, rendering it a research priority. After several decades considering the brain as an insulin-insensitive organ, recent advances proved a central role for this hormone in learning and memory processes and showed that AD shares a high number of features with systemic conditions characterized by insulin resistance. Mitochondrial dysfunction has also been widely demonstrated to play a major role in AD development supporting the idea that this neurodegenerative disease is characterized by a pronounced metabolic dysregulation. This chapter is intended to discuss evidence demonstrating the key role of insulin signaling and mitochondrial anomalies in AD.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
243
|
Sposato V, Canu N, Fico E, Fusco S, Bolasco G, Ciotti MT, Spinelli M, Mercanti D, Grassi C, Triaca V, Calissano P. The Medial Septum Is Insulin Resistant in the AD Presymptomatic Phase: Rescue by Nerve Growth Factor-Driven IRS 1 Activation. Mol Neurobiol 2019; 56:535-552. [PMID: 29736736 PMCID: PMC6334735 DOI: 10.1007/s12035-018-1038-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.
Collapse
Affiliation(s)
- Valentina Sposato
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
| | - Nadia Canu
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
- Department of System Medicine, Section of Physiology, University of Rome “TorVergata”, Rome, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL), Monterotondo Outstation, Rome, Italy
| | - Maria Teresa Ciotti
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
| | - Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delio Mercanti
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Viviana Triaca
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI) Rita Levi-Montalcini Foundation, Viale Regina Elena 295, Rome, Italy
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, Via del Fosso di Fiorano 64, Rome, Italy
| |
Collapse
|
244
|
|
245
|
Diabetes and Alzheimer's Disease: A Link not as Simple as it Seems. Neurochem Res 2018; 44:1271-1278. [PMID: 30523576 DOI: 10.1007/s11064-018-2690-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is associated with an increased risk to develop Alzheimer disease, however, the underlying mechanisms for this association are still unclear. In this review we will provide a critical overview of the major findings coming from clinical studies and animal models.
Collapse
|
246
|
Chronic Unpredictable Mild Stress Aggravates Mood Disorder, Cognitive Impairment, and Brain Insulin Resistance in Diabetic Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2901863. [PMID: 30622594 PMCID: PMC6304489 DOI: 10.1155/2018/2901863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/29/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-induced brain insulin resistance is associated with many mental diseases, including depression. Epidemiological evidences demonstrate the pathophysiologic link between stress, depression, and diabetes. This study was designed to determine whether chronic unpredictable mild stress- (CUMS-) induced changes in brain insulin resistance could contribute to deterioration in mood and cognitive functions in diabetic rats. Male SD rats were randomly assigned to three groups, including standard control group, the diabetes group, and the diabetes with CUMS group. After 7 weeks, emotional behaviors and memory performances as well as metabolic phenotypes were measured. In addition, we examined the changes in protein expression related to brain insulin signaling. Our results show that rats in diabetes with CUMS group displayed a decreased locomotor behavior in open-field test, an increased immobility time in forced swim test, and tail suspension test, and an impaired learning and memory in the Morris water maze when compared to animals in diabetes group. Further, diabetes with CUMS exhibited a significant decrease in phosphorylation of insulin receptor and an increase phosphorylation of IRS-1 in brain. These results suggest that the depression-like behaviors and cognitive function impairments in diabetic rats with CUMS were related to the changes of brain insulin signaling.
Collapse
|
247
|
Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the central nervous system: A comparative review. Exp Neurol 2018; 313:10-15. [PMID: 30500332 DOI: 10.1016/j.expneurol.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) insulin resistance is a condition in which the cells within the CNS do not respond to insulin appropriately and is often linked to aberrant CNS insulin levels. CNS insulin is primarily derived from the periphery. Aberrant CNS insulin levels can arise due to various factors including i) decreased endogenous insulin transport into the brain, across the blood-brain barrier (BBB), ii) reduced CNS sequestration of insulin, and iii) increased CNS degradation. While the sole route of endogenous insulin transport into the brain is via the BBB, there are multiple therapeutic routes of administration that have been investigated to deliver exogenous insulin to the CNS. These alternative administrative routes can be utilized to increase the amount of CNS insulin and aid in overcoming CNS insulin resistance. This review focuses on the intravenous, intracerebroventricular, intranasal, ocular, and intrathecal routes of administration and compares the impact of insulin delivery.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Therese S Salameh
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
248
|
Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease. Drug Des Devel Ther 2018; 12:3999-4021. [PMID: 30538427 PMCID: PMC6255119 DOI: 10.2147/dddt.s173970] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia,
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia,
| | - Hamed Karimian
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Girish Prabhu
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
249
|
Del Olmo N, Ruiz-Gayo M. Influence of High-Fat Diets Consumed During the Juvenile Period on Hippocampal Morphology and Function. Front Cell Neurosci 2018; 12:439. [PMID: 30515083 PMCID: PMC6255817 DOI: 10.3389/fncel.2018.00439] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
The negative impact of obesity on neurocognitive functioning is an issue of increasing clinical interest. Over the last decade, a number of studies have analyzed the influence of high-fat diets (HFDs) on cognitive performance, particularly in adolescent individuals. Different approaches, including behavioral, neurochemical, electrophysiological and morphological studies, have been developed to address the effect of HFDs on neural processes interfering with learning and memory skills in rodents. Many of the studies have focused on learning and memory related to the hippocampus and the mechanisms underlying these processes. The goal of the current review article is to highlight the relationship between hippocampal learning/memory deficits and nutritional/endocrine inputs derived from HFDs consumption, with a special emphasis on research showing the effect of HFDs intake during the juvenile period. We have also reviewed recent research regarding the effect of HFDs on hippocampal neurotransmission. An overview of research suggesting the involvement of fatty acid (FA) receptor-mediated signaling pathways in memory deficits triggered by HFDs is also provided. Finally, the role of leptin and HFD-evoked hyperleptinemia is discussed.
Collapse
Affiliation(s)
- Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
250
|
Lu Y, Jiang X, Liu S, Li M. Changes in Cerebrospinal Fluid Tau and β-Amyloid Levels in Diabetic and Prediabetic Patients: A Meta-Analysis. Front Aging Neurosci 2018; 10:271. [PMID: 30364261 PMCID: PMC6193181 DOI: 10.3389/fnagi.2018.00271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Increased risks for Alzheimer's disease (AD) are a well-recognized consequence of diabetes, insulin resistance (IR), and hyperinsulinemia. Since cerebrospinal fluid (CSF) is surrounding the central nervous system, alterations of β-amyloid (Aβ) and tau protein in the CSF may be indicative of AD-type degenerations in the brain. Current laboratory diagnosis of AD uses three biomarkers in CSF: Aβ1-42, total tau (t-Tau), and phosphorylated tau (p-Tau). However, changes in these biomarkers in diabetic and prediabetic patients are scattered and variable in literature. Thus, we attempt to perform a systematical analysis of these available data. MEDLINE, EMBASE, the Cochrane Central database, China National Knowledge Infrastructure (CNKI), and Wanfang Data electronic databases were searched to gather published studies that have evaluated the AD-type biomarkers in the CSF of subjects with diabetes, IR, or hyperinsulinemia in comparison with respective controls. Overall analysis of the published data showed no significant differences in Aβ1-42, t-Tau, and p-Tau levels in the CSF between the (pre)diabetic subjects and controls. However, subgroup analysis suggested that (pre)diabetic conditions might accelerate decrease of Aβ1-42, but increase of t-Tau levels in the CSF of subjects with cognitive impairment, and the association with p-Tau in the CSF was stronger (P = 0.001) for diabetes than those of prediabetes (P = 0.61). Our analyses reveal that the relationship between (pre)diabetic conditions and AD-type biomarker status in the CSF was subjective to clinical characteristics.
Collapse
Affiliation(s)
- Yanhui Lu
- School of Nursing, Peking University Health Science Center, Beijing, China
| | - Xinjun Jiang
- School of Nursing, Peking University Health Science Center, Beijing, China
| | - Shuling Liu
- School of Nursing, Peking University Health Science Center, Beijing, China
| | - Mingzi Li
- School of Nursing, Peking University Health Science Center, Beijing, China
| |
Collapse
|