201
|
Mokhothu TM, Tanaka KZ. Characterizing Hippocampal Oscillatory Signatures Underlying Seizures in Temporal Lobe Epilepsy. Front Behav Neurosci 2021; 15:785328. [PMID: 34899205 PMCID: PMC8656355 DOI: 10.3389/fnbeh.2021.785328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is a neurological condition characterized by focal brain hyperexcitability, resulting in abnormal neuronal discharge and uncontrollable seizures. The hippocampus, with its inherently highly synchronized firing patterns and relatively high excitability, is prone to epileptic seizures, and it is usually the focus of TLE. Researchers have identified hippocampal high-frequency oscillations (HFOs) as a salient feature in people with TLE and animal models of this disease, arising before or at the onset of the epileptic event. To a certain extent, these pathological HFOs have served as a marker and a potential target for seizure attenuation using electrical or optogenetic interventions. However, many questions remain about whether we can reliably distinguish pathological from non-pathological HFOs and whether they can tell us about the development of the disease. While this would be an arduous task to perform in humans, animal models of TLE provide an excellent opportunity to study the characteristics of HFOs in predicting how epilepsy evolves. This minireview will (1) summarize what we know about the oscillatory disruption in TLE, (2) summarize knowledge about oscillatory changes in the latent period and their role in predicting seizures, and (3) propose future studies essential to uncovering potential treatments based on early detection of pathological HFOs.
Collapse
Affiliation(s)
- Thato Mary Mokhothu
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazumasa Zen Tanaka
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
202
|
Ter Wal M, Linde-Domingo J, Lifanov J, Roux F, Kolibius LD, Gollwitzer S, Lang J, Hamer H, Rollings D, Sawlani V, Chelvarajah R, Staresina B, Hanslmayr S, Wimber M. Theta rhythmicity governs human behavior and hippocampal signals during memory-dependent tasks. Nat Commun 2021; 12:7048. [PMID: 34857748 PMCID: PMC8639755 DOI: 10.1038/s41467-021-27323-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Memory formation and reinstatement are thought to lock to the hippocampal theta rhythm, predicting that encoding and retrieval processes appear rhythmic themselves. Here, we show that rhythmicity can be observed in behavioral responses from memory tasks, where participants indicate, using button presses, the timing of encoding and recall of cue-object associative memories. We find no evidence for rhythmicity in button presses for visual tasks using the same stimuli, or for questions about already retrieved objects. The oscillations for correctly remembered trials center in the slow theta frequency range (1-5 Hz). Using intracranial EEG recordings, we show that the memory task induces temporally extended phase consistency in hippocampal local field potentials at slow theta frequencies, but significantly more for remembered than forgotten trials, providing a potential mechanistic underpinning for the theta oscillations found in behavioral responses.
Collapse
Affiliation(s)
- Marije Ter Wal
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Juan Linde-Domingo
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Max Planck Institute for Human Development, 14195, Berlin, Germany
| | - Julia Lifanov
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Frédéric Roux
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Luca D Kolibius
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK
| | | | - Johannes Lang
- Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Hajo Hamer
- Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - David Rollings
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Vijay Sawlani
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Ramesh Chelvarajah
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Bernhard Staresina
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, OX2 6GG, Oxford, UK
| | - Simon Hanslmayr
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK
| | - Maria Wimber
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK.
| |
Collapse
|
203
|
Hosseinian T, Yavari F, Kuo MF, Nitsche MA, Jamil A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. Neuroimage 2021; 245:118772. [PMID: 34861393 DOI: 10.1016/j.neuroimage.2021.118772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Network-level synchronization of theta oscillations in the cerebral cortex is linked to many vital cognitive functions across daily life, such as executive functions or regulation of arousal and consciousness. However, while neuroimaging has uncovered the ubiquitous functional relevance of theta rhythms in cognition, there remains a limited set of techniques for externally enhancing and stabilizing theta in the human brain non-invasively. Here, we developed and employed a new phase-synchronized low-intensity electric and magnetic stimulation technique to induce and stabilize narrowband 6-Hz theta oscillations in a group of healthy human adult participants, and then demonstrated how this technique also enhances cognitive processing by assaying working memory. Our findings demonstrate a technological advancement of brain stimulation methods, while also validating the causal link between theta activity and concurrent cognitive behavior, which may ultimately help to not only explain mechanisms, but offer perspectives for restoring deficient theta-band network activity observed in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Fatemeh Yavari
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Min-Fang Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Department Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Laboratory for Neuropsychiatry and Neuromodulation, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Boston, MA, USA.
| |
Collapse
|
204
|
Mosbacher JA, Halverscheid S, Pustelnik K, Danner M, Prassl C, Brunner C, Vogel SE, Nitsche MA, Grabner RH. Theta Band Transcranial Alternating Current Stimulation Enhances Arithmetic Learning: A Systematic Comparison of Different Direct and Alternating Current Stimulations. Neuroscience 2021; 477:89-105. [PMID: 34648868 DOI: 10.1016/j.neuroscience.2021.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
Over the last decades, interest in transcranial electrical stimulation (tES) has grown, as it might allow for causal investigations of the associations between cortical activity and cognition as well as to directly influence cognitive performance. The main objectives of the present work were to assess whether tES can enhance the acquisition and application of arithmetic abilities, and whether it enables a better assessment of underlying neurophysiological processes. To this end, the present, double-blind, sham-controlled study assessed the effects of six active stimulations (three tES protocols: anodal transcranial direct current stimulation (tDCS), alpha band transcranial alternating current stimulation (tACS), and theta band tACS; targeting the left dorsolateral prefrontal cortex or the left posterior parietal cortex) on the acquisition of an arithmetic procedure, arithmetic facts, and event-related synchronization/desynchronization (ERS/ERD) patterns. 137 healthy adults were randomly assigned to one of seven groups, each receiving one of the tES-protocols during learning. Results showed that frontal theta band tACS reduced the repetitions needed to learn novel facts and both, frontal and parietal theta band tACS accelerated the decrease in calculation times in fact learning problems. The beneficial effect of frontal theta band tACS may reflect enhanced executive functions, allowing for better control and inhibition processes and hence, a faster acquisition and integration of novel fact knowledge. However, there were no significant effects of the stimulations on procedural learning or ERS/ERD patterns. Overall, theta band tACS appears promising as a support for arithmetic fact training, but effects on procedural calculations and neurophysiological processes remain ambiguous.
Collapse
Affiliation(s)
- Jochen A Mosbacher
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | | | - Kolja Pustelnik
- Mathematics Institute, University of Göttingen, Göttingen, Germany
| | - Martina Danner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Christina Prassl
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Clemens Brunner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Stephan E Vogel
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Roland H Grabner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| |
Collapse
|
205
|
Han L, Zhao S, Xu F, Wang Y, Zhou R, Huang S, Ding Y, Deng D, Mao W, Chen X. Sevoflurane Increases Hippocampal Theta Oscillations and Impairs Memory Via TASK-3 Channels. Front Pharmacol 2021; 12:728300. [PMID: 34776954 PMCID: PMC8581481 DOI: 10.3389/fphar.2021.728300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Sevoflurane can induce memory impairment during clinical anesthesia; however, the underlying mechanisms are largely unknown. TASK-3 channels are one of the potential targets of sevoflurane. Accumulating evidence supports a negative role of intracranial theta rhythms (4–12 Hz) in memory formation. Here, we investigated whether TASK-3 channels contribute to sevoflurane-induced memory impairment by regulating hippocampal theta rhythms. In this study, the memory performance of mice was tested by contextual fear conditioning and inhibitory avoidance experiments. The hippocampal local field potentials (LFPs) were recorded from chronically implanted electrodes located in CA3 region. The results showed that sevoflurane concentration-dependently impaired the memory function of mice, as evidenced by the decreased time mice spent on freezing and reduced latencies for mice to enter the shock compartment. Our electrophysiological results revealed that sevoflurane also enhanced the spectral power of hippocampal LFPs (1–30 Hz), particularly in memory-related theta rhythms (4–12 Hz). These effects were mitigated by viral-mediated knockdown of TASK-3 channels in the hippocampal CA3 region. The knockdown of hippocampal TASK-3 channels significantly reduced the enhancing effect of sevoflurane on hippocampal theta rhythms and alleviated sevoflurane-induced memory impairment. Our data indicate that sevoflurane can increase hippocampal theta oscillations and impair memory function via TASK-3 channels.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
206
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
207
|
Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. SENSORS 2021; 21:s21216985. [PMID: 34770304 PMCID: PMC8588463 DOI: 10.3390/s21216985] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
Physiological signals are immediate and sensitive to neurological changes resulting from the mental workload induced by various driving environments and are considered a quantifying tool for understanding the association between neurological outcomes and driving cognitive workloads. Neurological assessment, outside of a highly-equipped clinical setting, requires an ambulatory electroencephalography (EEG) headset. This study aimed to quantify neurological biomarkers during a resting state and two different scenarios of driving states in a virtual driving environment. We investigated the neurological responses of seventeen healthy male drivers. EEG data were measured in an initial resting state, city-roadways driving state, and expressway driving state using a portable EEG headset in a driving simulator. During the experiment, the participants drove while experiencing cognitive workloads due to various driving environments, such as road traffic conditions, lane changes of surrounding vehicles, the speed limit, etc. The power of the beta and gamma bands decreased, and the power of the delta waves, theta, and frontal theta asymmetry increased in the driving state relative to the resting state. Delta-alpha ratio (DAR) and delta-theta ratio (DTR) showed a strong correlation with a resting state, city-roadways driving state, and expressway driving state. Binary machine-learning (ML) classification models showed a near-perfect accuracy between the resting state and driving state. Moderate classification performances were observed between the resting state, city-roadways state, and expressway state in multi-class classification. An EEG-based neurological state prediction approach may be utilized in an advanced driver-assistance system (ADAS).
Collapse
|
208
|
Marks VS, Saboo KV, Topçu Ç, Lech M, Thayib TP, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage 2021; 245:118637. [PMID: 34644594 DOI: 10.1016/j.neuroimage.2021.118637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.
Collapse
Affiliation(s)
| | - Krishnakant V Saboo
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Çağdaş Topçu
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michal Lech
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Theodore P Thayib
- Department of Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Petr Nejedly
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Robotics, and Cybernetics, Czech Institute of Informatics, Czech Technical University in Prague, Prague, Czech Republic
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA
| | - Michal T Kucewicz
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA.
| |
Collapse
|
209
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
210
|
Alejandro RJ, Packard PA, Steiger TK, Fuentemilla L, Bunzeck N. Semantic Congruence Drives Long-Term Memory and Similarly Affects Neural Retrieval Dynamics in Young and Older Adults. Front Aging Neurosci 2021; 13:683908. [PMID: 34594212 PMCID: PMC8477023 DOI: 10.3389/fnagi.2021.683908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Learning novel information can be promoted if it is congruent with already stored knowledge. This so-called semantic congruence effect has been broadly studied in healthy young adults with a focus on neural encoding mechanisms. However, the impacts on retrieval, and possible impairments during healthy aging, which is typically associated with changes in declarative long-term memory, remain unclear. To investigate these issues, we used a previously established paradigm in healthy young and older humans with a focus on the neural activity at a final retrieval stage as measured with electroencephalography (EEG). In both age groups, semantic congruence at encoding enhanced subsequent long-term recognition memory of words. Compatible with this observation, semantic congruence led to differences in event-related potentials (ERPs) at retrieval, and this effect was not modulated by age. Specifically, congruence modulated old/new ERPs at a fronto-central (Fz) and left parietal (P3) electrode in a late (400–600 ms) time window, which has previously been associated with recognition memory processes. Importantly, ERPs to old items also correlated with the positive effect of semantic congruence on long-term memory independent of age. Together, our findings suggest that semantic congruence drives subsequent recognition memory across the lifespan through changes in neural retrieval processes.
Collapse
Affiliation(s)
- Ricardo J Alejandro
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Pau A Packard
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra Roc Boronat, Barcelona, Spain
| | | | - Lluis Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck Ratzeburger Allee, Lübeck, Germany
| |
Collapse
|
211
|
Frolov N, Kabir MS, Maksimenko V, Hramov A. Machine learning evaluates changes in functional connectivity under a prolonged cognitive load. CHAOS (WOODBURY, N.Y.) 2021; 31:101106. [PMID: 34717312 DOI: 10.1063/5.0070493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
One must be aware of the black-box problem by applying machine learning models to analyze high-dimensional neuroimaging data. It is due to a lack of understanding of the internal algorithms or the input features upon which most models make decisions despite outstanding performance in classification, pattern recognition, and prediction. Here, we approach the fundamentally high-dimensional problem of classifying cognitive brain states based on functional connectivity by selecting and interpreting the most relevant input features. Specifically, we consider the alterations in the cortical synchrony under a prolonged cognitive load. Our study highlights the advances of this machine learning method in building a robust classification model and percept-related prestimulus connectivity changes over the conventional trial-averaged statistical analysis.
Collapse
Affiliation(s)
- Nikita Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, Russia
| | - Muhammad Salman Kabir
- Department of Robotics and Computer Vision, Innopolis University, 420500 Innopolis, Russia
| | - Vladimir Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, Russia
| | - Alexander Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, Russia
| |
Collapse
|
212
|
Chen S, Tan Z, Xia W, Gomes CA, Zhang X, Zhou W, Liang S, Axmacher N, Wang L. Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. SCIENCE ADVANCES 2021; 7:7/34/eabf4198. [PMID: 34407939 PMCID: PMC8373137 DOI: 10.1126/sciadv.abf4198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Numerous animal studies have demonstrated that fear acquisition and expression rely on the coordinated activity of medial prefrontal cortex (mPFC) and amygdala and that theta oscillations support interregional communication within the fear network. However, it remains unclear whether these results can be generalized to fear learning in humans. We addressed this question using intracranial electroencephalography recordings in 13 patients with epilepsy during a fear conditioning paradigm. We observed increased power and inter-regional synchronization of amygdala and mPFC in theta (4 to 8 hertz) oscillations for conditioned stimulus (CS+) versus CS-. Analysis of information flow revealed that the dorsal mPFC (dmPFC) led amygdala activity in theta oscillations. Last, a computational model showed that trial-by-trial changes in amygdala theta oscillations predicted the model-based associability (i.e., learning rate). This study provides compelling evidence that theta oscillations within and between amygdala, ventral mPFC, and dmPFC constitute a general mechanism of fear learning across species.
Collapse
Affiliation(s)
- Si Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenran Xia
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Carlos Alexandre Gomes
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Xilei Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Wenjing Zhou
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
213
|
Foerster FR, Goslin J. Tool use and function knowledge shape visual object processing. Biol Psychol 2021; 164:108143. [PMID: 34229004 DOI: 10.1016/j.biopsycho.2021.108143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Perceiving the environment automatically informs how we can interact with it through affordance mechanisms. However, it remains unknown how our knowledge about the environment shapes how it is perceived. In this training study, we evaluated whether motor and function knowledge about novel objects affects visual object processing. Forty-three participants associated a usage or function to a novel object in interactive virtual reality while their EEG was recorded. Both usage and function influenced the mu-band (8-12 Hz) rhythms, suggesting that motor and function object information influence motor processing during object recognition. Learning the usage also prevented the reduction of the theta-band (4-8 Hz) rhythms recorded over the posterior cortical areas, suggesting a predominant top-down influence of tool use information on visuo-motor pathways. The modulation being specifically induced by learning an object usage, the results support further the embodied cognition approach rather than the reasoning-based approach of object processing.
Collapse
Affiliation(s)
- Francois R Foerster
- Université de Strasbourg, INSERM U1114, 1 place de l'hôpital, 67100, Strasbourg, France.
| | - Jeremy Goslin
- University of Plymouth, School of Psychology, Drake Circus, Plymouth, Devon, PL4 8AA, United Kingdom.
| |
Collapse
|
214
|
Mkrtychian NA, Kostromina SN, Gnedykh DS, Tsvetova DM, Blagovechtchenski ED, Shtyrov YY. Psychological and Electrophysiological Correlates of Word Learning Success. PSYCHOLOGY IN RUSSIA: STATE OF ART 2021; 14:171-192. [PMID: 36810997 PMCID: PMC9939040 DOI: 10.11621/pir2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/08/2021] [Indexed: 02/24/2023] Open
Abstract
Background A rich vocabulary supports human achievements in socio-economic activities, education, and communication. It is therefore important to clarify the nature of language acquisition as a complex multidimensional process. However, both the psychological and neurophysiological mechanisms underpinning language learning, as well as the links between them, are still poorly understood. Objective This study aims to explore the psychological and neurophysiological correlates of successful word acquisition in a person's native language. Design Thirty adults read sentences with novel nouns, following which the participants' electroencephalograms were recorded during a word-reading task. Event- related potentials in response to novel words and alpha oscillation parameters (amplitude, variability, and long-range temporal correlation dynamics) were analyzed. Learning outcomes were assessed at the lexical and semantic levels. Psychological variables measured using Amthauer's test (verbal abilities), BIS/BAS scales (motivation), and the MSTAT-1 (ambiguity tolerance) and alpha oscillation parameters were factored. Results Better recognition of novel words was related to two factors which had high factor loadings for all measured alpha oscillation parameters, indicating the role of attention networks and respective neural activity for enabling information processing. More successful learners had lower P200 amplitude, which also suggests higher attention-system involvement. Another factor predicted better acquisition of word meanings for less ambiguity-tolerant students, while the factor which pooled logical conceptual thinking ability and persistence in goal-reaching, positively correlated with acquisition of both word forms and meanings. Conclusion The psychological factors predominantly correlated with word-learning success in semantic tasks, while neurophysiological variables were linked to performance in the recognition task.
Collapse
Affiliation(s)
- Nadezhda A. Mkrtychian
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg, Russia,* Corresponding author. E-mail: ;
| | - Svetlana N. Kostromina
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg, Russia
| | - Daria S. Gnedykh
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg, Russia
| | - Diana M. Tsvetova
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg, Russia
| | | | - Yury Y. Shtyrov
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg, Russia, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Department of Clinical Medicine, Aarhus, Denmark
| |
Collapse
|
215
|
Liu Y, Mattar MG, Behrens TEJ, Daw ND, Dolan RJ. Experience replay is associated with efficient nonlocal learning. Science 2021; 372:372/6544/eabf1357. [PMID: 34016753 DOI: 10.1126/science.abf1357] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
To make effective decisions, people need to consider the relationship between actions and outcomes. These are often separated by time and space. The neural mechanisms by which disjoint actions and outcomes are linked remain unknown. One promising hypothesis involves neural replay of nonlocal experience. Using a task that segregates direct from indirect value learning, combined with magnetoencephalography, we examined the role of neural replay in human nonlocal learning. After receipt of a reward, we found significant backward replay of nonlocal experience, with a 160-millisecond state-to-state time lag, which was linked to efficient learning of action values. Backward replay and behavioral evidence of nonlocal learning were more pronounced for experiences of greater benefit for future behavior. These findings support nonlocal replay as a neural mechanism for solving complex credit assignment problems during learning.
Collapse
Affiliation(s)
- Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Marcelo G Mattar
- Department of Cognitive Science, University of California, San Diego, CA, USA.
| | - Timothy E J Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, UK. .,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nathaniel D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA.
| | - Raymond J Dolan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. .,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Department of Psychiatry, Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| |
Collapse
|
216
|
Kragel JE, Schuele S, VanHaerents S, Rosenow JM, Voss JL. Rapid coordination of effective learning by the human hippocampus. SCIENCE ADVANCES 2021; 7:7/25/eabf7144. [PMID: 34144985 PMCID: PMC8213228 DOI: 10.1126/sciadv.abf7144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Although the human hippocampus is necessary for long-term memory, controversial findings suggest that it may also support short-term memory in the service of guiding effective behaviors during learning. We tested the counterintuitive theory that the hippocampus contributes to long-term memory through remarkably short-term processing, as reflected in eye movements during scene encoding. While viewing scenes for the first time, short-term retrieval operative within the episode over only hundreds of milliseconds was indicated by a specific eye-movement pattern, which was effective in that it enhanced spatiotemporal memory formation. This viewing pattern was predicted by hippocampal theta oscillations recorded from depth electrodes and by shifts toward top-down influence of hippocampal theta on activity within visual perception and attention networks. The hippocampus thus supports short-term memory processing that coordinates behavior in the service of effective spatiotemporal learning.
Collapse
Affiliation(s)
- James E Kragel
- Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephan Schuele
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen VanHaerents
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joel L Voss
- Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
217
|
Lan Y, Wang X, Wang Y. Spatio-Temporal Sequential Memory Model With Mini-Column Neural Network. Front Neurosci 2021; 15:650430. [PMID: 34121986 PMCID: PMC8195288 DOI: 10.3389/fnins.2021.650430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Memory is an intricate process involving various faculties of the brain and is a central component in human cognition. However, the exact mechanism that brings about memory in our brain remains elusive and the performance of the existing memory models is not satisfactory. To overcome these problems, this paper puts forward a brain-inspired spatio-temporal sequential memory model based on spiking neural networks (SNNs). Inspired by the structure of the neocortex, the proposed model is structured by many mini-columns composed of biological spiking neurons. Each mini-column represents one memory item, and the firing of different spiking neurons in the mini-column depends on the context of the previous inputs. The Spike-Timing-Dependant Plasticity (STDP) is used to update the connections between excitatory neurons and formulates association between two memory items. In addition, the inhibitory neurons are employed to prevent incorrect prediction, which contributes to improving the retrieval accuracy. Experimental results demonstrate that the proposed model can effectively store a huge number of data and accurately retrieve them when sufficient context is provided. This work not only provides a new memory model but also suggests how memory could be formulated with excitatory/inhibitory neurons, spike-based encoding, and mini-column structure.
Collapse
Affiliation(s)
- Yawen Lan
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.,School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaobin Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchen Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
218
|
A Simulation on Relation between Power Distribution of Low-Frequency Field Potentials and Conducting Direction of Rhythm Generator Flowing through 3D Asymmetrical Brain Tissue. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, a simulation was designed based on the principle of electroencephalogram (EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction (which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the power above average (significant power value, SP value) and its space (SP area) of low-frequency oscillatory FPs were employed to respectively evaluate the strength and the space of the influence. The computation was conducted using the finite element method (FEM) and Hilbert transform. The finding was that either the SP value or the SP area could be reduced or extended, depending on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium, suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a rhythm generator conducting in a different direction.
Collapse
|
219
|
Behavioural and neurophysiological signatures in the retrieval of individual memories of recent and remote real-life routine episodic events. Cortex 2021; 141:128-143. [PMID: 34049255 DOI: 10.1016/j.cortex.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
Autobiographical memory (AM) has been largely investigated as the ability to recollect specific events that belong to an individual's past. However, how we retrieve real-life routine episodes and how the retrieval of these episodes changes with the passage of time remain unclear. Here, we asked participants to use a wearable camera that automatically captured pictures to record instances during a week of their routine life and implemented a deep neural network-based algorithm to identify picture sequences that represented episodic events. We then asked each participant to return to the lab to retrieve AMs for single episodes cued by the selected pictures 1 week, 2 weeks and 6-14 months after encoding while scalp electroencephalographic (EEG) activity was recorded. We found that participants were more accurate in recognizing pictured scenes depicting their own past than pictured scenes encoded in the lab, and that memory recollection of personally experienced events rapidly decreased with the passing of time. We also found that the retrieval of real-life picture cues elicited a strong and positive 'ERP old/new effect' over frontal regions and that the magnitude of this ERP effect was similar throughout memory tests over time. However, we observed that recognition memory induced a frontal theta power decrease and that this effect was mostly seen when memories were tested after 1 and 2 weeks but not after 6-14 months from encoding. Altogether, we discuss the implications for neuroscientific accounts of episodic retrieval and the potential benefits of developing individual-based AM exploration strategies at the clinical level.
Collapse
|
220
|
Hellerstedt R, Moccia A, Brunskill CM, Bowman H, Bergström ZM. Aging reduces EEG markers of recognition despite intact performance: Implications for forensic memory detection. Cortex 2021; 140:80-97. [PMID: 33951486 DOI: 10.1016/j.cortex.2021.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
ERP-based forensic memory detection is based on the logic that guilty suspects will hold incriminating knowledge about crimes they have committed, and therefore should show parietal ERP positivities related to recognition when presented with reminders of their crimes. We predicted that such forensic memory detection might however be inaccurate in older adults, because of changes to recognition-related brain activity that occurs with aging. We measured both ERPs and EEG oscillations associated with episodic old/new recognition and forensic memory detection in 30 younger (age < 30) and 30 older (age > 65) adults. EEG oscillations were included as a complementary measure which is less sensitive to temporal variability and component overlap than ERPs. In line with predictions, recognition-related parietal ERP positivities were significantly reduced in the older compared to younger group in both tasks, despite highly similar behavioural performance. We also observed aging-related reductions in oscillatory markers of recognition in the forensic memory detection test, while the oscillatory effects associated with episodic recognition were similar across age groups. This pattern of results suggests that while both forensic memory detection and episodic recognition are accompanied by aging-induced reductions in parietal ERP positivities, these reductions may be caused by non-overlapping mechanisms across the two tasks. Our findings suggest that EEG-based forensic memory detection tests are less valid in older than younger populations, limiting their practical applications.
Collapse
Affiliation(s)
- Robin Hellerstedt
- School of Psychology, University of Kent, UK; Department of Psychology, University of Cambridge, UK.
| | - Arianna Moccia
- School of Psychology, University of Kent, UK; School of Psychology, University of Sussex, UK
| | | | - Howard Bowman
- School of Computing, University of Kent, UK; School of Psychology, University of Birmingham, UK
| | | |
Collapse
|
221
|
Meng A, Kaiser M, de Graaf TA, Dücker F, Sack AT, De Weerd P, van de Ven V. Transcranial alternating current stimulation at theta frequency to left parietal cortex impairs associative, but not perceptual, memory encoding. Neurobiol Learn Mem 2021; 182:107444. [PMID: 33895350 DOI: 10.1016/j.nlm.2021.107444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Neural oscillations in the theta range (4-8 Hz) are thought to underlie associative memory function in the hippocampal-cortical network. While there is ample evidence supporting a role of theta oscillations in animal and human memory, most evidence is correlational. Non-invasive brain stimulation (NIBS) can be employed to modulate cortical oscillatory activity to influence brain activity, and possibly modulate deeper brain regions, such as hippocampus, through strong and reliable cortico-hippocampal functional connections. We applied focal transcranial alternating current stimulation (tACS) at 6 Hz over left parietal cortex to modulate brain activity in the putative cortico-hippocampal network to influence associative memory encoding. After encoding and brain stimulation, participants completed an associative memory and a perceptual recognition task. Results showed that theta tACS significantly decreased associative memory performance but did not affect perceptual memory performance. These results show that parietal theta tACS modulates associative processing separately from perceptual processing, and further substantiate the hypothesis that theta oscillations are implicated in the cortico-hippocampal network and associative encoding.
Collapse
Affiliation(s)
- Alyssa Meng
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Felix Dücker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
222
|
Thye M, Geller J, Szaflarski JP, Mirman D. Intracranial EEG evidence of functional specialization for taxonomic and thematic relations. Cortex 2021; 140:40-50. [PMID: 33933929 DOI: 10.1016/j.cortex.2021.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
The dual-hub account posits that the neural organization of semantic knowledge is segregated by the type of semantic relation with anterior temporal lobe (ATL) specializing for taxonomic relations and inferior parietal lobule (IPL) for thematic relations. This study critically examined this account by recording intracranial EEG from an array of depth electrodes within ATL, IPL, and two regions within the semantic control network, inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG), while 17 participants with refractory epilepsy completed a semantic relatedness judgment task. We observed a significant difference between relation types in ATL and IPL approximately 600-800 ms after trial presentation, and no significant differences in IFG or pMTG. Within this time window, alpha and theta suppression indexing cognitive effort and memory retrieval was observed in ATL for taxonomic trials and in IPL for thematic trials. These results suggest taxonomic specialization in ATL and thematic specialization in IPL, consistent with the dual-hub account of semantic cognition.
Collapse
Affiliation(s)
- Melissa Thye
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
| | - Jason Geller
- Center for Cognitive Science, Rutgers University, Piscataway, NJ, USA
| | - Jerzy P Szaflarski
- Department of Neurology and the University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Mirman
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
223
|
Berto S, Fontenot MR, Seger S, Ayhan F, Caglayan E, Kulkarni A, Douglas C, Tamminga CA, Lega BC, Konopka G. Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nat Neurosci 2021; 24:554-564. [PMID: 33686299 PMCID: PMC8016736 DOI: 10.1038/s41593-021-00803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
In humans, brain oscillations support critical features of memory formation. However, understanding the molecular mechanisms underlying this activity remains a major challenge. Here, we measured memory-sensitive oscillations using intracranial electroencephalography recordings from the temporal cortex of patients performing an episodic memory task. When these patients subsequently underwent resection, we employed transcriptomics on the temporal cortex to link gene expression with brain oscillations and identified genes correlated with oscillatory signatures of memory formation across six frequency bands. A co-expression analysis isolated oscillatory signature-specific modules associated with neuropsychiatric disorders and ion channel activity, with highly correlated genes exhibiting strong connectivity within these modules. Using single-nucleus transcriptomics, we further revealed that these modules are enriched for specific classes of both excitatory and inhibitory neurons, and immunohistochemistry confirmed expression of highly correlated genes. This unprecedented dataset of patient-specific brain oscillations coupled to genomics unlocks new insights into the genetic mechanisms that support memory encoding.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miles R Fontenot
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Seger
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Connor Douglas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bradley C Lega
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
224
|
Meisenhelter S, Quon RJ, Steimel SA, Testorf ME, Camp EJ, Moein P, Culler GW, Gross RE, Lega BC, Sperling MR, Kahana MJ, Jobst BC. Interictal Epileptiform Discharges are Task Dependent and are Associated with Lasting Electrocorticographic Changes. Cereb Cortex Commun 2021; 2:tgab019. [PMID: 34296164 PMCID: PMC8152941 DOI: 10.1093/texcom/tgab019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The factors that control the occurrence of interictal epileptiform discharges (IEDs) are not well understood. We suspected that this phenomenon reflects an attention-dependent suppression of interictal epileptiform activity. We hypothesized that IEDs would occur less frequently when a subject viewed a task-relevant stimulus compared with viewing a blank screen. Furthermore, IEDs have been shown to impair memory when they occur in certain regions during the encoding or recall phases of a memory task. Although these discharges have a short duration, their impact on memory suggests that they have longer lasting electrophysiological effects. We found that IEDs were associated with an increase in low-frequency power and a change in the balance between low- and high-frequency oscillations for several seconds. We found that the occurrence of IEDs is modified by whether a subject is attending to a word displayed on screen or is observing a blank screen. In addition, we found that discharges in brain regions in every lobe impair memory. These findings elucidate the relationship between IEDs and memory impairment and reveal the task dependence of the occurrence of IEDs.
Collapse
Affiliation(s)
- Stephen Meisenhelter
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| | - Robert J Quon
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| | - Sarah A Steimel
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| | - Markus E Testorf
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States
| | - Edward J Camp
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Payam Moein
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - George W Culler
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, United States
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas-Southwestern, Dallas, TX 75390, United States
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19144, United States
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| |
Collapse
|
225
|
Xie Y, Li Y, Duan H, Xu X, Zhang W, Fang P. Theta Oscillations and Source Connectivity During Complex Audiovisual Object Encoding in Working Memory. Front Hum Neurosci 2021; 15:614950. [PMID: 33762914 PMCID: PMC7982740 DOI: 10.3389/fnhum.2021.614950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Working memory is a limited capacity memory system that involves the short-term storage and processing of information. Neuroscientific studies of working memory have mostly focused on the essential roles of neural oscillations during item encoding from single sensory modalities (e.g., visual and auditory). However, the characteristics of neural oscillations during multisensory encoding in working memory are rarely studied. Our study investigated the oscillation characteristics of neural signals in scalp electrodes and mapped functional brain connectivity while participants encoded complex audiovisual objects in a working memory task. Experimental results showed that theta oscillations (4–8 Hz) were prominent and topographically distributed across multiple cortical regions, including prefrontal (e.g., superior frontal gyrus), parietal (e.g., precuneus), temporal (e.g., inferior temporal gyrus), and occipital (e.g., cuneus) cortices. Furthermore, neural connectivity at the theta oscillation frequency was significant in these cortical regions during audiovisual object encoding compared with single modality object encoding. These results suggest that local oscillations and interregional connectivity via theta activity play an important role during audiovisual object encoding and may contribute to the formation of working memory traces from multisensory items.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xin Yang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanyan Li
- School of Education, Xin Yang College, Xinyang, China
| | - Haidan Duan
- School of Education, Xin Yang College, Xinyang, China
| | - Xiliang Xu
- School of Education, Xin Yang College, Xinyang, China
| | - Wenmo Zhang
- Department of Fundamental, Army Logistical University, Chongqing, China.,Department of Social Medicine and Health and Management, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Peng Fang
- Department of Military Medical Psychology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
226
|
Sometti D, Ballan C, Wang H, Braun C, Enck P. Effects of the antibiotic rifaximin on cortical functional connectivity are mediated through insular cortex. Sci Rep 2021; 11:4479. [PMID: 33627763 PMCID: PMC7904800 DOI: 10.1038/s41598-021-83994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
It is well-known that antibiotics affect commensal gut bacteria; however, only recently evidence accumulated that gut microbiota (GM) can influence the central nervous system functions. Preclinical animal studies have repeatedly highlighted the effects of antibiotics on brain activity; however, translational studies in humans are still missing. Here, we present a randomized, double-blind, placebo-controlled study investigating the effects of 7 days intake of Rifaximin (non-absorbable antibiotic) on functional brain connectivity (fc) using magnetoencephalography. Sixteen healthy volunteers were tested before and after the treatment, during resting state (rs), and during a social stressor paradigm (Cyberball game—CBG), designed to elicit feelings of exclusion. Results confirm the hypothesis of an involvement of the insular cortex as a common node of different functional networks, thus suggesting its potential role as a central mediator of cortical fc alterations, following modifications of GM. Also, the Rifaximin group displayed lower connectivity in slow and fast beta bands (15 and 25 Hz) during rest, and higher connectivity in theta (7 Hz) during the inclusion condition of the CBG, compared with controls. Altogether these results indicate a modulation of Rifaximin on frequency-specific functional connectivity that could involve cognitive flexibility and memory processing.
Collapse
Affiliation(s)
- Davide Sometti
- MEG-Center, University of Tübingen, Tübingen, Germany. .,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| | - Chiara Ballan
- MEG-Center, University of Tübingen, Tübingen, Germany.,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Huiying Wang
- AAK, Department of Special Nutrition, AAK China Ltd, Shanghai, China
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,CIMeC, Center for Mind/Brain Research, University of Trento, Trento, Italy
| | - Paul Enck
- Department of Internal Medicine VI, University Hospital, Tübingen, Germany
| |
Collapse
|
227
|
Li J, Huang Q, Han Q, Mi Y, Luo H. Temporally coherent perturbation of neural dynamics during retention alters human multi-item working memory. Prog Neurobiol 2021; 201:102023. [PMID: 33617918 DOI: 10.1016/j.pneurobio.2021.102023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
Temporarily storing a list of items in working memory (WM), a fundamental ability in cognition, has been posited to rely on the temporal dynamics of multi-item neural representations during retention. However, the causal evidence, particularly in human subjects, is still lacking, let alone WM manipulation. Here, we develop a novel "dynamic perturbation" approach to manipulate the relative memory strength of WM items held in human brain, by presenting temporally correlated luminance sequences during retention to interfere with the multi-item neural dynamics. Six experiments on more than 150 subjects confirm the effectiveness of this WM manipulation approach. A computational model combining continuous attractor neural network (CANN) and short-term synaptic plasticity (STP) principles further reproduces all the empirical findings. The model reveals that the "dynamic perturbation" modifies the synaptic efficacies of WM items through STP principles, eventually leading to changes in their relative memory strengths. Our results support the causal role of temporal dynamics of neural network in mediating multi-item WM, and offer a promising, purely bottom-up approach to manipulate WM.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Qiaoli Huang
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Qiming Han
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanyuan Mi
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; AI Research Center, Peng Cheng Laboratory, Shenzhen 518005, China.
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| |
Collapse
|
228
|
Cruzat J, Torralba M, Ruzzoli M, Fernández A, Deco G, Soto-Faraco S. The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia 2021; 154:107775. [PMID: 33592222 DOI: 10.1016/j.neuropsychologia.2021.107775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022]
Abstract
Several studies have shown that attention and perception can depend upon the phase of ongoing neural oscillations at stimulus onset. Here, we extend this idea to the memory domain. We tested the hypothesis that ongoing fluctuations in neural activity impact memory encoding in two experiments using a picture paired-associates task in order to gauge episodic memory performance. Experiment 1 was behavioural only and capitalized on the principle of phase resetting. We tested if subsequent memory performance fluctuates rhythmically, time-locked to a resetting cue presented before the to-be-remembered pairs at different time intervals. We found an indication that behavioural performance was periodically and selectively modulated at Theta frequency (~4 Hz). In Experiment 2, we focused on pre-stimulus ongoing activity using scalp EEG while participants performed a paired-associates task. The pre-registered analysis, using large electrode clusters and generic Theta and Alpha spectral ranges, returned null results of the pre-stimulus phase-behaviour correlation. However, as expected from prior literature, we found that variations in stimulus-related Theta-power predicted subsequent memory performance. Therefore, we used this post-stimulus effect in Theta power to guide a post-hoc pre-stimulus phase analysis in terms of scalp and frequency of interest. This analysis returned a correlation between the pre-stimulus Theta phase and subsequent memory. Altogether, these results suggest that pre-stimulus Theta activity at encoding may impact later memory performance.
Collapse
Affiliation(s)
- Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain.
| | - Mireia Torralba
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Manuela Ruzzoli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Alba Fernández
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
229
|
Theta Synchrony Is Increased near Neural Populations That Are Active When Initiating Instructed Movement. eNeuro 2021; 8:ENEURO.0252-20.2020. [PMID: 33355232 PMCID: PMC7901148 DOI: 10.1523/eneuro.0252-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
Theta oscillations (3–8 Hz) in the human brain have been linked to perception, cognitive control, and spatial memory, but their relation to the motor system is less clear. We tested the hypothesis that theta oscillations coordinate distributed behaviorally relevant neural representations during movement using intracranial electroencephalography (iEEG) recordings from nine patients (n = 490 electrodes) as they performed a simple instructed movement task. Using high frequency activity (HFA; 70–200 Hz) as a marker of local spiking activity, we identified electrodes that were positioned near neural populations that showed increased activity during instruction and movement. We found that theta synchrony was widespread throughout the brain but was increased near regions that showed movement-related increases in neural activity. These results support the view that theta oscillations represent a general property of brain activity that may also play a specific role in coordinating widespread neural activity when initiating voluntary movement.
Collapse
|
230
|
Adamovich-Zeitlin R, Wanda PA, Solomon E, Phan T, Lega B, Jobst BC, Gross RE, Ding K, Diaz-Arrastia R, Kahana MJ. Biomarkers of memory variability in traumatic brain injury. Brain Commun 2021; 3:fcaa202. [PMID: 33543140 PMCID: PMC7850041 DOI: 10.1093/braincomms/fcaa202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury is a leading cause of cognitive disability and is often associated with significant impairment in episodic memory. In traumatic brain injury survivors, as in healthy controls, there is marked variability between individuals in memory ability. Using recordings from indwelling electrodes, we characterized and compared the oscillatory biomarkers of mnemonic variability in two cohorts of epilepsy patients: a group with a history of moderate-to-severe traumatic brain injury (n = 37) and a group of controls without traumatic brain injury (n = 111) closely matched for demographics and electrode coverage. Analysis of these recordings demonstrated that increased high-frequency power and decreased theta power across a broad set of brain regions mark periods of successful memory formation in both groups. As features in a logistic-regression classifier, spectral power biomarkers effectively predicted recall probability, with little difference between traumatic brain injury patients and controls. The two groups also displayed similar patterns of theta-frequency connectivity during successful encoding periods. These biomarkers of successful memory, highly conserved between traumatic brain injury patients and controls, could serve as the basis for novel therapies that target disordered memory across diverse forms of neurological disease.
Collapse
Affiliation(s)
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tung Phan
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Hanover, NH 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
231
|
Kerrén C, Bramão I, Hellerstedt R, Johansson M. Strategic retrieval prevents memory interference: The temporal dynamics of retrieval orientation. Neuropsychologia 2021; 154:107776. [PMID: 33549585 DOI: 10.1016/j.neuropsychologia.2021.107776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/20/2020] [Accepted: 02/03/2021] [Indexed: 01/16/2023]
Abstract
Resolving interference between overlapping memories is crucial to remember the past. This study tests the novel prediction that orienting search focus benefits goal-relevant retrieval by reducing competition from unwanted memories. In a modified retrieval-practice paradigm, participants encoded word-pairs in one of two encoding tasks. Critically, to evaluate whether this retrieval orientation (RO) reduces memory interference, target and competitor memories were always related to different encoding tasks. At retrieval, instructions were provided for half of the blocks with the intention to bias remembering towards items encoded with one of the ROs. Behavioural data show that adopting an RO improved target accessibility, strengthened the testing effect, and reduced retrieval-induced forgetting (RIF) of competitors. Specifically, RIF - typically attributed to inhibitory control of memory interference - was prominent when no retrieval orientation (NRO) instruction was provided. Furthermore, a neural correlate of RO was calculated by training a linear discriminant analysis (LDA) to discriminate the electroencephalographic (EEG) spatial brain patterns correspondent to the two ROs over the time course of selective retrieval. RO was characterised by increases in the theta and decreases in the beta frequency band, evident both before and after category-cue onset. While the pre-cue RO reinstatement effect predicted both immediate retrieval-practice success and later target accessibility, the post-cue effect predicted disengagement of inhibitory control, such that participants showing a stronger RO reinstatement effect showed lower levels of RIF. These data suggest that strategically orienting search focus during retrieval both increases target memory accessibility and reduces memory interference, which consequently protects related memories from inhibition and later forgetting. Furthermore, they also highlight the roles of theta and beta oscillations in establishing and maintaining a task-relevant bias towards target memory representations during competitive memory retrieval.
Collapse
Affiliation(s)
| | - Inês Bramão
- Department of Psychology, Lund University, Sweden
| | | | | |
Collapse
|
232
|
Vulić K, Bjekić J, Paunović D, Jovanović M, Milanović S, Filipović SR. Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory. Sci Rep 2021; 11:3013. [PMID: 33542344 PMCID: PMC7862221 DOI: 10.1038/s41598-021-82577-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Associative memory (AM) reflects the ability to remember and retrieve multiple pieces of information bound together thus enabling complex episodic experiences. Despite growing interest in the use of transcranial direct current stimulation (tDCS) for the modulation of AM, there are inconsistent evidence regarding its benefits. An alternative to standard constant tDCS could be the application of frequency-modulated tDCS protocols, that mimic natural function-relevant brain rhythms. Here, we show the effects of anodal tDCS oscillating in theta rhythm (5 Hz; 1.5 ± 0.1 mA) versus constant anodal tDCS and sham over left posterior parietal cortex on cued recall of face-word associations. In a crossover design, each participant completed AM assessment immediately following 20-min theta-oscillatory, constant, and sham tDCS, as well as 1 and 5 days after. Theta oscillatory tDCS increased initial AM performance in comparison to sham, and so did constant tDCS. On the group level, no differences between oscillatory and constant tDCS were observed, but individual-level analysis revealed that some participants responded to theta-oscillatory but not to constant tDCS, and vice versa, which could be attributed to their different physiological modes of action. This study shows the potential of oscillatory tDCS protocols for memory enhancement to produce strong and reliable memory-modulating effects which deserve to be investigated further.
Collapse
Affiliation(s)
- Katarina Vulić
- grid.7149.b0000 0001 2166 9385Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jovana Bjekić
- grid.7149.b0000 0001 2166 9385Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Dunja Paunović
- grid.7149.b0000 0001 2166 9385Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Miloš Jovanović
- grid.445141.1The School of Computing, Union University, Belgrade, Serbia
| | - Slađan Milanović
- grid.7149.b0000 0001 2166 9385Department for Biomedical Engineering and Biophysics, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Saša R. Filipović
- grid.7149.b0000 0001 2166 9385Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
233
|
Thomschewski A, Trinka E, Jacobs J. Temporo-Frontal Coherences and High-Frequency iEEG Responses during Spatial Navigation in Patients with Drug-Resistant Epilepsy. Brain Sci 2021; 11:brainsci11020162. [PMID: 33530531 PMCID: PMC7911024 DOI: 10.3390/brainsci11020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022] Open
Abstract
The prefrontal cortex and hippocampus function in tight coordination during multiple cognitive processes. During spatial navigation, prefrontal neurons are linked to hippocampal theta oscillations, presumably in order to enhance communication. Hippocampal ripples have been suggested to reflect spatial memory processes. Whether prefrontal-hippocampal-interaction also takes place within the ripple band is unknown. This intracranial EEG study aimed to investigate whether ripple band coherences can also be used to show this communication. Twelve patients with epilepsy and intracranial EEG evaluation completed a virtual spatial navigation task. We calculated ordinary coherence between prefrontal and temporal electrodes during retrieval, re-encoding, and pre-task rest. Coherences were compared between the conditions via permutation testing. Additionally, ripples events were automatically detected and changes in occurrence rates were investigated excluding ripples on epileptic spikes. Ripple-band coherences yielded no general effect of the task on coherences across all patients. Furthermore, we did not find significant effects of task conditions on ripple rates. Subsequent analyses pointed to rather short periods of synchrony as opposed to general task-related changes in ripple-band coherence. Specifically designed tasks and adopted measures might be necessary in order to map these interactions in future studies.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Affiliated Centre of the European Reference Network EpiCARE, Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Medical Centre, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020 Salzburg, Austria;
- Department of Psychology, Paris-Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Correspondence:
| | - Eugen Trinka
- Affiliated Centre of the European Reference Network EpiCARE, Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Medical Centre, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020 Salzburg, Austria;
| | - Julia Jacobs
- Member of the European Reference Network EpiCARE, Epilepsy Center, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany;
- Department of Neuropediatrics and Muscle Disorders, University Hospital Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Room 293, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
234
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
235
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
236
|
Cognitive effects of theta frequency bilateral subthalamic nucleus stimulation in Parkinson's disease: A pilot study. Brain Stimul 2021; 14:230-240. [PMID: 33418095 DOI: 10.1016/j.brs.2020.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There is significant evidence for cognitive decline following deep brain stimulation (DBS). Current stimulation paradigms utilize gamma frequency stimulation for optimal motor benefits; however, little has been done to optimize stimulation parameters for cognition. Recent evidence implicates subthalamic nucleus (STN) theta oscillations in executive function, and theta oscillations are well-known to relate to episodic memory, suggesting that theta frequency stimulation could potentially improve cognition in Parkinson's disease (PD). OBJECTIVE To evaluate the acute effects of theta frequency bilateral STN stimulation on executive function in PD versus gamma frequency and off, as well as investigate the differential effects on episodic versus nonepisodic verbal fluency. METHODS Twelve patients (all males, mean age 60.8) with bilateral STN DBS for PD underwent a double-blinded, randomized cognitive testing during stimulation at (1) 130-135 Hz (gamma), (2) 10 Hz (theta) and (3) off. Executive functions and processing speed were evaluated using verbal fluency tasks (letter, episodic category, nonepisodic category, and category switching), color-word interference task, and random number generation task. Performance at each stimulation frequency was compared within subjects. RESULTS Theta frequency significantly improved episodic category fluency compared to gamma, but not compared to off. There were no significant differences between stimulation frequencies in other tests. CONCLUSION In this pilot trial, our results corroborate the role of theta oscillations in episodic retrieval, although it is unclear whether this reflects direct modulation of the medial temporal lobe and whether similar effects can be found with more canonical memory paradigms. Further work is necessary to corroborate our findings and investigate the possibility of interleaving theta and gamma frequency stimulation for concomitant motor and cognitive effects.
Collapse
|
237
|
Bauer M, Buckley MG, Bast T. Individual differences in theta-band oscillations in a spatial memory network revealed by electroencephalography predict rapid place learning. Brain Neurosci Adv 2021; 5:23982128211002725. [PMID: 35174296 PMCID: PMC8842440 DOI: 10.1177/23982128211002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Spatial memory has been closely related to the medial temporal lobe and theta oscillations are thought to play a key role. However, it remains difficult to investigate medial temporal lobe activation related to spatial memory with non-invasive electrophysiological methods in humans. Here, we combined the virtual delayed-matching-to-place task, reverse-translated from the watermaze delayed-matching-to-place task in rats, with high-density electroencephalography recordings. Healthy young volunteers performed this computerised task in a virtual circular arena, which contained a hidden target whose location moved to a new place every four trials, allowing the assessment of rapid memory formation. Using behavioural measures as predictor variables for source reconstructed frequency-specific electroencephalography power, we found that inter-individual differences in ‘search preference’ during ‘probe trials’, a measure of one-trial place learning known from rodent studies to be particularly hippocampus-dependent, correlated predominantly with distinct theta-band oscillations (approximately 7 Hz), particularly in the right temporal lobe, the right striatum and inferior occipital cortex or cerebellum. This pattern was found during both encoding and retrieval/expression, but not in control analyses and could not be explained by motor confounds. Alpha-activity in sensorimotor and parietal cortex contralateral to the hand used for navigation also correlated (inversely) with search preference. This latter finding likely reflects movement-related factors associated with task performance, as well as a frequency difference in (ongoing) alpha-rhythm for high-performers versus low-performers that may contribute to these results indirectly. Relating inter-individual differences in ongoing brain activity to behaviour in a continuous rapid place-learning task that is suitable for a variety of populations, we could demonstrate that memory-related theta-band activity in temporal lobe can be measured with electroencephalography recordings. This approach holds great potential for further studies investigating the interactions within this network during encoding and retrieval, as well as neuromodulatory impacts and age-related changes.
Collapse
Affiliation(s)
- Markus Bauer
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Matthew G Buckley
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Tobias Bast
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| |
Collapse
|
238
|
Monk AM, Dalton MA, Barnes GR, Maguire EA. The Role of Hippocampal-Ventromedial Prefrontal Cortex Neural Dynamics in Building Mental Representations. J Cogn Neurosci 2021; 33:89-103. [PMID: 32985945 PMCID: PMC7116437 DOI: 10.1162/jocn_a_01634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hippocampus and ventromedial prefrontal cortex (vmPFC) play key roles in numerous cognitive domains including mind-wandering, episodic memory, and imagining the future. Perspectives differ on precisely how they support these diverse functions, but there is general agreement that it involves constructing representations composed of numerous elements. Visual scenes have been deployed extensively in cognitive neuroscience because they are paradigmatic multielement stimuli. However, it remains unclear whether scenes, rather than other types of multifeature stimuli, preferentially engage hippocampus and vmPFC. Here, we leveraged the high temporal resolution of magnetoencephalography to test participants as they gradually built scene imagery from three successive auditorily presented object descriptions and an imagined 3-D space. This was contrasted with constructing mental images of nonscene arrays that were composed of three objects and an imagined 2-D space. The scene and array stimuli were, therefore, highly matched, and this paradigm permitted a closer examination of step-by-step mental construction than has been undertaken previously. We observed modulation of theta power in our two regions of interest-anterior hippocampus during the initial stage and vmPFC during the first two stages, of scene relative to array construction. Moreover, the scene-specific anterior hippocampal activity during the first construction stage was driven by the vmPFC, with mutual entrainment between the two brain regions thereafter. These findings suggest that hippocampal and vmPFC neural activity is especially tuned to scene representations during the earliest stage of their formation, with implications for theories of how these brain areas enable cognitive functions such as episodic memory.
Collapse
|
239
|
Hamilton HK, Roach BJ, Cavus I, Teyler TJ, Clapp WC, Ford JM, Tarakci E, Krystal JH, Mathalon DH. Impaired Potentiation of Theta Oscillations During a Visual Cortical Plasticity Paradigm in Individuals With Schizophrenia. Front Psychiatry 2020; 11:590567. [PMID: 33391054 PMCID: PMC7772351 DOI: 10.3389/fpsyt.2020.590567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term potentiation (LTP) is a form of experience-dependent synaptic plasticity mediated by glutamatergic transmission at N-methyl-D-aspartate receptors (NMDARs). Impaired neuroplasticity has been implicated in the pathophysiology of schizophrenia, possibly due to underlying NMDAR hypofunction. Analogous to the high frequency electrical stimulation used to induce LTP in vitro and in vivo in animal models, repeated high frequency presentation of a visual stimulus in humans in vivo has been shown to induce enduring LTP-like neuroplastic changes in electroencephalography (EEG)-based visual evoked potentials (VEPs) elicited by the stimulus. Using this LTP-like visual plasticity paradigm, we previously showed that visual high-frequency stimulation (VHFS) induced sustained changes in VEP amplitudes in healthy controls, but not in patients with schizophrenia. Here, we extend this prior work by re-analyzing the EEG data underlying the VEPs, focusing on neuroplastic changes in stimulus-evoked EEG oscillatory activity following VHFS. EEG data were recorded from 19 patients with schizophrenia and 21 healthy controls during the visual plasticity paradigm. Event-related EEG oscillations (total power, intertrial phase coherence; ITC) elicited by a standard black and white checkerboard stimulus (~0.83 Hz, several 2-min blocks) were assessed before and after exposure to VHFS with the same stimulus (~8.9 Hz, 2 min). A cluster-based permutation testing approach was applied to time-frequency data to examine LTP-like plasticity effects following VHFS. VHFS enhanced theta band total power and ITC in healthy controls but not in patients with schizophrenia. The magnitude and phase synchrony of theta oscillations in response to a visual stimulus were enhanced for at least 22 min following VHFS, a frequency domain manifestation of LTP-like visual cortical plasticity. These theta oscillation changes are deficient in patients with schizophrenia, consistent with hypothesized NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Timothy J. Teyler
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | | | - Judith M. Ford
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Erendiz Tarakci
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
240
|
Ergo K, De Loof E, Debra G, Pastötter B, Verguts T. Failure to modulate reward prediction errors in declarative learning with theta (6 Hz) frequency transcranial alternating current stimulation. PLoS One 2020; 15:e0237829. [PMID: 33270685 PMCID: PMC7714179 DOI: 10.1371/journal.pone.0237829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence suggests that reward prediction errors (RPEs) play an important role in declarative learning, but its neurophysiological mechanism remains unclear. Here, we tested the hypothesis that RPEs modulate declarative learning via theta-frequency oscillations, which have been related to memory encoding in prior work. For that purpose, we examined the interaction between RPE and transcranial Alternating Current Stimulation (tACS) in declarative learning. Using a between-subject (real versus sham stimulation group), single-blind stimulation design, 76 participants learned 60 Dutch-Swahili word pairs, while theta-frequency (6 Hz) tACS was administered over the medial frontal cortex (MFC). Previous studies have implicated MFC in memory encoding. We replicated our previous finding of signed RPEs (SRPEs) boosting declarative learning; with larger and more positive RPEs enhancing memory performance. However, tACS failed to modulate the SRPE effect in declarative learning and did not affect memory performance. Bayesian statistics supported evidence for an absence of effect. Our study confirms a role of RPE in declarative learning, but also calls for standardized procedures in transcranial electrical stimulation.
Collapse
Affiliation(s)
- Kate Ergo
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Esther De Loof
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Gillian Debra
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | | | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
241
|
The Modulation of Cognitive Performance with Transcranial Alternating Current Stimulation: A Systematic Review of Frequency-Specific Effects. Brain Sci 2020; 10:brainsci10120932. [PMID: 33276533 PMCID: PMC7761592 DOI: 10.3390/brainsci10120932] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows the manipulation of intrinsic brain oscillations. Numerous studies have applied tACS in the laboratory to enhance cognitive performance. With this systematic review, we aim to provide an overview of frequency-specific tACS effects on a range of cognitive functions in healthy adults. This may help to transfer stimulation protocols to real-world applications. We conducted a systematic literature search on PubMed and Cochrane databases and considered tACS studies in healthy adults (age > 18 years) that focused on cognitive performance. The search yielded n = 109 studies, of which n = 57 met the inclusion criteria. The results indicate that theta-tACS was beneficial for several cognitive functions, including working memory, executive functions, and declarative memory. Gamma-tACS enhanced performance in both auditory and visual perception but it did not change performance in tasks of executive functions. For attention, the results were less consistent but point to an improvement in performance with alpha- or gamma-tACS. We discuss these findings and point to important considerations that would precede a transfer to real-world applications.
Collapse
|
242
|
Kaiser J, Belenya R, Chung WY, Gentsch A, Schütz-Bosbach S. Learning something new versus changing your ways: Distinct effects on midfrontal oscillations and cardiac activity for learning and flexible adjustments. Neuroimage 2020; 226:117550. [PMID: 33186724 DOI: 10.1016/j.neuroimage.2020.117550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
We need to be able to learn new behaviour, but also be capable of changing existing routines, when they start conflicting with our long-term goals. Little is known about to what extent blank-slate learning of new and adjustment of existing behavioural routines rely on different neural and bodily mechanisms. In the current study, participants first acquired novel stimulus-response contingencies, which were subsequently randomly changed to create the need for flexible adjustments. We measured midfrontal theta oscillations via EEG as an indicator of neural conflict processing, as well as heart rate as a proxy of autonomic activity. Participants' trial-wise learning progress was estimated via computation modelling. Theta power and heart rate significantly differed between correct and incorrect trials. Differences between correct and incorrect trials in both neural and cardiac feedback processing were more pronounced for adjustments compared to blank-slate learning. This indicates that both midfrontal and cardiac processing are sensitive to changes in stimulus-response contingencies. Increases in individual learning rates predicted lower impact of performance feedback on midfrontal theta power, but higher impact on heart rate. This suggests that cardiac and midfrontal reactivity are partially reflective of different mechanisms related to feedback learning. Our results shed new light on the role of neural and autonomic mechanisms for learning and behavioural adjustments.
Collapse
Affiliation(s)
- Jakob Kaiser
- Ludwig-Maximilian-University, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany.
| | - Roman Belenya
- Ludwig-Maximilian-University, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | - Wai-Ying Chung
- Ludwig-Maximilian-University, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | - Antje Gentsch
- Ludwig-Maximilian-University, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | - Simone Schütz-Bosbach
- Ludwig-Maximilian-University, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| |
Collapse
|
243
|
Contribution of left supramarginal and angular gyri to episodic memory encoding: An intracranial EEG study. Neuroimage 2020; 225:117514. [PMID: 33137477 DOI: 10.1016/j.neuroimage.2020.117514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/28/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
The role of the left ventral lateral parietal cortex (VPC) in episodic memory is hypothesized to include bottom-up attentional orienting to recalled items, according to the dual-attention model (Cabeza et al., 2008). However, its role in memory encoding could be further clarified, with studies showing both positive and negative subsequent memory effects (SMEs). Furthermore, few studies have compared the relative contributions of sub-regions in this functionally heterogeneous area, specifically the anterior VPC (supramarginal gyrus/BA40) and the posterior VPC (angular gyrus/BA39), on a within-subject basis. To elucidate the role of the VPC in episodic encoding, we compared SMEs in the intracranial EEG across multiple frequency bands in the supramarginal gyrus (SmG) and angular gyrus (AnG), as twenty-four epilepsy patients with indwelling electrodes performed a free recall task. We found a significant SME of decreased theta power and increased high gamma power in the VPC overall, and specifically in the SmG. Furthermore, SmG exhibited significantly greater spectral tilt SME from 0.5 to 1.6 s post-stimulus, in which power spectra slope differences between recalled and unrecalled words were greater than in the AnG (p = 0.04). These results affirm the contribution of VPC to episodic memory encoding, and suggest an anterior-posterior dissociation within VPC with respect to its electrophysiological underpinnings.
Collapse
|
244
|
Sub-chronic vortioxetine (but not escitalopram) normalizes brain rhythm alterations and memory deficits induced by serotonin depletion in rats. Neuropharmacology 2020; 178:108238. [DOI: 10.1016/j.neuropharm.2020.108238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022]
|
245
|
Karlsson AE, Wehrspaun CC, Sander MC. Item recognition and lure discrimination in younger and older adults are supported by alpha/beta desynchronization. Neuropsychologia 2020; 148:107658. [DOI: 10.1016/j.neuropsychologia.2020.107658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
|
246
|
Eschmann K, Bader R, Mecklinger A. Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance. Neuroimage 2020; 222:117219. [DOI: 10.1016/j.neuroimage.2020.117219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
|
247
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
248
|
Slow electroencephalographic oscillations and behavioral measures as predictors of high executive processing in early postmenopausal females: A discriminant analysis approach. Brain Cogn 2020; 145:105613. [PMID: 32911233 DOI: 10.1016/j.bandc.2020.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Decline in cognitive function is frequent in early postmenopause. There are postmenopausal females who show high performance while others display low performance in executive function, modulated by the prefrontal cortex. These differences have led to confusing and inconclusive results, which have not been explained entirely by the decline in estrogens, which affect the prefrontal cortex functions. An analysis of brain function and the application of a discriminant analysis can help to clarify the deficits in executive function shown by some postmenopausal females. The objective was to examine electroencephalographic recording during the performance of an executive function test in early postmenopausal females, ten with a high level of performance and ten with a low level of performance. Absolute power of delta, theta, alpha1, alpha2, beta1 and beta2 and the numbers of completed categories, trials, perseverative errors and overall errors were submitted to stepwise discriminant analysis to identify predictor variables. Four predictors emerged as significant of group membership based on cognitive performance, with the high-performance group characterized by more completed categories, more delta power, less theta power and more alpha1 power. These findings suggest that postmenopausal females classified in the high-performance group displayed appropriate temporary activation in slow oscillations during executive processing.
Collapse
|
249
|
Cerebellar Theta and Beta Noninvasive Stimulation Rhythms Differentially Influence Episodic Memory versus Semantic Prediction. J Neurosci 2020; 40:7300-7310. [PMID: 32817245 DOI: 10.1523/jneurosci.0595-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The human cerebellum is thought to interact with distributed brain networks to support cognitive abilities such as episodic memory and semantic prediction. Hippocampal and fronto-temporo-parietal networks that respectively support episodic memory versus semantic prediction have been associated with distinct endogenous oscillatory activity frequency bands: theta (∼3-8 Hz) versus beta (∼13-30 Hz) respectively. We sought to test whether it is possible to toggle cerebellar participation in episodic memory versus semantic prediction by noninvasively stimulating with theta versus beta rhythmic transcranial magnetic stimulation. In human subjects of both sexes, cerebellar theta stimulation improved episodic memory encoding but did not influence neural signals of semantic prediction, whereas beta stimulation of the same cerebellar location increased neural signals of semantic prediction but did not influence episodic memory encoding. This constitutes evidence for double dissociation of cerebellar contributions to semantic prediction versus episodic memory based on stimulation rhythm, supporting the hypothesis that the cerebellum can be biased to support these distinct cognitive abilities at the command of network-specific rhythmic activity.SIGNIFICANCE STATEMENT The cerebellum interacts with several distinct large-scale brain networks for cognitive function, but the factors governing selectivity of such interactions for particular functions are not fully understood. We tested the hypothesis that cerebellar contributions to cognition are guided by neural oscillations with function-specific frequency bands. We demonstrated that matching noninvasive stimulation to network-specific frequencies selectively enhanced episodic memory versus semantic prediction. These findings suggest that cerebellar contributions to cognitive networks are selected based on corresponding activity rhythms and could be used to develop cerebellar stimulation interventions for specific neurocognitive impairments.
Collapse
|
250
|
Evidence for Immediate Enhancement of Hippocampal Memory Encoding by Network-Targeted Theta-Burst Stimulation during Concurrent fMRI. J Neurosci 2020; 40:7155-7168. [PMID: 32817326 DOI: 10.1523/jneurosci.0486-20.2020] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The hippocampus supports episodic memory via interaction with a distributed brain network. Previous experiments using network-targeted noninvasive brain stimulation have identified episodic memory enhancements and modulation of activity within the hippocampal network. However, mechanistic insights were limited because these effects were measured long after stimulation and therefore could have reflected various neuroplastic aftereffects with extended time courses. In this experiment with human subjects of both sexes, we tested for immediate stimulation impact on encoding-related activity of the hippocampus and immediately adjacent medial-temporal cortex by delivering theta-burst transcranial magnetic stimulation (TBS) concurrent with fMRI, as an immediate impact of stimulation would suggest an influence on neural activity. We reasoned that TBS would be particularly effective for influencing the hippocampus because rhythmic neural activity in the theta band is associated with hippocampal memory processing. First, we demonstrated that it is possible to obtain robust fMRI correlates of task-related activity during concurrent TBS. We then identified immediate effects of TBS on encoding of visual scenes. Brief volleys of TBS targeting the hippocampal network increased activity of the targeted (left) hippocampus during scene encoding and increased subsequent recollection. Stimulation did not influence activity during an intermixed numerical task with no memory demand. Control conditions using beta band and out-of-network stimulation also did not influence hippocampal activity or recollection. TBS targeting the hippocampal network therefore immediately impacted hippocampal memory processing. This suggests direct, beneficial influence of stimulation on hippocampal neural activity related to memory and supports the role of theta-band activity in human episodic memory.SIGNIFICANCE STATEMENT Can noninvasive stimulation directly impact function of indirect, deep-brain targets, such as the hippocampus? We tested this by targeting an accessible region of the hippocampal network via transcranial magnetic stimulation during concurrent fMRI. We reasoned that theta-burst stimulation would be particularly effective for impacting hippocampal function, as this stimulation rhythm should resonate with the endogenous theta-nested-gamma activity prominent in hippocampus. Indeed, theta-burst stimulation targeting the hippocampal network immediately impacted hippocampal activity during encoding, improving memory formation as indicated by enhanced later recollection. Rhythm- and location-control stimulation conditions had no such effects. These findings suggest a direct influence of noninvasive stimulation on hippocampal neural activity and highlight that the theta-burst rhythm is relatively privileged in its ability to influence hippocampal memory function.
Collapse
|