201
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
202
|
Lei HM, Zhang KR, Wang CH, Wang Y, Zhuang GL, Lu LM, Zhang J, Shen Y, Chen HZ, Zhu L. Aldehyde dehydrogenase 1A1 confers erlotinib resistance via facilitating the reactive oxygen species-reactive carbonyl species metabolic pathway in lung adenocarcinomas. Am J Cancer Res 2019; 9:7122-7139. [PMID: 31695757 PMCID: PMC6831290 DOI: 10.7150/thno.35729] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/09/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Acquired resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as erlotinib is a major challenge to achieve an overall clinical benefit of the targeted therapy. Recently, aldehyde dehydrogenase 1 (ALDH1) induction has been found to render lung adenocarcinomas resistant to EGFR-TKIs, and targeting ALDH1A1 becomes a novel strategy to overcome resistance. However, the molecular mechanism underlying such effect remains poorly understood. Methods: Comprehensive assays were performed in a panel of lung adenocarcinoma cell lines and xenografts that acquired resistance to erlotinib. Cancer phenotype was evaluated by cell viability, apoptosis, migration, and epithelial-mesenchymal transition analysis in vitro, tumorsphere formation analysis ex vivo, and tumor growth and dissemination analysis in vivo. Reactive oxygen species (ROS) and reactive carbonyl species (RCS) were detected based on fluorescent oxidation indicator and liquid chromatography coupled to mass spectrometry, respectively. Protein target was suppressed by RNA interference and pharmacological inhibition or ecto-overexpressed by lentivirus-based cloning. Gene promoter activity was measured by dual-luciferase reporting assay. Results: Knockdown or pharmacological inhibition of ALDH1A1 overcame erlotinib resistance in vitro and in vivo. ALDH1A1 overexpression was sufficient to induce erlotinib resistance. Metabolomic analysis demonstrated lower ROS-RCS levels in ALDH1A1-addicted, erlotinib-resistant cells; in line with this, key enzymes for metabolizing ROS and RCS, SOD2 and GPX4, respectively, were upregulated in these cells. Knockdown of SOD2 or GPX4 re-sensitized the resistant cells to erlotinib and the effect was abrogated by ROS-RCS scavenging and mimicked by ROS-RCS induction. The ALDH1A1 overexpressed cells, though resisted erlotinib, were more sensitive to SOD2 or GPX4 knockdown. The ALDH1A1 effect on erlotinib resistance was abrogated by ROS-RCS induction and mimicked by ROS-RCS scavenging. Detection of GPX4 and SOD2 expression and analysis of promoter activities of GPX4 and SOD2 under the condition of suppression or overexpression of ALDH1A1 demonstrated that the RCS-ROS-metabolic pathway was controlled by the ALDH1A1-GPX4-SOD2 axis. The ROS-RCS metabolic dependence mechanism in ALDH1A1-induced resistance was confirmed in vivo. Analysis of public databases showed that in patients undergoing chemotherapy, those with high co-expression of ALDH1A1, GPX4, and SOD2 had a lower probability of survival. Conclusions: ALDH1A1 confers erlotinib resistance by facilitating the ROS-RCS metabolic pathway. ALDH1A1-induced upregulation of SOD2 and GPX4, as well as ALDH1A1 itself, mitigated erlotinib-induced oxidative and carbonyl stress, and imparted the TKI resistance. The elucidation of previously unrecognized metabolic mechanism underlying erlotinib resistance provides new insight into the biology of molecular targeted therapies and help to design improved pharmacological strategies to overcome the drug resistance.
Collapse
|
203
|
Bigagli E, Cinci L, D'Ambrosio M, Luceri C. Transcriptomic Characterization, Chemosensitivity and Regulatory Effects of Exosomes in Spontaneous EMT/MET Transitions of Breast Cancer Cells. Cancer Genomics Proteomics 2019; 16:163-173. [PMID: 31018947 DOI: 10.21873/cgp.20122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM We examined the gene expression changes of breast cancer cells spontaneously undergoing epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET) and the role of exosomes in these transitions. MATERIALS AND METHODS Highly invasive mesenchymal-like breast cancer cells, MDA-MB-231 (basal cells), EMT and MET variants, were characterized by microarray gene expression profiling, immunocytochemistry and chemo-sensitivity. RESULTS Spontaneously disseminated cells were anoikis resistant, exhibited a dissociative, EMT-like phenotype and underwent MET when reseeded in cell-free plates. MET was inhibited by exosomes secreted by basal cells. Chemo-sensitivity to doxorubicin, vincristine and paclitaxel decreased in the order EMT<MET<basal. Phenotypic plasticity arose with differential expression of metastasis and stemness associated genes (LGR5, FZD10, DTX1, ErbB3, FTH1 and DLL4) and pathways (DNA replication and repair, ABC transporter, Hedgehog, Notch and metabolic pathways). CONCLUSION This is an appropriate model for studying EMT/MET transitions, drug targets and the role of exosomes in breast cancer dissemination.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D'Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
204
|
Dong M, Gong H, Li T, Li X, Liu J, Zhang H, Liu M, Chen G, Liu H, Chen J. Lymph node metastasis in lung squamous cell carcinoma and identification of metastasis-related genes based on the Cancer Genome Atlas. Cancer Med 2019; 8:6280-6294. [PMID: 31482686 PMCID: PMC6797670 DOI: 10.1002/cam4.2525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/27/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a unique clinical and histological category that accounts for about 30% of total lung cancer. To identify risk factors for lymph node metastasis and analyze the molecular features of these metastases in lung SCC, a retrospective study was performed for 170 lung SCC patients who underwent surgical treatment. The overall survival of these patients with or without lymph node metastasis (LM/NLM) was analyzed using the Kaplan‐Meier method. We also used the TCGA database to compare the differentially expressed genes (DEGs) in patients with stage T1‐2 and T3‐4 lung SCC. Data from both our retrospective study and the TCGA database demonstrated a correlation between age and stage T1‐T2 LM (P = .002). There were significant differences between the LM and NLM groups in both mean survival time and median survival time for different T‐stages (P = .031). There were 176 upregulated and 177 downregulated DEGs between the LM and NLM groups in the stage T1‐2 group and 93 upregulated and 34 downregulated DEGs in the stage T3‐T4 group. These differentially expressed genes were predicted to participate in five cellular components, five molecular functions, and five biological processes. There were 20 genes, including GCG, CASR, NPY, CGA, TAC1, ALB, APOA1, CRH, CHRH, TRH, and GHSR, located at the core of the protein‐protein interaction network in the stage T1‐2 group and 11 genes, including F2, CASR, GRM1, GNRHR, GRPR, NTSR1, PROKR2, UTS2D, PTH, ALB, and FGA, in the stage T3‐4 group. Overall, LM plays a key role in the treatment response and prognosis of SCC patients. Several risk factors, including age and stage, were identified for LM. There was a previously undiscovered enrichment of significant novel genes in lung SCC between the LM and NLM groups, which may have the potential for predicting prognosis and targeting.
Collapse
Affiliation(s)
- Ming Dong
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Gong
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Chen
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
205
|
Jong ED, Chan ICW, Nedelcu AM. A Model-System to Address the Impact of Phenotypic Heterogeneity and Plasticity on the Development of Cancer Therapies. Front Oncol 2019; 9:842. [PMID: 31555595 PMCID: PMC6727362 DOI: 10.3389/fonc.2019.00842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/15/2019] [Indexed: 01/31/2023] Open
Abstract
The main challenges in developing effective anti-cancer therapies stem from the highly complex and heterogeneous nature of cancer, including the presence of multiple genetically-encoded and environmentally-induced cancer cell phenotypes within an individual. This diversity can make the development of successful treatments difficult as different phenotypes can have different responses to the same treatment. The lack of model-systems that can be used to simultaneously test the effect of therapies on multiple distinct phenotypic states further contributes to this problem. To mitigate these challenges, we suggest that in vitro model-systems that consist of several genetically-related but phenotypically distinct populations can be used as proxies for the several phenotypes (including adherent and circulating tumor cells) present in a patient with advanced disease. As proof of concept, we have developed such a model and showed that different phenotypes had different responses to the same challenge (i.e., a change in extracellular pH) both in terms of sensitivity and phenotypic plasticity. We suggest that similar model-systems could be developed and used when designing novel therapeutic strategies, to address the potential impact of phenotypic heterogeneity and plasticity of cancer on the development of successful therapies. Specifically, the effect of a therapy should be considered on more than one cancer cell phenotype (to increase its effectiveness), and both cell viability as well as changes in phenotypic state (to address potential plastic responses) should be evaluated. Although we are aware of the limitations of in vitro systems, we believe that the use of established cell lines that express multiple phenotypes can provide invaluable insights into the complex interplay between therapies and cancer's heterogeneous and plastic nature.
Collapse
Affiliation(s)
| | | | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
206
|
Deb B, Patel K, Sathe G, Kumar P. N-Glycoproteomic Profiling Reveals Alteration In Extracellular Matrix Organization In Non-Type Bladder Carcinoma. J Clin Med 2019; 8:jcm8091303. [PMID: 31450586 PMCID: PMC6780497 DOI: 10.3390/jcm8091303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/01/2019] [Accepted: 08/11/2019] [Indexed: 01/03/2023] Open
Abstract
Treatment of advanced and metastatic bladder carcinoma is often ineffective and displays variable clinical outcomes. Studying this aggressive molecular subtype of bladder carcinoma will lead to better understanding of the pathogenesis which may lead to the identification of new therapeutic strategies. The non-type bladder subtype is phenotypically mesenchymal and has mesenchymal features with a high metastatic ability. Post-translational addition of oligosaccharide residues is an important modification that influences cellular functions and contributes to disease pathology. Here, we report the comparative analysis of N-linked glycosylation across bladder cancer subtypes. To analyze the glycosite-containing peptides, we carried out LC-MS/MS-based quantitative proteomic and glycoproteomic profiling. We identified 1299 unique N-linked glycopeptides corresponding to 460 proteins. Additionally, we identified 118 unique N-linked glycopeptides corresponding to 84 proteins to be differentially glycosylated only in non-type subtypes as compared to luminal/basal subtypes. Most of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 55 differentially expressed glycoproteins showed no significant change at the protein abundance level, representing that the glycosylation site occupancy was changed between the non-type subtype and luminal/basal subtypes. Importantly, the extracellular matrix organization pathway was dysregulated in the non-type subtype of bladder carcinoma. N-glycosylation modifications in the extracellular matrix organization proteins may be a contributing factor for the mesenchymal aggressive phenotype in non-type subtype. These aberrant protein glycosylation would provide additional avenues to employ glycan-based therapies and may lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
207
|
Nath B, Bidkar AP, Kumar V, Dalal A, Jolly MK, Ghosh SS, Biswas G. Deciphering Hydrodynamic and Drug-Resistant Behaviors of Metastatic EMT Breast Cancer Cells Moving in a Constricted Microcapillary. J Clin Med 2019; 8:E1194. [PMID: 31404980 PMCID: PMC6722803 DOI: 10.3390/jcm8081194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) induces cell migration, invasion, and drug resistance, and consequently, contributes to cancer metastasis and disease aggressiveness. This study attempted to address crucial biological parameters to correlate EMT and drug-treated cancer cells traversing through microcapillaries, reminiscent of metastatic conditions. MDA-MB-468 breast cancer cells induced to undergo EMT by treatment with 20 ng/mL of epidermal growth factor (EGF) were initially passed through several blockages and then through a constricted microchannel, mimicking the flow of invasive metastatic cells through constricted blood microcapillaries. EMT cells acquired enhanced migratory properties and retained 50% viability, even after migration through wells 10-15 μm in size and a constricted passage of 7 μm and 150 μm in length at a constant flow rate of 50 μL/h. The hydrodynamic properties revealed cellular deformation with a deformation index, average transit velocity, and entry time of 2.45, 12.3 mm/s, and 31,000 μs, respectively for a cell of average diameter 19 μm passing through one of the 7 μm constricted sections. Interestingly, cells collected at the channel outlet regained epithelial character, undergoing reverse transition (mesenchymal to epithelial transition, MET) in the absence of EGF. Remarkably, real-time polymerase chain reaction (PCR) analysis confirmed increases of 2- and 2.7-fold in the vimentin and fibronectin expression in EMT cells, respectively; however, their expression reduced to basal level in the MET cells. A scratch assay revealed the pronounced migratory nature of EMT cells compared with MET cells. Furthermore, the number of colonies formed from EMT cells and paclitaxel-treated EMT cells after passing through a constriction were found to be 95 ± 10 and 79 ± 4, respectively, confirming that the EMT cells were more drug resistant with a concomitant two-fold higher expression of the multi-drug resistance (MDR1) gene. Our results highlight the hydrodynamic and drug-evading properties of cells that have undergone an EMT, when passed through a constricted microcapillary that mimics their journey in blood circulation.
Collapse
Affiliation(s)
- Binita Nath
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Anil P Bidkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Vikash Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Amaresh Dalal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bangalore 560 012, India
| | - Siddhartha S Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Gautam Biswas
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| |
Collapse
|
208
|
Saxena K, Subbalakshmi AR, Jolly MK. Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 2019; 46:4-5. [PMID: 31399383 PMCID: PMC6712058 DOI: 10.1016/j.ebiom.2019.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
209
|
Saxena K, Jolly MK. Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules 2019; 9:E339. [PMID: 31382593 PMCID: PMC6722594 DOI: 10.3390/biom9080339] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypoxia (also called intermittent hypoxia or IH). Cyclic hypoxia is mimicked in vitro and in vivo by periodic exposure to cycles of hypoxia and reoxygenation (H-R cycles). Compared to chronic hypoxia, cyclic hypoxia has been shown to augment various hallmarks of cancer to a greater extent: angiogenesis, immune evasion, metastasis, survival etc. Cycling hypoxia has also been shown to be the major contributing factor in increasing the risk of cancer in obstructive sleep apnea (OSA) patients. Here, we first compare and contrast the effects of acute, chronic and intermittent hypoxia in terms of molecular pathways activated and the cellular processes affected. We highlight the underlying complexity of these differential effects and emphasize the need to investigate various combinations of factors impacting cellular adaptation to hypoxia: total duration of hypoxia, concentration of oxygen (O2), and the presence of and frequency of H-R cycles. Finally, we summarize the effects of cycling hypoxia on various hallmarks of cancer highlighting their dependence on the abovementioned factors. We conclude with a call for an integrative and rigorous analysis of the effects of varying extents and durations of hypoxia on cells, including tools such as mechanism-based mathematical modelling and microfluidic setups.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
210
|
Ichiyanagi O, Ito H, Naito S, Kabasawa T, Kanno H, Narisawa T, Ushijima M, Kurota Y, Ozawa M, Sakurai T, Nishida H, Kato T, Yamakawa M, Tsuchiya N. Impact of eIF4E phosphorylation at Ser209 via MNK2a on tumour recurrence after curative surgery in localized clear cell renal cell carcinoma. Oncotarget 2019; 10:4053-4068. [PMID: 31258849 PMCID: PMC6592294 DOI: 10.18632/oncotarget.27017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Background: We investigated the roles of eIF4E phosphorylation (Ser209) in tumour recurrence after curative nephrectomy for localized clear cell renal cell carcinoma (ccRCC). Methods: Expression of eIF4E, p eIF4E and MNKs (MAPK interacting kinases), was evaluated in surgical specimens obtained from consecutive non metastatic ccRCC patients (n = 290) by immunohistochemistry (IHC), immunoblotting, and qRT PCR at the protein and mRNA levels. In human RCC cell lines, the effects of eIF4E phosphorylation were examined using immunoblotting, proliferation, migration and invasion assays with pharmacological inhibitors (CGP57380 or ETP45835) and specific small interfering (si) RNAs against MNK1/2(a/b). Results: In postoperative follow-up (median, 7.9 y), 40 patients experienced metastatic recurrence. In multivariate Cox analyses, higher IHC expression of p eIF4E in ccRCC significantly predicted a longer recurrence-free interval. eIF4E is phosphorylated mainly by MNK2a in tumour specimens and cell lines. In 786-O and A-498 cell lines, pharmacological inhibition of MNKs decreased p-eIF4E and increased vimentin and N cadherin but did not influence proliferation. Similarly, MNK2 or MNK2a inhibition with siRNA reduced p-eIF4E and enhanced vimentin translation, cell migration and invasion in the cell lines. Conclusions: MNK2a-induced eIF4E phosphorylation may suppress metastatic recurrence of ccRCC, partially due to vimentin downregulation at the translational level, consequently leading to inhibition of epithelial–mesenchymal transition.
Collapse
Affiliation(s)
- Osamu Ichiyanagi
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan.,Department of Urology, Yamagata Prefectural Kahoku Hospital, Kahoku, Japan
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takanobu Kabasawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hidenori Kanno
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Narisawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masaki Ushijima
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Michinobu Ozawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshihiko Sakurai
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hayato Nishida
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
211
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
212
|
Deb B, Puttamallesh VN, Gondkar K, Thiery JP, Gowda H, Kumar P. Phosphoproteomic Profiling Identifies Aberrant Activation of Integrin Signaling in Aggressive Non-Type Bladder Carcinoma. J Clin Med 2019; 8:E703. [PMID: 31108958 PMCID: PMC6572125 DOI: 10.3390/jcm8050703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder carcinoma is highly heterogeneous and its complex molecular landscape; thus, poses a significant challenge for resolving an effective treatment in metastatic tumors. We computed the epithelial-mesenchymal transition (EMT) scores of three bladder carcinoma subtypes-luminal, basal, and non-type. The EMT score of the non-type indicated a "mesenchymal-like" phenotype, which correlates with a relatively more aggressive form of carcinoma, typified by an increased migration and invasion. To identify the altered signaling pathways potentially regulating this EMT phenotype in bladder cancer cell lines, we utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based phosphoproteomic approach. Bioinformatics analyses were carried out to determine the activated pathways, networks, and functions in bladder carcinoma cell lines. A total of 3125 proteins were identified, with 289 signature proteins noted to be differentially phosphorylated (p ≤ 0.05) in the non-type cell lines. The integrin pathway was significantly enriched and five major proteins (TLN1, CTTN, CRKL, ZYX and BCAR3) regulating cell motility and invasion were hyperphosphorylated. Our study reveals GSK3A/B and CDK1 as promising druggable targets for the non-type molecular subtype, which could improve the treatment outcomes for aggressive bladder carcinoma.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India.
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.
| | - Kirti Gondkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.
| | - Jean P Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
- Comprehensive Cancer Center, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800 Villejuif, France.
- CNRS UMR 7057, Matter and Complex Systems, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet Paris, 75205 Paris, France.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India.
| |
Collapse
|
213
|
Contribution of Epithelial Plasticity to Therapy Resistance. J Clin Med 2019; 8:jcm8050676. [PMID: 31091749 PMCID: PMC6571660 DOI: 10.3390/jcm8050676] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.
Collapse
|
214
|
Control of Invasion by Epithelial-to-Mesenchymal Transition Programs during Metastasis. J Clin Med 2019; 8:jcm8050646. [PMID: 31083398 PMCID: PMC6572027 DOI: 10.3390/jcm8050646] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) programs contribute to the acquisition of invasive properties that are essential for metastasis. It is well established that EMT programs alter cell state and promote invasive behavior. This review discusses how rather than following one specific program, EMT states are diverse in their regulation and invasive properties. Analysis across a spectrum of models using a combination of approaches has revealed how unique features of distinct EMT programs dictate whether tumor cells invade as single cells or collectively as cohesive groups of cells. It has also been shown that the mode of collective invasion is determined by the nature of the EMT, with cells in a trailblazer-type EMT state being capable of initiating collective invasion, whereas cells that have undergone an opportunist-type EMT are dependent on extrinsic factors to invade. In addition to altering cell intrinsic properties, EMT programs can influence invasion through non-cell autonomous mechanisms. Analysis of tumor subpopulations has demonstrated how EMT-induced cells can drive the invasion of sibling epithelial populations through paracrine signaling and remodeling of the microenvironment. Importantly, the variation in invasive properties controlled by EMT programs influences the kinetics and location of metastasis.
Collapse
|
215
|
Li Y, He Y, Shao T, Pei H, Guo W, Mi D, Krimm I, Zhang Y, Wang P, Wang X, Liu M, Yi Z, Chen Y. Modification and Biological Evaluation of a Series of 1,5-Diaryl-1,2,4-triazole Compounds as Novel Agents against Pancreatic Cancer Metastasis through Targeting Myoferlin. J Med Chem 2019; 62:4949-4966. [DOI: 10.1021/acs.jmedchem.9b00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Ting Shao
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Isabelle Krimm
- Université de Lyon, CNRS, Université Claude-Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne 69100, France
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| |
Collapse
|
216
|
Zañudo JGT, Guinn MT, Farquhar K, Szenk M, Steinway SN, Balázsi G, Albert R. Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Phys Biol 2019; 16:031002. [PMID: 30654341 PMCID: PMC6405305 DOI: 10.1088/1478-3975/aaffa1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present the epithelial-to-mesenchymal transition (EMT) from two perspectives: experimental/technological and theoretical. We review the state of the current understanding of the regulatory networks that underlie EMT in three physiological contexts: embryonic development, wound healing, and metastasis. We describe the existing experimental systems and manipulations used to better understand the molecular participants and factors that influence EMT and metastasis. We review the mathematical models of the regulatory networks involved in EMT, with a particular emphasis on the network motifs (such as coupled feedback loops) that can generate intermediate hybrid states between the epithelial and mesenchymal states. Ultimately, the understanding gained about these networks should be translated into methods to control phenotypic outcomes, especially in the context of cancer therapeutic strategies. We present emerging theories of how to drive the dynamics of a network toward a desired dynamical attractor (e.g. an epithelial cell state) and emerging synthetic biology technologies to monitor and control the state of cells.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA 02215, USA
- Cancer Program, Eli and Edythe L. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - M. Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Medical Scientist Training Program, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kevin Farquhar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariola Szenk
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
217
|
Biswas K, Jolly MK, Ghosh A. Stability and mean residence times for hybrid epithelial/mesenchymal phenotype. Phys Biol 2019; 16:025003. [PMID: 30537698 DOI: 10.1088/1478-3975/aaf7b7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer metastasis and drug resistance remain unsolved clinical challenges. A phenotypic transition that is often implicated in both these processes is epithelial-mesenchymal transition (EMT) during which epithelial cells weaken their cell-cell adhesion and gain traits of migration and invasion, typical of mesenchymal cells. However, recent studies indicate that apart from these two states, cells can also exist in one or more hybrid E/M state(s), which plays an aggressive role in progression of the disease. Furthermore, computational and experimental studies have identified a variety of phenotypic stability factors (PSFs) that stabilize the hybrid E/M state(s) and can increase disease aggressiveness. In this work, we study EMT regulatory networks, in the presence of different PSFs, as dynamical systems subjected to random fluctuations. The cells thus explore different stable E, M, E/M states in the potential landscape and our aim is to quantify the residence time in each of these states. Our stochastic simulations indicate an universal feature that the mean residence time (MRT) in the hybrid E/M state is enhanced in the presence of PSFs. We demonstrate that the feature is consistent for a variety of PSFs, namely, GRHL2, OVOL, ΔNp63α, miR-145/OCT4, participating in the core EMT regulatory network. Our results reveal potential targets for pushing cells out of a hybrid E/M state and thus halting metastatic progression.
Collapse
Affiliation(s)
- Kuheli Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | | | | |
Collapse
|
218
|
Schacke M, Kumar J, Colwell N, Hermanson K, Folle GA, Nechaev S, Dhasarathy A, Lafon-Hughes L. PARP-1/2 Inhibitor Olaparib Prevents or Partially Reverts EMT Induced by TGF-β in NMuMG Cells. Int J Mol Sci 2019; 20:ijms20030518. [PMID: 30691122 PMCID: PMC6387051 DOI: 10.3390/ijms20030518] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023] Open
Abstract
Poly- adenosine diphosphate (ADP)-ribose (PAR) is a polymer synthesized as a posttranslational modification by some poly (ADP-ribose) polymerases (PARPs), namely PARP-1, PARP-2, tankyrase-1, and tankyrase-2 (TNKS-1/2). PARP-1 is nuclear and has also been detected in extracellular vesicles. PARP-2 and TNKS-1/2 are distributed in nuclei and cytoplasm. PARP or PAR alterations have been described in tumors, and in particular by influencing the Epithelial- Mesenchymal Transition (EMT), which influences cell migration and drug resistance in cancer cells. Pro-EMT and anti-EMT effects of PARP-1 have been reported while whether PAR changes occur specifically during EMT is currently unknown. The PARP-1/2 inhibitor Olaparib (OLA) is approved by FDA to treat certain patients harboring cancers with impaired homologous recombination. Here, we studied PAR changes and OLA effects on EMT. Total and nuclear PAR increased in EMT while PAR belts were disassembled. OLA prevented EMT, according to: (i) molecular markers evaluated by immuno-cytofluorescence/image quantification, Western blots, and RNA quantitation, (ii) morphological changes expressed as anisotropy, and (iii) migration capacity in the scratch assay. OLA also partially reversed EMT. OLA might work through unconventional mechanisms of action (different from synthetic lethality), even in non-BRCA (breast cancer 1 gene) mutated cancers.
Collapse
Affiliation(s)
- Michelle Schacke
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Janani Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Nicholas Colwell
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Kole Hermanson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Gustavo A Folle
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Sergei Nechaev
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Laura Lafon-Hughes
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| |
Collapse
|
219
|
Jia D, George JT, Tripathi SC, Kundnani DL, Lu M, Hanash SM, Onuchic JN, Jolly MK, Levine H. Testing the gene expression classification of the EMT spectrum. Phys Biol 2019; 16:025002. [PMID: 30557866 PMCID: PMC7179477 DOI: 10.1088/1478-3975/aaf8d4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance-two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid E/M phenotype (s) and tumor aggressiveness, we integrate two computational methods-(a) RACIPE-to identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory network, and (b) EMT scoring metric-to calculate the probability that a given gene expression profile displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression data generated from a core EMT regulatory network and classify the gene expression profiles into relevant categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with hierarchical clustering readouts of RACIPE-generated gene expression data. We also show how the EMT scoring metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene expression data.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, United States of America
- These authors contributed equally
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, United States of America
- These authors contributed equally
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Deepali L Kundnani
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mingyang Lu
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Current address: Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 440003, India
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Chemistry, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Current address: Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
220
|
Computational Modeling of Collective Cell Migration: Mechanical and Biochemical Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:1-11. [PMID: 31612450 DOI: 10.1007/978-3-030-17593-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Collective cell migration plays key roles in various physiological and pathological processes in multicellular organisms, including embryonic development, wound healing, and formation of cancer metastases. Such collective migration involves complex crosstalk among cells and their environment at both biochemical and mechanical levels. Here, we review various computational modeling strategies that have been helpful in decoding the dynamics of collective cell migration. Most of such attempts have focused either aspect - mechanical or biochemical regulation of collective cell migration, and have yielded complementary insights. Finally, we suggest some possible ways to integrate these models to gain a more comprehensive understanding of collective cell migration.
Collapse
|