201
|
Shafi AA, Schiewer MJ, de Leeuw R, Dylgjeri E, McCue PA, Shah N, Gomella LG, Lallas CD, Trabulsi EJ, Centenera MM, Hickey TE, Butler LM, Raj G, Tilley WD, Cukierman E, Knudsen KE. Patient-derived Models Reveal Impact of the Tumor Microenvironment on Therapeutic Response. Eur Urol Oncol 2018; 1:325-337. [PMID: 30467556 DOI: 10.1016/j.euo.2018.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Androgen deprivation therapy is a first-line treatment for disseminated prostate cancer (PCa). However, virtually all tumors become resistant and recur as castration-resistant PCa, which has no durable cure. One major hurdle in the development of more effective therapies is the lack of preclinical models that adequately recapitulate the heterogeneity of PCa, significantly hindering the ability to accurately predict therapeutic response. Objective To leverage the ex vivo culture method termed patient-derived explant (PDE) to examine the impact of PCa therapeutics on a patient-by-patient basis. Design setting and participants Fresh PCa tissue from patients who underwent radical prostatectomy was cultured as PDEs to examine therapeutic response. Outcome measurements and statistical analysis The impact of genomic and chemical perturbations in PDEs was assessed using various parameters (eg, AR levels, Ki67 staining, and desmoplastic indices). Results and limitations PDE maintained the integrity of the native tumor microenvironment (TME), tumor tissue morphology, viability, and endogenous hormone signaling. Tumor cells in this model system exhibited de novo proliferative capacity. Examination of the native TME in the PDE revealed a first-in-field insight into patient-specific desmoplastic stromal indices and predicted responsiveness to AR-directed therapeutics. Conclusions The PDE model allows for a comprehensive evaluation of individual tumors in their native TME to ultimately develop more effective therapeutic regimens tailored to individuals. Discernment of novel stromal markers may provide a basis for applying precision medicine in treating advanced PCa, which would have a transformative effect on patient outcomes. Patient summary In this study, an innovative model system was used to more effectively mimic human disease. The patient-derived explant (PDE) system can be used to predict therapeutic response and identify novel targets in advanced disease. Thus, the PDE will be an asset for the development of novel metrics for the implementation of precision medicine in prostate cancer.The patient-derived explant (PDE) model allows for a comprehensive evaluation of individual human tumors in their native tumor microenvironment (TME). TME analysis revealed first-in-field insight into predicted tumor responsiveness to AR-directed therapeutics through evaluation of patient-specific desmoplastic stromal indices.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Renée de Leeuw
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuela Dylgjeri
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter A McCue
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Neelima Shah
- Cancer Biology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Leonard G Gomella
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Costas D Lallas
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edouard J Trabulsi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Margaret M Centenera
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia.,South Australian Health and Medician Research Institute, Adelaide, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia.,South Australian Health and Medician Research Institute, Adelaide, Australia
| | - Ganesh Raj
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Edna Cukierman
- Cancer Biology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Departments of Cancer Biology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
202
|
Regufe da Mota S, Bailey S, Strivens RA, Hayden AL, Douglas LR, Duriez PJ, Borrello MT, Benelkebir H, Ganesan A, Packham G, Crabb SJ. LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell Int 2018; 18:71. [PMID: 29760584 PMCID: PMC5941811 DOI: 10.1186/s12935-018-0568-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Castrate resistant prostate cancer (CRPC) is often driven by constitutively active forms of the androgen receptor such as the V7 splice variant (AR-V7) and commonly becomes resistant to established hormonal therapy strategies such as enzalutamide as a result. The lysine demethylase LSD1 is a co-activator of the wild type androgen receptor and a potential therapeutic target in hormone sensitive prostate cancer. We evaluated whether LSD1 could also be therapeutically targeted in CRPC models driven by AR-V7. METHODS We utilised cell line models of castrate resistant prostate cancer through over expression of AR-V7 to test the impact of chemical LSD1 inhibition on AR activation. We validated findings through depletion of LSD1 expression and in prostate cancer cell lines that express AR-V7. RESULTS Chemical inhibition of LSD1 resulted in reduced activation of the androgen receptor through both the wild type and its AR-V7 splice variant forms. This was confirmed and validated in luciferase reporter assays, in LNCaP and 22Rv1 prostate cancer cell lines and in LSD1 depletion experiments. CONCLUSION LSD1 contributes to activation of both the wild type and V7 splice variant forms of the androgen receptor and can be therapeutically targeted in models of CRPC. Further development of this approach is warranted.
Collapse
Affiliation(s)
- Sergio Regufe da Mota
- Cancer Sciences Unit and Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Mailpoint 824, Southampton, SO16 6YD UK
| | - Sarah Bailey
- Cancer Sciences Unit and Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Mailpoint 824, Southampton, SO16 6YD UK
| | - Rosemary A. Strivens
- Cancer Sciences Unit and Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Mailpoint 824, Southampton, SO16 6YD UK
| | - Annette L. Hayden
- Cancer Sciences Unit and Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Mailpoint 824, Southampton, SO16 6YD UK
| | - Leon R. Douglas
- Protein Core Facility, Cancer Research UK and Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - Patrick J. Duriez
- Protein Core Facility, Cancer Research UK and Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | | | - Hanae Benelkebir
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| | - A. Ganesan
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| | - Graham Packham
- Cancer Sciences Unit and Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Mailpoint 824, Southampton, SO16 6YD UK
| | - Simon J. Crabb
- Cancer Sciences Unit and Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Somers Cancer Research Building, Mailpoint 824, Southampton, SO16 6YD UK
| |
Collapse
|
203
|
George A, Raji I, Cinar B, Kucuk O, Oyelere AK. Design, synthesis, and evaluation of the antiproliferative activity of hydantoin-derived antiandrogen-genistein conjugates. Bioorg Med Chem 2018; 26:1481-1487. [PMID: 29456113 PMCID: PMC5891370 DOI: 10.1016/j.bmc.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling is vital to the viability of all forms of prostate cancer (PCa). With the goal of investigating the effect of simultaneous inhibition and depletion of AR on viability of PCa cells, we designed, synthesized and characterized the bioactivities of bifunctional agents which incorporate the independent cancer killing properties of an antiandrogen and genistein, and the AR downregulation effect of genistein within a single molecular template. We observed that a representative conjugate, 9b, is much more cytotoxic to both LNCaP and DU145 cells relative to the antiandrogen and genistein building blocks as single agents or their combination. Moreover, conjugate 9b more effectively down regulates cellular AR protein levels relative to genistein and induces S phase cell cycle arrest. The promising bioactivities of these conjugates warrant further investigation.
Collapse
Affiliation(s)
- Alex George
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Idris Raji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Bekir Cinar
- Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
204
|
Del Re M, Crucitta S, Restante G, Rofi E, Arrigoni E, Biasco E, Sbrana A, Coppi E, Galli L, Bracarda S, Santini D, Danesi R. Pharmacogenetics of androgen signaling in prostate cancer: Focus on castration resistance and predictive biomarkers of response to treatment. Crit Rev Oncol Hematol 2018; 125:51-59. [DOI: 10.1016/j.critrevonc.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
|
205
|
Khatun A, Shimozawa M, Kito H, Kawaguchi M, Fujimoto M, Ri M, Kajikuri J, Niwa S, Fujii M, Ohya S. Transcriptional Repression and Protein Degradation of the Ca 2+-Activated K + Channel K Ca1.1 by Androgen Receptor Inhibition in Human Breast Cancer Cells. Front Physiol 2018; 9:312. [PMID: 29713287 PMCID: PMC5911984 DOI: 10.3389/fphys.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/14/2018] [Indexed: 01/14/2023] Open
Abstract
The large-conductance Ca2+-activated K+ channel KCa1.1 plays an important role in the promotion of breast cancer cell proliferation and metastasis. The androgen receptor (AR) is proposed as a therapeutic target for AR-positive advanced triple-negative breast cancer. We herein investigated the effects of a treatment with antiandrogens on the functional activity, activation kinetics, transcriptional expression, and protein degradation of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, voltage-sensitive dye imaging, and whole-cell patch clamp recording. A treatment with the antiandrogen bicalutamide or enzalutamide for 48 h significantly suppressed (1) depolarization responses induced by paxilline (PAX), a specific KCa1.1 blocker and (2) PAX-sensitive outward currents induced by the depolarizing voltage step. The expression levels of KCa1.1 transcripts and proteins were significantly decreased in MDA-MB-453 cells, and the protein degradation of KCa1.1 mainly contributed to reductions in KCa1.1 activity. Among the eight regulatory β and γ subunits, LRRC26 alone was expressed at high levels in MDA-MB-453 cells and primary and metastatic breast cancer tissues, whereas no significant changes were observed in the expression levels of LRRC26 and activation kinetics of PAX-sensitive outward currents in MDA-MB-453 cells by the treatment with antiandrogens. The treatment with antiandrogens up-regulated the expression of the ubiquitin E3 ligases, FBW7, MDM2, and MDM4 in MDA-MB-453 cells, and the protein degradation of KCa1.1 was significantly inhibited by the respective siRNA-mediated blockade of FBW7 and MDM2. Based on these results, we concluded that KCa1.1 is an androgen-responsive gene in AR-positive breast cancer cells, and its down-regulation through enhancements in its protein degradation by FBW7 and/or MDM2 may contribute, at least in part, to the antiproliferative and antimetastatic effects of antiandrogens in breast cancer cells.
Collapse
Affiliation(s)
- Anowara Khatun
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Motoki Shimozawa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Kawaguchi
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Fujimoto
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Ri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satomi Niwa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masanori Fujii
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Susumu Ohya
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
206
|
Zhang Y, Jiang F, He H, Ye J, Mao X, Guo Q, Wu SL, Zhong W, Wu CL, Lin N. Identification of a novel microRNA-mRNA regulatory biomodule in human prostate cancer. Cell Death Dis 2018; 9:301. [PMID: 29467540 PMCID: PMC5833360 DOI: 10.1038/s41419-018-0293-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022]
Abstract
Our recent study identified a list of differentially expressed microRNAs (miRNAs) in human prostate cancer (PCa) tissues compared to adjacent benign prostate tissues. In the current study, to identify the crucial miRNA-mRNA regulatory biomodule involved into prostate carcinogenesis based on the previous miRNA expression profile in PCa, we proposed an integrated systematic approach which combined miRNA-mediated gene expression regulatory network analysis, experimental validations in vitro and in vivo, as well as clinical significance evaluation. As a result, the CCND1-RNASEL-CDKN1A-TP73-MDM2-UBE2I axis was identified as a bottleneck in the miRNA-mediated gene expression regulatory network of PCa according to network topological analysis. The direct binding relationship between TP73 and PCa downregulated miR-193a-5p, and the direct binding relationship between UBE2I and PCa upregulated miR-188-5p were both experimentally validated. In addition, miR-193a-5p had a more significant regulatory effect on the tumor promoter isoform of TP73-deltaNp73 than on the tumor suppressive isoform of TP73-TAp73. Importantly, the deregulation of either the miR-193a-5p-TP73 or miR-188-5p-UBE2I axes was significantly associated with aggressive progression and poor prognosis in PCa patients. Gain- and loss-of-function experiments showed that miR-193a-5p efficiently inhibited in vitro PCa cell proliferation, migration, and invasion, and in vivo tumor growth, and markedly induced PCa cell apoptosis via regulating TP73 with a corresponding suppression of the CCND1-RNASEL-CDKN1A-MDM2 axis. In contrast, miR-188-5p exerted its tumor promoter roles through targeting UBE2I with a subsequent activation of the CCND1-RNASEL-CDKN1A-MDM2 axis. Taken together, this integrated analysis revealed the potential roles of the miR-193a-5p/TP73 and miR-188-5p/UBE2i negative regulation pairs in PCa. In addition to the significant clinical relevance, miR-193a-5p- and miR-188-5p-regulated CCND1-RNASEL-CDKN1A-TP73-MDM2-UBE2I signaling may be a novel regulatory biomodule in prostate carcinogenesis.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Department of Urology & Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Funeng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Huichan He
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Jianheng Ye
- Department of Urology & Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shu-Lin Wu
- Department of Urology & Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China. .,Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China.
| | - Chin-Lee Wu
- Department of Urology & Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
207
|
Xu Q, Liu X, Zhu S, Hu X, Niu H, Zhang X, Zhu D, Nesa EU, Tian K, Yuan H. Hyper-acetylation contributes to the sensitivity of chemo-resistant prostate cancer cells to histone deacetylase inhibitor Trichostatin A. J Cell Mol Med 2018; 22:1909-1922. [PMID: 29327812 PMCID: PMC5824406 DOI: 10.1111/jcmm.13475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/30/2017] [Indexed: 11/30/2022] Open
Abstract
Therapeutic agents are urgently needed for treating metastatic castration‐refractory prostate cancer (mCRPC) that is unresponsive to androgen deprivation and chemotherapy. Our screening assays demonstrated that chemotherapy‐resistant prostate cancer (PCa) cells are more sensitive to HDAC inhibitors than paired sensitive PCa cells, as demonstrated by cell proliferation and apoptosis in vitro and in vivo. Kinetic study revealed that TSA‐induced apoptosis was significantly dependent on enhanced transcription and protein synthesis in an early stage, which subsequently caused ER stress and apoptosis. ChIP analysis indicated that TSA increased H4K16 acetylation, promoting ER stress gene transcription. The changes in Ac‐H4K16, ATF3 and ATF4 were also validated in TSA‐treated animals. Further study revealed the higher enzyme activity of HDACs and an increase in acetylated proteins in resistant cells. The higher nucleocytoplasmic acetyl‐CoA in resistant cells was responsible for elevated acetylation status of protein and a more vigorous growth state. These results strongly support the pre‐clinical application of HDAC inhibitors for treating chemotherapy‐resistant mCRPC.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xiaofei Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Shiqin Zhu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xuelei Hu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Huanmin Niu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xiulei Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Effat Un Nesa
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Keli Tian
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
208
|
Moon SJ, Jeong BC, Kim HJ, Lim JE, Kwon GY, Kim JH. DBC1 promotes castration-resistant prostate cancer by positively regulating DNA binding and stability of AR-V7. Oncogene 2017; 37:1326-1339. [PMID: 29249800 DOI: 10.1038/s41388-017-0047-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
Constitutively active AR-V7, one of the major androgen receptor (AR) splice variants lacking the ligand-binding domain, plays a key role in the development of castration-resistant prostate cancer (CRPC) and anti-androgen resistance. However, our understanding of the regulatory mechanisms of AR-V7-driven transcription is limited. Here we report DBC1 as a key regulator of AR-V7 transcriptional activity and stability in CRPC cells. DBC1 functions as a coactivator for AR-V7 and is required for the expression of AR-V7 target genes including CDH2, a mesenchymal marker linked to CRPC progression. DBC1 is required for recruitment of AR-V7 to its target enhancers and for long-range chromatin looping between the CDH2 enhancer and promoter. Mechanistically, DBC1 enhances DNA-binding activity of AR-V7 by direct interaction and inhibits CHIP E3 ligase-mediated ubiquitination and degradation of AR-V7 by competing with CHIP for AR-V7 binding, thereby stabilizing and activating AR-V7. Importantly, DBC1 depletion suppresses the tumorigenic and metastatic properties of CRPC cells. Our results firmly establish DBC1 as a critical AR-V7 coactivator that plays a key role in the regulation of DNA binding and stability of AR-V7 and has an important physiological role in CRPC progression.
Collapse
Affiliation(s)
- Sue Jin Moon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Biomedical Sciences, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hwa Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Biomedical Sciences, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Joung Eun Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea. .,Department of Biomedical Sciences, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
209
|
Hanafi MMM, Afzan A, Yaakob H, Aziz R, Sarmidi MR, Wolfender JL, Prieto JM. In Vitro Pro-apoptotic and Anti-migratory Effects of Ficus deltoidea L. Plant Extracts on the Human Prostate Cancer Cell Lines PC3. Front Pharmacol 2017; 8:895. [PMID: 29326585 PMCID: PMC5736988 DOI: 10.3389/fphar.2017.00895] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
This study aims to evaluate the in vitro cytotoxic and anti-migratory effects of Ficus deltoidea L. on prostate cancer cells, identify the active compound/s and characterize their mechanism of actions. Two farmed varieties were studied, var. angustifolia (FD1) and var. deltoidea (FD2). Their crude methanolic extracts were partitioned into n-hexane (FD1h, FD2h) chloroform (FD1c, FD2c) and aqueous extracts (FD1a, FD2a). Antiproliferative fractions (IC50 < 30 μg/mL, SRB staining of PC3 cells) were further fractionated. Active compound/s were dereplicated using spectroscopic methods. In vitro mechanistic studies on PC3 and/or LNCaP cells included: annexin V-FITC staining, MMP depolarization measurements, activity of caspases 3 and 7, nuclear DNA fragmentation and cell cycle analysis, modulation of Bax, Bcl-2, Smac/Diablo, and Alox-5 mRNA gene expression by RT-PCR. Effects of cytotoxic fractions on 2D migration and 3D invasion were tested by exclusion assays and modified Boyden chamber, respectively. Their mechanisms of action on these tests were further studied by measuring the expression VEGF-A, CXCR4, and CXCL12 in PC3 cells by RT-PCR. FD1c and FD2c extracts induced cell death (P < 0.05) via apoptosis as evidenced by nuclear DNA fragmentation. This was accompanied by an increase in MMP depolarization (P < 0.05), activation of caspases 3 and 7 (P < 0.05) in both PC3 and LNCaP cell lines. All active plant extracts up-regulated Bax and Smac/DIABLO, down-regulated Bcl-2 (P < 0.05). Both FD1c and FD2c were not cytotoxic against normal human fibroblast cells (HDFa) at the tested concentrations. Both plant extracts inhibited both migration and invasion of PC3 cells (P < 0.05). These effects were accompanied by down-regulation of both VEGF-A and CXCL-12 gene expressions (P < 0.001). LC–MS dereplication using taxonomy filters and molecular networking databases identified isovitexin in FD1c; and oleanolic acid, moretenol, betulin, lupenone, and lupeol in FD2c. In conclusion, FD1c and FD2c were able to overcome three main hallmarks of cancer in PC3 cells: (1) apoptosis by activating of the intrinsic pathway, (2) inhibition of both migration and invasion by modulating the CXCL12-CXCR4 axis, and (3) inhibiting angiogenesis by modulating VEGF-A expression. Moreover, isovitexin is here reported for the first time as an antiproliferative principle (IC50 = 43 μg/mL, SRB staining of PC3 cells).
Collapse
Affiliation(s)
- Mohd M M Hanafi
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom
| | - Adlin Afzan
- Phytochemistry and Bioactive Natural Product, University of Geneva and University of Lausanne, Geneva, Switzerland.,Herbal Medicine Research Centre, Institute for Medical Research (IMR), Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ramlan Aziz
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mohamad R Sarmidi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Product, University of Geneva and University of Lausanne, Geneva, Switzerland
| | - Jose M Prieto
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
210
|
Stossi F, Dandekar RD, Bolt MJ, Newberg JY, Mancini MG, Kaushik AK, Putluri V, Sreekumar A, Mancini MA. High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget 2017; 7:16962-74. [PMID: 26918604 PMCID: PMC4941363 DOI: 10.18632/oncotarget.7655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/17/2016] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer remains a deadly disease especially when patients become resistant to drugs that target the Androgen Receptor (AR) ligand binding domain. At this stage, patients develop recurring castrate-resistant prostate cancers (CRPCs). Interestingly, CRPC tumors maintain dependency on AR for growth; moreover, in CRPCs, constitutively active AR splice variants (e.g., AR-V7) begin to be expressed at higher levels. These splice variants lack the ligand binding domain and are rendered insensitive to current endocrine therapies. Thus, it is of paramount importance to understand what regulates the expression of AR and its splice variants to identify new therapeutic strategies in CRPCs. Here, we used high throughput microscopy and quantitative image analysis to evaluate effects of selected endocrine disruptors on AR levels in multiple breast and prostate cancer cell lines. Bisphenol AP (BPAP), which is used in chemical and medical industries, was identified as a down-regulator of both full length AR and the AR-V7 splice variant. We validated its activity by performing time-course, dose-response, Western blot and qPCR analyses. BPAP also reduced the percent of cells in S phase, which was accompanied by a ~60% loss in cell numbers and colony formation in anchorage-independent growth assays. Moreover, it affected mitochondria size and cell metabolism. In conclusion, our high content analysis-based screening platform was used to classify the effect of compounds on endogenous ARs, and identified BPAP as being capable of causing AR (both full-length and variants) down-regulation, cell cycle arrest and metabolic alterations in CRPC cell lines.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Radhika D Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Y Newberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akash K Kaushik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
211
|
Jing Y, Nguyen MM, Wang D, Pascal LE, Guo W, Xu Y, Ai J, Deng FM, Masoodi KZ, Yu X, Zhang J, Nelson JB, Xia S, Wang Z. DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 2017; 37:638-650. [PMID: 28991234 PMCID: PMC5794523 DOI: 10.1038/onc.2017.371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/03/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022]
Abstract
Androgen receptor (AR) activation is critical for prostate cancer development and progression, including castration-resistance. The nuclear export signal of AR (NESAR) plays an important role in AR intracellular trafficking and proteasome-dependent degradation. Here, we identified the RNA helicase DHX15 as a novel AR co-activator using a yeast mutagenesis screen and revealed that DHX15 regulates AR activity by modulating E3 ligase Siah2-mediated AR ubiquitination independent of its ATPase activity. DHX15 and Siah2 form a complex with AR, through NESAR. DHX15 stabilized Siah2 and enhanced its E3 ubiquitin ligase activity, resulting in AR activation. Importantly, DHX15 was upregulated in prostate cancer specimens and its expression was correlated with Gleason scores and PSA recurrence. Furthermore, DHX15 immunostaining correlated with Siah2. Finally, DHX15 knockdown inhibited the growth of C4-2 prostate tumor xenografts in mice. Collectively, our data argue that DHX15 enhances AR transcriptional activity and contributes to prostate cancer progression through Siah2.
Collapse
Affiliation(s)
- Y Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M M Nguyen
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L E Pascal
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Guo
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Y Xu
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, The Second Xiangya Hospital of Central South University, Hunan, China.,The third Xiangya Hospital of Central South University, Changsha, China
| | - J Ai
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - F-M Deng
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - K Z Masoodi
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, J&K, India
| | - X Yu
- Department of Geriatrics, Guangzhou General Hospital of Guangzhou Military Command; Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support; Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support; Guangzhou, Guangdong, China.,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - J Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J B Nelson
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Z Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
212
|
Ponnusamy S, Coss CC, Thiyagarajan T, Watts K, Hwang DJ, He Y, Selth LA, McEwan IJ, Duke CB, Pagadala J, Singh G, Wake RW, Ledbetter C, Tilley WD, Moldoveanu T, Dalton JT, Miller DD, Narayanan R. Novel Selective Agents for the Degradation of Androgen Receptor Variants to Treat Castration-Resistant Prostate Cancer. Cancer Res 2017; 77:6282-6298. [PMID: 28978635 DOI: 10.1158/0008-5472.can-17-0976] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023]
Abstract
Androgen receptor (AR) mediates the growth of prostate cancer throughout its course of development, including in abnormal splice variants (AR-SV)-driven advanced stage castration-resistant disease. AR stabilization by androgens makes it distinct from other steroid receptors, which are typically ubiquitinated and degraded by proteasomes after ligand binding. Thus, targeting AR in advanced prostate cancer requires the development of agents that can sustainably degrade variant isoforms for effective therapy. Here we report the discovery and characterization of potent selective AR degraders (SARD) that markedly reduce the activity of wild-type and splice variant isoforms of AR at submicromolar doses. Three SARDs (UT-69, UT-155, and (R)-UT-155) bind the amino-terminal transcriptional activation domain AF-1, which has not been targeted for degradation previously, with two of these SARD (UT-69 and UT-155) also binding the carboxy-terminal ligand binding domain. Despite different mechanisms of action, all three SARDs degraded wild-type AR and inhibited AR function, exhibiting greater inhibitory potency than the approved AR antagonists. Collectively, our results introduce a new candidate class of next-generation therapeutics to manage advanced prostate cancer. Cancer Res; 77(22); 6282-98. ©2017 AACR.
Collapse
MESH Headings
- Alternative Splicing
- Androgen Receptor Antagonists/chemistry
- Androgen Receptor Antagonists/pharmacology
- Anilides/chemistry
- Anilides/pharmacology
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Indoles/chemistry
- Indoles/pharmacology
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Molecular Structure
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Thirumagal Thiyagarajan
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kate Watts
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yali He
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia
| | - Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Charles B Duke
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jayaprakash Pagadala
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Geetika Singh
- St. Jude Children's Hospital and Research Center, Memphis, Tennessee
| | - Robert W Wake
- Department of Urology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Christopher Ledbetter
- Department of Urology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia
| | - Tudor Moldoveanu
- St. Jude Children's Hospital and Research Center, Memphis, Tennessee
| | | | - Duane D Miller
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ramesh Narayanan
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee.
- West Cancer Center, Memphis, Tennessee
| |
Collapse
|
213
|
Cao Z, Livas T, Kyprianou N. Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog 2017; 21:155-168. [PMID: 27915969 DOI: 10.1615/critrevoncog.2016016955] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anoikis is a unique mode of apoptotic cell death that occurs consequentially to insufficient cell-matrix interactions. Resistance to anoikis is a critical contributor to tumor invasion and metastasis. The phenomenon is regulated by integrins, which upon engagement with components of the extracellular matrix (ECM) form adhesion complexes and the actin cytoskeleton drives the formation of cell protrusions used to adhere to ECM, directing cell migration. The epithelial-mesenchymal transition (EMT) confers stem cell properties and leads to acquisition of a migratory and invasive phenotype by causing adherens junction breakdown and circumventing anoikis in the tumor microenvironment. The investigation of drug discovery platforms for apoptosis-driven therapeutics identified several novel agents with antitumor action via reversing resistance to anoikis, inhibiting survival pathways and impacting the EMT landscape in human cancer. In this review, we discuss current evidence on the contribution of the anoikis phenomenon functionally linked to EMT to cancer metastasis and the therapeutic value of antitumor drugs that selectively reverse anoikis resistance and/or EMT to impair tumor progression toward the development/optimization of apoptosis-driven therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Theodore Livas
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Natasha Kyprianou
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
214
|
Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein. Anticancer Drugs 2017; 28:1018-1031. [DOI: 10.1097/cad.0000000000000547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
215
|
Pan T, He G, Chen M, Bao C, Chen Y, Liu G, Zhou M, Li S, Xu W, Liu X. Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia. Oncotarget 2017; 8:89824-89836. [PMID: 29163791 PMCID: PMC5685712 DOI: 10.18632/oncotarget.21158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Objective In this study, we investigated the exact mechanism by which excessive CYP11A1 expression impairs the placentation process and whether this causes preeclampsia (PE) in an in vivo model. Setting and Design In order to study CYP11A1 overexpression, BeWo cells were transfected with CYP11A1. Pregnenolone, progesterone, and testosterone levels were measured by enzyme linked immunosorbent assays, and levels of autophagy markers were quantified by western blotting and immunofluorescence. Trophoblastic cell invasion was assessed using transwell assays; BeWo cells were treated with testosterone and an androgen receptor (AR) inhibitor (flutamide) to elucidate the invasion mechanism. An adenovirus overexpression rat model was established to investigate CYP11A1 overexpression in vivo and the phenotype was examined. Furthermore, human placenta samples (n = 24) were used to determine whether PE patient placentas showed altered CYP11A1 and autophagy marker expression. Results BeWo cells overexpressing CYP11A1 had significantly increased levels of pregnenolone, progesterone, and testosterone. Additionally, the expression levels of autophagy markers in CYP11A1-overexpressing BeWo cells were significantly increased. Trophoblast invasion was significantly reduced in CYP11A1-overexpressing cells as well as in cells treated with high testosterone. This reduction could be significantly rescued when cells were pretreated with flutamide. Overexpression of CYP11A1 in rat pregnancies led to PE-like symptoms and an over-activation of the AR-mediated pathway in the placenta. Elevated expression of CYP11A1 and autophagy markers could also be detected in PE placenta samples. Conclusions These results suggest that abnormally high expression of CYP11A1 induces trophoblast autophagy and inhibits trophoblastic invasion, which is associated with the etiology of PE.
Collapse
Affiliation(s)
- Tianying Pan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyi Bao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guangyu Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shuying Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xinghui Liu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
216
|
Nguyen TV, Reuter JM, Gaikwad NW, Rotroff DM, Kucera HR, Motsinger-Reif A, Smith CP, Nieman LK, Rubinow DR, Kaddurah-Daouk R, Schmidt PJ. The steroid metabolome in women with premenstrual dysphoric disorder during GnRH agonist-induced ovarian suppression: effects of estradiol and progesterone addback. Transl Psychiatry 2017; 7:e1193. [PMID: 28786978 PMCID: PMC5611719 DOI: 10.1038/tp.2017.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/05/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
Clinical evidence suggests that symptoms in premenstrual dysphoric disorder (PMDD) reflect abnormal responsivity to ovarian steroids. This differential steroid sensitivity could be underpinned by abnormal processing of the steroid signal. We used a pharmacometabolomics approach in women with prospectively confirmed PMDD (n=15) and controls without menstrual cycle-related affective symptoms (n=15). All were medication-free with normal menstrual cycle lengths. Notably, women with PMDD were required to show hormone sensitivity in an ovarian suppression protocol. Ovarian suppression was induced for 6 months with gonadotropin-releasing hormone (GnRH)-agonist (Lupron); after 3 months all were randomized to 4 weeks of estradiol (E2) or progesterone (P4). After a 2-week washout, a crossover was performed. Liquid chromatography/tandem mass spectrometry measured 49 steroid metabolites in serum. Values were excluded if >40% were below the limit of detectability (n=21). Analyses were performed with Wilcoxon rank-sum tests using false-discovery rate (q<0.2) for multiple comparisons. PMDD and controls had similar basal levels of metabolites during Lupron and P4-derived neurosteroids during Lupron or E2/P4 conditions. Both groups had significant increases in several steroid metabolites compared with the Lupron alone condition after treatment with E2 (that is, estrone-SO4 (q=0.039 and q=0.002, respectively) and estradiol-3-SO4 (q=0.166 and q=0.001, respectively)) and after treatment with P4 (that is, allopregnanolone (q=0.001 for both PMDD and controls), pregnanediol (q=0.077 and q=0.030, respectively) and cortexone (q=0.118 and q=0.157, respectively). Only sulfated steroid metabolites showed significant diagnosis-related differences. During Lupron plus E2 treatment, women with PMDD had a significantly attenuated increase in E2-3-sulfate (q=0.035) compared with control women, and during Lupron plus P4 treatment a decrease in DHEA-sulfate (q=0.07) compared with an increase in controls. Significant effects of E2 addback compared with Lupron were observed in women with PMDD who had significant decreases in DHEA-sulfate (q=0.065) and pregnenolone sulfate (q=0.076), whereas controls had nonsignificant increases (however, these differences did not meet statistical significance for a between diagnosis effect). Alterations of sulfotransferase activity could contribute to the differential steroid sensitivity in PMDD. Importantly, no differences in the formation of P4-derived neurosteroids were observed in this otherwise highly selected sample of women studied under controlled hormone exposures.
Collapse
Affiliation(s)
- T V Nguyen
- Behavioral Endocrinology Branch, NIMH IRP/NIH/HHS, Bethesda, MD, USA
- Department of Psychiatry and Obstetrics-Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - J M Reuter
- Behavioral Endocrinology Branch, NIMH IRP/NIH/HHS, Bethesda, MD, USA
| | - N W Gaikwad
- Department of Nutrition and Environmental Toxicology, West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - D M Rotroff
- Department of Biostatistics, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - H R Kucera
- Department of Nutrition and Environmental Toxicology, West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - A Motsinger-Reif
- Department of Biostatistics, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - C P Smith
- Department of Biostatistics, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - L K Nieman
- Diabetes, Endocrine and Obesity Branch, NIDDK, NIH, DHSS, Bethesda, MD, USA
| | - D R Rubinow
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - R Kaddurah-Daouk
- Department of Psychiatry, Duke University Medical Center, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - P J Schmidt
- Behavioral Endocrinology Branch, NIMH IRP/NIH/HHS, Bethesda, MD, USA
| |
Collapse
|
217
|
Zang T, Taplin ME, Tamae D, Xie W, Mesaros C, Zhang Z, Bubley G, Montgomery B, Balk SP, Mostaghel EA, Blair IA, Penning TM. Testicular vs adrenal sources of hydroxy-androgens in prostate cancer. Endocr Relat Cancer 2017; 24:393-404. [PMID: 28663228 PMCID: PMC5593253 DOI: 10.1530/erc-17-0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Neoadjuvant androgen deprivation therapy (NADT) is one strategy for the treatment of early-stage prostate cancer; however, the long-term outcomes of NADT with radical prostatectomy including biochemical failure-free survival are not promising. One proposed mechanism is incomplete androgen ablation. In this study, we aimed to evaluate the efficiency of serum hydroxy-androgen suppression in patients with localized high-risk prostate cancer under NADT (leuprolide acetate plus abiraterone acetate and prednisone) and interrogate the primary sources of circulating hydroxy-androgens using our recently described stable isotope dilution liquid chromatography mass spectrometric method. For the first time, three androgen diols including 5-androstene-3β,17β-diol (5-adiol), 5α-androstane-3α,17β-diol (3α-adiol), 5α-androstane-3β,17β-diol (3β-adiol), the glucuronide or sulfate conjugate of 5-adiol and 3α-adiol were measured and observed to be dramatically reduced after NADT. By comparing patients that took leuprolide acetate alone vs leuprolide acetate plus abiraterone acetate and prednisone, we were able to distinguish the primary sources of these androgens and their conjugates as being of either testicular or adrenal in origin. We find that testosterone, 5α-dihydrotestosterone (DHT), 3α-adiol and 3β-adiol were predominately of testicular origin. By contrast, dehydroepiandrosterone (DHEA), epi-androsterone (epi-AST) and their conjugates, 5-adiol sulfate and glucuronide were predominately of adrenal origin. Our findings also show that NADT failed to completely suppress DHEA-sulfate levels and that two unappreciated sources of intratumoral androgens that were not suppressed by leuprolide acetate alone were 5-adiol-sulfate and epi-AST-sulfate of adrenal origin.
Collapse
Affiliation(s)
- Tianzhu Zang
- Department of Systems Pharmacology & Translational TherapeuticsPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental ToxicologyPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary-Ellen Taplin
- Harvard Medical SchoolLank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel Tamae
- Department of Systems Pharmacology & Translational TherapeuticsPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental ToxicologyPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wanling Xie
- Department of Biostatistics and Computational BiologyHarvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology & Translational TherapeuticsPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental ToxicologyPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational TherapeuticsCenter for Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhenwei Zhang
- Department of Biostatistics and Computational BiologyHarvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Glenn Bubley
- Beth Israel Deaconess Medical CenterGenitourinary Medical Oncology, Boston, Massachusetts, USA
| | - Bruce Montgomery
- Department of MedicineUniversity of Washington, Seattle, Washington, USA
| | - Steven P Balk
- Beth Israel Deaconess Medical CenterGenitourinary Medical Oncology, Boston, Massachusetts, USA
| | | | - Ian A Blair
- Department of Systems Pharmacology & Translational TherapeuticsPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental ToxicologyPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational TherapeuticsCenter for Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational TherapeuticsPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental ToxicologyPerelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational TherapeuticsCenter for Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
218
|
Recouvreux MV, Wu JB, Gao AC, Zonis S, Chesnokova V, Bhowmick N, Chung LW, Melmed S. Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology 2017; 158:2255-2268. [PMID: 28444169 PMCID: PMC5505214 DOI: 10.1210/en.2016-1939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) growth is mainly driven by androgen receptor (AR), and tumors that initially respond to androgen deprivation therapy (ADT) or AR inhibition usually relapse into a more aggressive, castration-resistant PCa (CRPC) stage. Circulating growth hormone (GH) has a permissive role in PCa development in animal models and in human PCa xenograft growth. As GH and GH receptor (GHR) are both expressed in PCa cells, we assessed whether prostatic GH production is linked to AR activity and whether GH contributes to the castration-resistant phenotype. Using online datasets, we found that GH is highly expressed in human CRPC. We observed increased GH expression in castration-resistant C4-2 compared with castration-sensitive LNCaP cells as well as in enzalutamide (MDV3100)-resistant (MDVR) C4-2B (C4-2B MDVR) cells compared with parental C4-2B. We describe a negative regulation of locally produced GH by androgens/AR in PCa cells following treatment with AR agonists (R1881) and antagonists (enzalutamide, bicalutamide). We also show that GH enhances invasive behavior of CRPC 22Rv1 cells, as reflected by increased migration, invasion, and anchorage-independent growth, as well as expression of matrix metalloproteases. Moreover, GH induces expression of the AR splice variant 7, which correlates with antiandrogen resistance, and also induces insulinlike growth factor 1, which is implicated in PCa progression and ligand-independent AR activation. In contrast, blockade of GH action with the GHR antagonist pegvisomant reverses these effects both in vitro and in vivo. GH induction following ADT or AR inhibition may contribute to CRPC progression by bypassing androgen growth requirements.
Collapse
Affiliation(s)
| | - J. Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, 99202
| | - Allen C. Gao
- Department of Urology, University of California at Davis, Sacramento, California, 95817
| | - Svetlana Zonis
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Vera Chesnokova
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Neil Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Leland W. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Shlomo Melmed
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| |
Collapse
|
219
|
Dasari S, Ali SM, Zheng G, Chen A, Dontaraju VS, Bosland MC, Kajdacsy-Balla A, Munirathinam G. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget 2017; 8:57782-57799. [PMID: 28915711 PMCID: PMC5593683 DOI: 10.18632/oncotarget.17997] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/15/2017] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Syed M Ali
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | | | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| |
Collapse
|
220
|
邓 煜, 郭 凯, 曾 颖, 吴 凯, 唐 晨, 郑 少. [Effect of androgen receptor on IgG expression, proliferation and migration of prostate cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:388-392. [PMID: 28377358 PMCID: PMC6780428 DOI: 10.3969/j.issn.1673-4254.2017.03.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of androgen receptor (AR) on IgG protein expression and the proliferation and migration of prostate cancer cells. METHODS Western blotting was used to detect the expression of AR protein and IgG in androgen-dependent prostate cancer LNCap cells and castration-resistant prostate cancer PC-3 cells. In AR-overexpressing cells (PC-3-AR cells) established by transfecting PC-3 with AR gene (pCDNA3.1) and LNCap cells with small interfering RNA-mediated AR silencing (LNCap-siAR cells) were analyzed for expressions of AR protein and IgG with Western blotting; the expression of IgG mRNA was detected by Q-PCR, and the cell proliferation and migration were assessed with MTT assay and wound healing assay, respectively. RESULTS Compared with PC-3 cells, LNCap cells expressed a higher level of AR protein and a lower level of IgG (P<0.05). PC-3-AR cells showed attenuated proliferation and migration with a lowered expression of IgG (P<0.01), while LNCap-siAR cells showed enhanced proliferation and migration with increased expression of IgG (P<0.01). CONCLUSION The expression of AR is inversely correlated with IgG and is associated with the proliferation and migration of prostate cancer cells in vitro.
Collapse
Affiliation(s)
- 煜麟 邓
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凯 郭
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 颖科 曾
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凯辉 吴
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 晨 唐
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 少波 郑
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
221
|
Li K, Guo Y, Yang X, Zhang Z, Zhang C, Xu Y. ELF5-Mediated AR Activation Regulates Prostate Cancer Progression. Sci Rep 2017; 7:42759. [PMID: 28287091 PMCID: PMC5347131 DOI: 10.1038/srep42759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/13/2017] [Indexed: 01/31/2023] Open
Abstract
The transcription factor E74-like factor 5 (ELF5) is a potent antioncogene that can prevent epithelial-mesenchymal transition (EMT) and metastasis in prostate cancer (PCa). However, little is known how it suppress the tumor growth and if it can interact with androgen receptor (AR). In this study, we find that the ELF5 is frequently expressed in AR activated PCa cells, where it binds to AR acting as a physiological partner and negatively regulates its transcriptional activity. In addition, the interaction between ELF5 and AR is androgen-dependent. Downregulation of ELF5 by shRNA increases the expression of AR-response genes and the progression of PCa. Moreover, ELF5 is a AR-dependent gene that its expression can be induced by androgen and suppressed by antiandrogen treatment. Notably, forced reduction of ELF5 in LNCaP cells facilitates the binding of AR to ARE in ELF5 gene and enabling its transcription, so that low level ELF5 can turn up its own expression by the negative feedback loop.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Tianjin Institute of Urology, Tianjin Medical University Second Hospital, Tianjin 300211, China.,Department of Urology, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiong Yang
- Department of Urology, Tianjin Institute of Urology, Tianjin Medical University Second Hospital, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, Tianjin Medical University Second Hospital, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, Tianjin Medical University Second Hospital, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, Tianjin Medical University Second Hospital, Tianjin 300211, China
| |
Collapse
|
222
|
Smolle MA, Bauernhofer T, Pummer K, Calin GA, Pichler M. Current Insights into Long Non-Coding RNAs (LncRNAs) in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18020473. [PMID: 28241429 PMCID: PMC5344005 DOI: 10.3390/ijms18020473] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/23/2022] Open
Abstract
The importance of long non-coding RNAs (lncRNAs) in the pathogenesis of various malignancies has been uncovered over the last few years. Their dysregulation often contributes to or is a result of tumour progression. In prostate cancer, the most common malignancy in men, lncRNAs can promote castration resistance, cell proliferation, invasion, and metastatic spread. Expression patterns of lncRNAs often change during tumour progression; their expression levels may constantly rise (e.g., HOX transcript antisense RNA, HOTAIR), or steadily decrease (e.g., downregulated RNA in cancer, DRAIC). In prostate cancer, lncRNAs likewise have diagnostic (e.g., prostate cancer antigen 3, PCA3), prognostic (e.g., second chromosome locus associated with prostate-1, SChLAP1), and predictive (e.g., metastasis-associated lung adenocarcinoma transcript-1, MALAT-1) functions. Considering their dynamic role in prostate cancer, lncRNAs may also serve as therapeutic targets, helping to prevent development of castration resistance, maintain stable disease, and prohibit metastatic spread.
Collapse
Affiliation(s)
- Maria A Smolle
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
- Department of Orthopaedic and Trauma Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria.
| | - Thomas Bauernhofer
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| | - Karl Pummer
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd., Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | - Martin Pichler
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
223
|
Abstract
Prostate cancer is the second leading cause of cancer deaths in the USA. The challenge in managing castration-resistant prostate cancer (CRPC) stems not from the lack of therapeutic options but from the limited duration of clinical and survival benefit offered by treatments in this setting due to primary and acquired resistance. The remarkable molecular heterogeneity and tumor adaptability in advanced prostate cancer necessitate optimization of such treatment strategies. While the future of CRPC management will involve newer targeted therapies in deliberately biomarker-selected patients, interventions using current approaches may exhibit improved clinical benefit if employed in the context of optimal sequencing and combinations. This review outlines our current understanding of mechanisms of therapeutic resistance in progression to and after the development of castration resistance, highlighting targetable and reversible mechanisms of resistance.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Channing Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Natasha Kyprianou
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
224
|
O'Sullivan AG, Mulvaney EP, Kinsella BT. Regulation of protein kinase C-related kinase (PRK) signalling by the TPα and TPβ isoforms of the human thromboxane A 2 receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:838-856. [PMID: 28108419 DOI: 10.1016/j.bbadis.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
The prostanoid thromboxane (TX) A2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPβ form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA2/TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA2-TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA2/TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA2/TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPβ mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPβ can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA2/TP signalling axis in PCa, including potentially in CRPC.
Collapse
Affiliation(s)
- Aine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
225
|
McCrea E, Sissung TM, Price DK, Chau CH, Figg WD. Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol Res 2016; 114:152-162. [PMID: 27725309 PMCID: PMC5154811 DOI: 10.1016/j.phrs.2016.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 01/28/2023]
Abstract
Significant therapeutic progress has been made in treating prostate cancer in recent years. Drugs such as enzalutamide, abiraterone, and cabazitaxel have expanded the treatment armamentarium, although it is not completely clear which of these drugs are the most-effective option for individual patients. Moreover, such advances have been tempered by the development of therapeutic resistance. The purpose of this review is to summarize the current literature pertaining to the biochemical effects of AR variants and their consequences on prostate cancer therapies at both the molecular level and in clinical treatment. We address how these AR splice variants and mutations affect tumor progression and therapeutic resistance and discuss potential novel therapeutic strategies under development. It is hoped that these therapies can be administered with increasing precision as tumor genotyping methods become more sophisticated, thereby lending clinicians a better understanding of the underlying biology of prostate tumors in individual patients.
Collapse
Affiliation(s)
- Edel McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States
| | - Tristan M Sissung
- The Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States; The Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
226
|
Evans JC, Malhotra M, Fitzgerald KA, Guo J, Cronin MF, Curtin CM, O’Brien FJ, Darcy R, O’Driscoll CM. Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Mol Pharm 2016; 14:42-52. [DOI: 10.1021/acs.molpharmaceut.6b00646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James C. Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Michael F. Cronin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Caroline M. Curtin
- Tissue Engineering
Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering
Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
227
|
Guan Z, Li C, Fan J, He D, Li L. Androgen receptor (AR) signaling promotes RCC progression via increased endothelial cell proliferation and recruitment by modulating AKT → NF-κB → CXCL5 signaling. Sci Rep 2016; 6:37085. [PMID: 27848972 PMCID: PMC5111066 DOI: 10.1038/srep37085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Androgen receptor (AR) signaling may promote renal cell carcinoma (RCC) progression via altered HIF-2α/VEGF signaling. However, it remains unclear whether AR signaling also promotes RCC progression by recruiting vascular endothelial cells (ECs), key players in the development of blood vessels. In our study, AR increased EC proliferation and recruitment to the tumor microenvironment and promoted RCC progression. Mechanistically, AR modulated cytokine CXCL5 expression by altering AKT → NF-κB signaling, and interruption of AKT → NF-κB → CXCL5 signaling using either specific inhibitors or siRNA suppressed AR-enhanced EC recruitment and AR-EC-promoted RCC progression. The results obtained using an in vivo mouse model and a human clinical sample survey confirmed the role of AR in promoting RCC progression through enhancement of EC proliferation and/or recruitment via altered AKT → NF-κB → CXCL5 signaling. Targeting this newly identified AR-induced AKT → NF-κB → CXCL5 pathway may facilitate the development of new therapies for slowing RCC progression.
Collapse
Affiliation(s)
- Zhenfeng Guan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Jianlan Institute of Medicine, Beijing 100190, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
228
|
Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6110352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
229
|
Androgen deprivation modulates gene expression profile along prostate cancer progression. Hum Pathol 2016; 56:81-8. [DOI: 10.1016/j.humpath.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/01/2016] [Accepted: 06/11/2016] [Indexed: 11/20/2022]
|
230
|
Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res 2016; 45:619-630. [PMID: 27672034 PMCID: PMC5314794 DOI: 10.1093/nar/gkw855] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/01/2023] Open
Abstract
Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC.
Collapse
Affiliation(s)
- Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
231
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
232
|
Morell C, Bort A, Vara-Ciruelos D, Ramos-Torres Á, Altamirano-Dimas M, Díaz-Laviada I, Rodríguez-Henche N. Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells. PLoS One 2016; 11:e0162977. [PMID: 27627761 PMCID: PMC5023108 DOI: 10.1371/journal.pone.0162977] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/31/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer.
Collapse
Affiliation(s)
- Cecilia Morell
- Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Alicia Bort
- Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Diana Vara-Ciruelos
- Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ágata Ramos-Torres
- Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | | | - Inés Díaz-Laviada
- Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Nieves Rodríguez-Henche
- Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- * E-mail:
| |
Collapse
|
233
|
Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, Coarfa C, Frigo DE, Putluri N, Sreekumar A, Weigel NL. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 2016; 6:31997-2012. [PMID: 26378018 PMCID: PMC4741655 DOI: 10.18632/oncotarget.5585] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022] Open
Abstract
Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - James M Arnold
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suman Maity
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Justin M Roberts
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
234
|
Yap TA, Smith AD, Ferraldeschi R, Al-Lazikani B, Workman P, de Bono JS. Drug discovery in advanced prostate cancer: translating biology into therapy. Nat Rev Drug Discov 2016; 15:699-718. [DOI: 10.1038/nrd.2016.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
235
|
Parimi S, Chi KN. Chemotherapy for metastatic castration-sensitive prostate cancer. Int J Urol 2016; 23:726-33. [PMID: 27345496 DOI: 10.1111/iju.13148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/29/2016] [Indexed: 01/12/2023]
Abstract
Incorporation of docetaxel into metastatic castration-sensitive prostate cancer treatment has added a new treatment option to a disease state that had previously not seen change for decades. Early attempts of a chemo-hormonal approach for castration-sensitive prostate cancer were not successful. With the demonstration of survival benefits using docetaxel in patients with metastatic castration-resistant prostate cancer, this encouraged continued research with docetaxel given earlier in the disease course. Three randomized phase III trials have defined the benefits of docetaxel in the metastatic castration-sensitive prostate cancer setting; however, there remain questions and controversies on the appropriate and optimal patient selection.
Collapse
Affiliation(s)
- Sunil Parimi
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kim N Chi
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Vancouver Prostate Center, Vancouver, British Columbia, Canada
| |
Collapse
|
236
|
Mistry HB, Fabre MA, Young J, Clack G, Dickinson PA. Systems Pharmacology Modeling of Prostate-Specific Antigen in Patients With Prostate Cancer Treated With an Androgen Receptor Antagonist and Down-Regulator. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:258-63. [PMID: 27299938 PMCID: PMC4879474 DOI: 10.1002/psp4.12066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
First‐in‐human (FIH) studies with AZD3514, a selective androgen receptor (AR) down‐regulator, showed decreases of >30% in the prostate‐specific antigen (PSA) in some patients. A modeling approach was adopted to understand these observations and define the optimum clinical use hypothesis for AZD3514 for clinical testing. Initial empirical modeling showed that only baseline PSA correlated significantly with this biological response, whereas drug concentration did not. To identify the mechanistic cause of this observation, a mechanism‐based model was first developed, which described the effects of AZD3514 on AR protein and PSA mRNA levels in LNCaP cells with and without dihydrotestosterone (DHT). Second, the mechanism‐based model was linked to a population pharmacokinetic (PK) model; PSA effects of clinical doses were subsequently simulated under different clinical conditions. This model was used to adjust the design of the ongoing clinical FIH study and direct the backup program.
Collapse
Affiliation(s)
- H B Mistry
- Manchester Pharmacy School, The University of Manchester, UK
| | - M-A Fabre
- Quantitiative Clinical Pharmacology, AstraZeneca, Alderley Park, UK
| | - J Young
- Goosebrook Associates Ltd, The BioHub at Alderley Park Alderley Edge, UK
| | - G Clack
- Early Clinical Development, AstraZeneca, Alderley Park, UK
| | - P A Dickinson
- Seda Pharmaceutical Development Services, The BioHub at Alderley Park Alderley Edge, UK
| |
Collapse
|
237
|
Kim JY, Yu J, Abdulkadir SA, Chakravarti D. KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Mol Endocrinol 2016; 30:925-36. [PMID: 27268279 DOI: 10.1210/me.2016-1024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Androgen receptor (AR) plays pivotal roles in prostate cancer. Upon androgen stimulation, AR recruits the Protein kinase N1 (PKN1), which phosphorylates histone H3 at threonine 11, with subsequent recruitment of tryptophan, aspartic acid (WD) repeat-containing protein 5 (WDR5) and the su(var)3-9, enhancer of zeste, trithorax/mixed-lineage leukemia (SET1/MLL) histone methyltransferase complex to promote AR target gene activation and prostate cancer cell growth. However, the underlying mechanisms of target gene activation and cell growth subsequent to WDR5 recruitment are not well understood. Here, we demonstrate an epigenetic cross talk between histone modifications and AR target gene regulation. We discovered that K(lysine) acetyltransferase 8 (KAT8), a member of the MOZ, YBF2/SAS2, and TIP 60 protein 1 (MYST) family of histone acetyltransferases that catalyzes histone H4 lysine 16 acetylation, colocalized with WDR5 at AR target genes, resulting in hormone-dependent gene activation in prostate cancer cells. PKN1 or WDR5 knockdown severely inhibited KAT8 association with AR target genes and histone H4 lysine 16 acetylation upon androgen treatment. Knockdown of KAT8 significantly decreased AR target gene expression and prostate cancer cell proliferation. Collectively, these data describe a trans-histone modification pathway involving PKN1/histone H3 threonine 11 phosphorylation followed by WDR5/MLL histone methyltransferase and KAT8/histone acetyltransferase recruitment to effect androgen-dependent gene activation and prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Ji-Young Kim
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jindan Yu
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sarki A Abdulkadir
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
238
|
Urbinati G, de Waziers I, Slamiç M, Foussignière T, Ali HM, Desmaële D, Couvreur P, Massaad-Massade L. Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e301. [PMID: 27023109 PMCID: PMC5014457 DOI: 10.1038/mtna.2016.16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 01/27/2023]
Abstract
Our purpose was to develop a new pharmacological approach for the treatment of prostate cancer (PCa), the most common neoplasia in men. Recently, we developed siRNA against the fusion oncogene TMPRSS2-ERG found in 50% of patients and showed an antitumoral activity in animal model. Herein, we want to compare or combine the developed siRNA to flutamide (FLU), one of the gold-standard treatment of PCa. Therefore, concomitant or subsequent association of FLU to siRNA TMPRSS2-ERG was performed in VCaP cells and in SCID mice bearing xenografted VCaP tumors. ERG, androgen receptor, cleaved-caspase-3 as well as phase 1 and 2 drug-metabolizing enzymes were investigated within tumors. We observed similar results in terms of TMPRSS2-ERG knock-down and cell viability impairment for all distinct schedules of administration. The association of siRNA TMPRSS2-ERG-squalene nanoparticles with flutamide displayed similar tumor growth inhibition as mice treated with siRNA TMPRSS2-ERG-squalene nanoparticles alone and was paralleled with modification of expression of ERG, androgen receptor, and cleaved-caspase-3. Phase 1 and 2 enzymes were essentially affected by FLU and reverted when combined with squalenoylated siRNA. In conclusion, these results confirm the therapeutic effectiveness of squalenoyl siRNA nanomedicine for PCa based on siRNA TMPRSS2-ERG.
Collapse
Affiliation(s)
- Giorgia Urbinati
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Mateja Slamiç
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Tobias Foussignière
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Hafiz M Ali
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,University College of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Didier Desmaële
- Institut Galien, UMR 8612 CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien, UMR 8612 CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Liliane Massaad-Massade
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
239
|
Chalanqui MJ, O'Doherty M, Dunne NJ, McCarthy HO. MiRNA 34a: a therapeutic target for castration-resistant prostate cancer. Expert Opin Ther Targets 2016; 20:1075-85. [PMID: 26942553 DOI: 10.1517/14728222.2016.1162294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Development of a therapy for bone metastases is of paramount importance for castration-resistant prostate cancer (CRPC). The osteomimetic properties of CRPC confer a propensity to metastasize to osseous sites. Micro-ribonucleic acid (miRNA) is non-coding RNA that acts as a post-transcriptional regulator of multiple proteins and associated pathways. Therefore identification of miRNAs could reveal a valid third generation therapy for CRPC. AREAS COVERED miR34a has been found to play an integral role in the progression of prostate cancer, particularly in the regulation of metastatic genes involved in migration, intravasation, extravasation, bone attachment and bone homeostasis. The correlation between miR34a down-regulation and metastatic progression has generated substantial interest in this field. EXPERT OPINION Examination of the evidence reveals that miR34a is an ideal target for gene therapy for metastatic CRPC. We also conclude that future studies should focus on the effects of miR34a upregulation in CRPC with respect to migration, translocation to bone micro-environment and osteomimetic phenotype development. The success of miR34a as a therapeutic is reliant on the development of appropriate delivery systems and targeting to the bone micro-environment. In tandem with any therapeutic studies, biomarker serum levels should also be ascertained as an indicator of successful miR34a delivery.
Collapse
Affiliation(s)
| | | | - Nicholas J Dunne
- a School of Pharmacy , Queen's University Belfast , Belfast , UK.,b School of Mechanical and Manufacturing Engineering , Dublin City University , Dublin , Ireland
| | - Helen O McCarthy
- a School of Pharmacy , Queen's University Belfast , Belfast , UK
| |
Collapse
|
240
|
Liede A, Hallett DC, Hope K, Graham A, Arellano J, Shahinian VB. International survey of androgen deprivation therapy (ADT) for non-metastatic prostate cancer in 19 countries. ESMO Open 2016; 1:e000040. [PMID: 27843596 PMCID: PMC5070274 DOI: 10.1136/esmoopen-2016-000040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 01/15/2023] Open
Abstract
Background Continuous androgen deprivation therapy (CADT) is commonly used for patients with non-metastatic prostate cancer as primary therapy for high-risk disease, adjuvant therapy together with radiation or for recurrence after initial local therapy. Intermittent ADT (IADT), a recently developed alternative strategy for providing ADT, is thought to potentially reduce adverse effects, but little is known about practice patterns relating to it. We aimed to describe factors related to physicians’ ADT use and modality for patients with non-metastatic prostate cancer. Methods A 45 min online survey was completed by urologists and oncologists responsible for treatment decisions for non-metastatic prostate cancer from 19 countries with high or increasing prevalence of non-metastatic prostate cancer. Results There were 441 treating physicians who completed the survey which represented 99 177 patients with prostate cancer under their care, of which 76 386 (77%) had non-metastatic prostate cancer. Of patients with non-metastatic prostate cancer, 38% received ADT (37% gonadotropin-releasing hormone (GnRH), 2% orchiectomy); among patients on GnRH, 54% received CADT (≥6 without >3 months interruption), 23% IADT and 23% <6 months. Highest rates of ADT were reported among oncologists (62%) and in Eastern Europe (Czech Republic, Hungary and Poland). Prostate-specific antigen (PSA) levels (65%), Gleason score (52%) and treatment guidelines (48%) were the most common reasons for CADT whereas PSA levels (54%), patient request (48%), desire to maintain sexual function (40%), patient age and comorbidities (38%) were cited most frequently as reasons for IADT. Conclusions This international survey with 441 treating physicians from 19 countries showed that ADT is commonly used in treating patients with non-metastatic prostate cancer, and type of ADT is influenced by high-risk criteria (PSA and Gleason), treatment guidelines and patient preferences. IADT use was primarily driven by PSA levels, patient request and patient age/comorbidities, likely reflecting an attempt to minimise adverse effects of ADT in patients with lower risk tumours.
Collapse
Affiliation(s)
- Alexander Liede
- Center for Observational Research, Amgen Inc. , South San Francisco, California , USA
| | - David C Hallett
- Dalla Lana School of Public Health, University of Toronto , Toronto, Ontario , Canada
| | | | | | - Jorge Arellano
- Global Health Economics , Amgen Inc. , Thousand Oaks, California , USA
| | - Vahakn B Shahinian
- Department of Internal Medicine , University of Michigan , Ann Arbor, Michigan , USA
| |
Collapse
|
241
|
Shukla GC, Plaga AR, Shankar E, Gupta S. Androgen receptor-related diseases: what do we know? Andrology 2016; 4:366-81. [PMID: 26991422 DOI: 10.1111/andr.12167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 01/09/2023]
Abstract
The androgen receptor (AR) and the androgen-AR signaling pathway play a significant role in male sexual differentiation and the development and function of male reproductive and non-reproductive organs. Because of AR's widely varied and important roles, its abnormalities have been identified in various diseases such as androgen insensitivity syndrome, spinal bulbar muscular atrophy, benign prostatic hyperplasia, and prostate cancer. This review provides an overview of the function of androgens and androgen-AR mediated diseases. In addition, the diseases delineated above are discussed with respect to their association with mutations and other post-transcriptional modifications in the AR. Finally, we present an introduction to the potential therapeutic application of most recent pharmaceuticals including miRNAs in prostate cancer that specifically target the transactivation function of the AR at post-transcriptional stages.
Collapse
Affiliation(s)
- G C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - A R Plaga
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - E Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA
| | - S Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
242
|
Abstract
Prostate cancer represents a spectrum ranging from low-grade, localized tumors to devastating metastatic disease. We discuss the general options for treatment and recent developments in the field.
Collapse
Affiliation(s)
- Katherine Cotter
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Badrinath Konety
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Maria A Ordonez
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
243
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2016; 4:365-80. [PMID: 26814148 PMCID: PMC4708226 DOI: 10.3978/j.issn.2223-4683.2015.05.02] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite advances in prostate cancer diagnosis and management, morbidity from prostate cancer remains high. Approximately 20% of men present with advanced or metastatic disease, while 29,000 men continue to die of prostate cancer each year. Androgen deprivation therapy (ADT) has been the standard of care for initial management of advanced or metastatic prostate cancer since Huggins and Hodges first introduced the concept of androgen-dependence in 1972, but progression to castration-resistant prostate cancer (CRPC) occurs within 2-3 years of initiation of ADT. CRPC, previously defined as hormone-refractory prostate cancer, is now understood to still be androgen dependent. Multiple mechanisms of resistance help contribute to the progression to castration resistant disease, and the androgen receptor (AR) remains an important driver in this progression. These mechanisms include AR amplification and hypersensitivity, AR mutations leading to promiscuity, mutations in coactivators/corepressors, androgen-independent AR activation, and intratumoral and alternative androgen production. More recently, identification of AR variants (ARVs) has been established as another mechanism of progression to CRPC. Docetaxel chemotherapy has historically been the first-line treatment for CRPC, but in recent years, newer agents have been introduced that target some of these mechanisms of resistance, thereby providing additional survival benefit. These include AR signaling inhibitors such as enzalutamide (Xtandi, ENZA, MDV-3100) and CYP17A1 inhibitors such as abiraterone acetate (Zytiga). Ultimately, these agents will also fail to suppress CRPC. While some of the mechanisms by which these agents fail are unique, many share similarities to the mechanisms contributing to CRPC progression. Understanding these mechanisms of resistance to ADT and currently approved CRPC treatments will help guide future research into targeted therapies.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urology, University of California, Davis, CA, USA
| | | |
Collapse
|
244
|
Varenhorst E, Klaff R, Berglund A, Hedlund PO, Sandblom G. Predictors of early androgen deprivation treatment failure in prostate cancer with bone metastases. Cancer Med 2016; 5:407-14. [PMID: 26765317 PMCID: PMC4799954 DOI: 10.1002/cam4.594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/24/2022] Open
Abstract
Approximately 15% of men with hormone naïve metastatic prostate cancer primarily fail to respond to androgen deprivation treatment (ADT). The reason why the response to ADT differs in this subgroup of men with prostate cancer remains unclear. The aim of this study was to describe the characteristics of these men and to thereby define predictors of early ADT failure in prostate cancer patients with bone metastases. The study was based on 915 men from the prospective randomized multicenter trial (no. 5) conducted by the Scandinavian Prostate Cancer Group comparing parenteral estrogen with total androgen blockade. Early ADT failure was defined as death from metastatic prostate cancer within 12 months after the start of ADT. Multivariate logistic regression models were applied to identify clinical predictors of early ADT failure. Ninety‐four (10.3%) men were primarily nonresponders to ADT. Independent predictors of early ADT failure were poor Eastern Cooperative Oncology Group performance status (PS), analgesic consumption, low hemoglobin, and high Soloway score (extent of disease observed on the scan), in where patients with poor PS and/or high analgesic consumption had a threefold risk of early ADT failure. Not significantly factors related to early ADT failure were age, treatment, cardiovascular comorbidity, T category, grade of malignancy, serum estrogen level, and SHBG at enrolment. We analyzed characteristics of a subgroup of patients who primarily failed to respond to ADT. Four independent clinical predictors of early ADT failure could be defined, and men exhibiting these features should be considered for an alternative treatment.
Collapse
Affiliation(s)
- Eberhard Varenhorst
- Department of Urology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rami Klaff
- Department of Urology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | - Gabriel Sandblom
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Hospital Huddinge, Huddinge, Sweden
| | | |
Collapse
|
245
|
Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, Homma Y, Inoue S, Yanagisawa J. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor β-KLF5 Pathway. Mol Cell Biol 2016; 36:144-56. [PMID: 26483416 PMCID: PMC4702593 DOI: 10.1128/mcb.00625-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/14/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17β-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth. We found that anchorage-independent apoptosis in these cells was inhibited by E2 treatment. Similarly, in vivo angiogenesis was suppressed by E2. Interestingly, these effects of E2 were abolished by knockdown of either estrogen receptor β (ERβ) or Krüppel-like zinc finger transcription factor 5 (KLF5). Ιn addition, E2 suppressed KLF5-mediated transcription through ERβ, which inhibits proapoptotic FOXO1 and proangiogenic PDGFA expression. Furthermore, we revealed that a nonagonistic ER ligand GS-1405 inhibited FOXO1 and PDGFA expression through the ERβ-KLF5 pathway and regulated prostate tumor growth without ERβ transactivation. Therefore, these results suggest that E2 biphasically modulates prostate tumor formation by regulating KLF5-dependent transcription through ERβ and provide a new strategy for designing ER modulators, which will be able to regulate prostate cancer progression with minimal adverse effects due to ER transactivation.
Collapse
Affiliation(s)
- Yuka Nakajima
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Asami Osakabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Waku
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kensuke Akaogi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Junn Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
246
|
Mikhaylenko DS, Efremov GD, Sivkov AV, Zaletaev DV. Hormone resistance and neuroendocrine differentiation due to accumulation of genetic lesions during clonal evolution of prostate cancer. Mol Biol 2016. [DOI: 10.1134/s0026893315060187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
247
|
4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol 2015; 99:31-52. [PMID: 26549368 DOI: 10.1016/j.bcp.2015.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/03/2015] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC)6 is a unique isoenzyme targeting specific substrates including α-tubulin and heat shock protein (HSP)90. HDAC6 is involved in protein trafficking and degradation, cell shape and migration. Deregulation of HDAC6 activity is associated with a variety of diseases including cancer leading to a growing interest for developing HDAC6 inhibitors. Here, we identified two new structurally related 4-hydroxybenzoic acids as selective HDAC6 inhibitors reducing proliferation, colony and spheroid formation as well as viability of prostate cancer cells. Both compounds strongly enhanced α-tubulin acetylation leading to remodeling of microtubular organization. Furthermore, 4-hydroxybenzoic acids decreased HSP90α regulation of the human androgen receptor in prostate cancer cells by increasing HSP90α acetylation levels. Collectively, our data support the potential of 4-hydroxybenzoic acid derivatives as HDAC6-specific inhibitors with anti-cancer properties.
Collapse
|
248
|
Soh SF, Yin X, Sun J, Li J, Yong EL, Wei Q, Gong Y. Simultaneous determination of multiple androgens in mice organs with liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2015; 115:457-66. [DOI: 10.1016/j.jpba.2015.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/09/2015] [Accepted: 07/26/2015] [Indexed: 12/23/2022]
|
249
|
The Emerging Role of Extracellular Vesicle-Mediated Drug Resistance in Cancers: Implications in Advanced Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454837. [PMID: 26587537 PMCID: PMC4637461 DOI: 10.1155/2015/454837] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
Collapse
|
250
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|