201
|
Avilés-Ramírez C, Moreno-Godínez ME, Bonner MR, Parra-Rojas I, Flores-Alfaro E, Ramírez M, Huerta-Beristain G, Ramírez-Vargas MA. Effects of exposure to environmental pollutants on mitochondrial DNA copy number: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43588-43606. [PMID: 35399130 DOI: 10.1007/s11356-022-19967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Exposure to environmental pollutants has been associated with alteration on relative levels of mitochondrial DNA copy number (mtDNAcn). However, the results obtained from epidemiological studies are inconsistent. This meta-analysis aimed to evaluate whether environmental pollutant exposure can modify the relative levels of mtDNAcn in humans. We performed a literature search using PubMed, Scopus, and Web of Science databases. We selected and reviewed original articles performed in humans that analyzed the relationship between environmental pollutant exposure and the relative levels of mtDNAcn; the selection of the included studies was based on inclusion and exclusion criteria. Only twenty-two studies fulfilled our inclusion criteria. A total of 6011 study participants were included in this systematic review and meta-analysis. We grouped the included studies into four main categories according to the type of environmental pollutant: (1) heavy metals, (2) polycyclic aromatic hydrocarbons (PAHs), (3) particulate matter (PM), and (4) cigarette smoking. Inconclusive results were observed in all categories; the pooled analysis shows a marginal increase of relative levels of mtDNAcn in response to environmental pollutant exposure. The trial sequential analysis and rate confidence in body evidence showed the need to perform new studies. Therefore, a large-scale cohort and mechanistic studies in this area are required to probe the possible use of relative levels of mtDNAcn as biomarkers linked to environmental pollution exposure.
Collapse
Affiliation(s)
- Cristian Avilés-Ramírez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Ma Elena Moreno-Godínez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Investigación en Obesidad Y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica Y Molecular, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Mónica Ramírez
- Facultad de Ciencias Químico-Biológicas, CONACyT, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Gerardo Huerta-Beristain
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Marco Antonio Ramírez-Vargas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México.
| |
Collapse
|
202
|
Liu Y, Sun Y, Bai X, Li L, Zhu G. Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein Endothelial Cell Injury through IRAK1/TAK1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6584645. [PMID: 35601145 PMCID: PMC9122697 DOI: 10.1155/2022/6584645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022]
Abstract
Introduction Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid metabolism disorder and vascular endothelial damage. Albiflorin (AF) has been certified to be effective in the therapy of certain inflammatory diseases, while the therapeutic effect and mechanism of AF on AS have not been fully elucidated. Material and Methods. Model cells for AS were created by inducing oxidized low-density lipoprotein (Ox-LDL) in human umbilical vein endothelial cells (HUVECs). After processing with AF and interleukin-1 receptor-associated kinase 1- (IRAK1-) overexpressed plasmid, cell viability was assessed by CCK-8; cholesterol efflux was tested using liquid scintillation counter; IL-6 and TNF-α levels were determined with ELISA kits; ROS and apoptosis were confirmed using Flow cytometry. Besides, IRAK1-TAK1 pathway and apoptosis- and mitochondrial fusion-related proteins were monitored with western blotting analysis. Results Our results verified that AF could not only dramatically accelerate viability and cholesterol efflux but also attenuate inflammation, ROS production, and apoptosis in Ox-LDL-induced HUVECs. Meanwhile, AF could prominently prevent the activation of IRAK1-TAK1 pathway, downregulate apoptosis-related proteins, and upregulate mitochondrial fusion-related proteins in Ox-LDL-induced HUVECs. Moreover, we testified that IRAK1 overexpression memorably could reverse suppression of AF on inflammation, apoptosis, and IRAK1-TAK1 pathway and enhancement of AF on viability, cholesterol efflux, and mitochondrial fusion in Ox-LDL-induced HUVECs. Conclusions By blocking the IRAK1/TAK1 pathway, AF can significantly slow the course of AS, suggesting that it could be a viable therapeutic option for AS.
Collapse
Affiliation(s)
- Yeling Liu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Yilai Sun
- Department of Pancreatic & Hernial Surgery Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Xue Bai
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Guihua Zhu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| |
Collapse
|
203
|
Maglioni S, Schiavi A, Melcher M, Brinkmann V, Luo Z, Laromaine A, Raimundo N, Meyer JN, Distelmaier F, Ventura N. Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans. Nat Commun 2022; 13:2620. [PMID: 35551180 PMCID: PMC9098500 DOI: 10.1038/s41467-022-29972-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/09/2022] [Indexed: 12/02/2022] Open
Abstract
Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals’ neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease. Mitochondrial deficiency causes rare incurable disorders. Here, the authors use C. elegans to study these diseases and find that the natural compound lutein prevents neurodevelopmental deficits, thus pointing to a possible therapeutic target for the human diseases.
Collapse
Affiliation(s)
- Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Vanessa Brinkmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Zhongrui Luo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, 17033, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany. .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany.
| |
Collapse
|
204
|
Zeng ZL, Yuan Q, Zu X, Liu J. Insights Into the Role of Mitochondria in Vascular Calcification. Front Cardiovasc Med 2022; 9:879752. [PMID: 35571215 PMCID: PMC9099050 DOI: 10.3389/fcvm.2022.879752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a growing burden in aging societies worldwide, and with a significant increase in all-cause mortality and atherosclerotic plaque rupture, it is frequently found in patients with aging, diabetes, atherosclerosis, or chronic kidney disease. However, the mechanism of VC is still not yet fully understood, and there are still no effective therapies for VC. Regarding energy metabolism factories, mitochondria play a crucial role in maintaining vascular physiology. Discoveries in past decades signifying the role of mitochondrial homeostasis in normal physiology and pathological conditions led to tremendous advances in the field of VC. Therapies targeting basic mitochondrial processes, such as energy metabolism, damage in mitochondrial DNA, or free-radical generation, hold great promise. The remarkably unexplored field of the mitochondrial process has the potential to shed light on several VC-related diseases. This review focuses on current knowledge of mitochondrial dysfunction, dynamics anomalies, oxidative stress, and how it may relate to VC onset and progression and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- ZL Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuyu Zu
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Jianghua Liu
| |
Collapse
|
205
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
206
|
Deng L, Yi S, Yin X, Li Y, Luan Q. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:162. [PMID: 35413941 PMCID: PMC9006575 DOI: 10.1186/s13287-022-02836-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mitofusin-2 (MFN2) is a kind of GTPase that participates in the regulation of mitochondrial fusion, which is related to a variety of physiological and pathological processes, including energy metabolism, cell differentiation, and embryonic development. However, it remains unclear whether MFN2 is involved in the metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). Methods MFN2 knockdown (MFN2-KD) and MFN2-overexpressing (MFN2-OE) induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were constructed by lentivirus. The commercial kits were utilized to detect the glycolysis and oxidative phosphorylation (OXPHOS) rate. Flow cytometry, Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), RNA-seq, immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. Results We demonstrated that MFN2 and Wnt/β-catenin signaling pathway regulated glycolysis of iPSC-MSCs. The lack of MFN2 promoted the osteogenic differentiation of iPSC-MSCs, and aerobic glycolysis in the presence of sufficient oxygen, which increased glucose consumption and lactic acid production, as well as the glycolytic enzyme activity and gene expression. Inhibiting the Wnt/β-catenin signaling pathway normalized the enhanced glycolytic rate and osteogenic differentiation of MFN2-KD iPSC-MSCs. MFN2-OE iPSC-MSCs displayed the opposite phenotype. Conclusions Downregulating MFN2 promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Our research reveals the new function of MFN2 in regulating the osteogenic differentiation and energy metabolism of MSCs, which will provide a new therapeutic target and theoretical basis for alveolar bone repair and periodontal regenerative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02836-w.
Collapse
Affiliation(s)
- Lidi Deng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Siqi Yi
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaohui Yin
- Department of First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, 100191, People's Republic of China.
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
207
|
Li Q, Wu J, Huang J, Hu R, You H, Liu L, Wang D, Wei L. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease via AMPK/SIRT1/PGC-1α-Mediated Oxidative Stress and Mitochondrial Dysfunction. Front Pharmacol 2022; 13:859723. [PMID: 35370668 PMCID: PMC8964350 DOI: 10.3389/fphar.2022.859723] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of muscle atrophy. The aim of this study was to explore the effects and mechanisms of paeoniflorin on CKD skeletal muscle atrophy. We demonstrated that paeoniflorin significantly improved renal function, calcium/phosphorus disorders, nutrition index and skeletal muscle atrophy in the 5/6 nephrectomized model rats. Paeoniflorin ameliorated the expression of proteins associated with muscle atrophy and muscle differentiation, including muscle atrophy F-box (MAFbx/atrogin-1), muscle RING finger 1 (MuRF1), MyoD and myogenin (MyoG). In addition, paeoniflorin modulated redox homeostasis by increasing antioxidant activity and suppressing excessive accumulation of reactive oxygen species (ROS). Paeoniflorin alleviated mitochondrial dysfunction by increasing the activities of electron transport chain complexes and mitochondrial membrane potential. Furthermore, paeoniflorin also regulates mitochondrial dynamics. Importantly, paeoniflorin upregulated the expression of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and phosphorylation of AMP-activated protein kinase (AMPK). Similar results were observed in C2C12 myoblasts treated with TNF-α and paeoniflorin. Notably, these beneficial effects of paeoniflorin on muscle atrophy were abolished by inhibiting AMPK and SIRT1 and knocking down PGC-1α. Taken together, this study showed for the first time that paeoniflorin has great therapeutic potential for CKD skeletal muscle atrophy through AMPK/SIRT1/PGC-1α-mediated oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qiang Li
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lingyu Liu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lianbo Wei
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
208
|
Li Y, Liu H, Tian C, An N, Song K, Wei Y, Sun Y, Xing Y, Gao Y. Targeting the multifaceted roles of mitochondria in intracerebral hemorrhage and therapeutic prospects. Biomed Pharmacother 2022; 148:112749. [PMID: 35219118 DOI: 10.1016/j.biopha.2022.112749] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe, life-threatening subtype of stoke that constitutes a crucial health and socioeconomic problem worldwide. However, the current clinical treatment can only reduce the mortality of patients to a certain extent, but cannot ameliorate neurological dysfunction and has a high recurrence rate. Increasing evidence has demonstrated that mitochondrial dysfunction occurs in the early stages of brain injury and participates in all stages of secondary brain injury (SBI) after ICH. As the energy source of cells, various pathobiological processes that lead to SBI closely interact with the mitochondria, such as oxidative stress, calcium overload, and neuronal injury. In this review, we discussed the structure and function of mitochondria and the abnormal morphological changes after ICH. In addition, we discussed recent research on the involvement of mitochondrial dynamics in the pathological process of SBI after ICH and introduced the pathological variations and related molecular mechanisms of mitochondrial dysfunction in the occurrence of brain injury. Finally, we summarized the latest progress in mitochondrion-targeted agents for ICH, which provides a direction for the development of emerging therapeutic strategies targeting the mitochondria after ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chao Tian
- Beijing University of Chinese Medicine, Beijing 100029, China; China-Japan Friendship Hospital, Beijing 100029, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Song
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi 530000, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
209
|
Pan M, Cheng ZW, Huang CG, Ye ZQ, Sun LJ, Chen H, Fu BB, Zhou K, Fang ZR, Wang ZJ, Xiao QZ, Liu XS, Zhu FQ, Gao S. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113329. [PMID: 35255253 DOI: 10.1016/j.ecoenv.2022.113329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Copper is a trace element necessary for the normal functioning of organisms, but excessive copper contents may be toxic to the heart. The goal of this study was to investigate the role of excessive copper accumulation in mitochondrial damage and cell apoptosis inhibition. In vivo, the heart copper concentration and cardiac troponin I (c-TnI) and N-terminal forebrain natriuretic peptide (NT-pro-BNP) levels increased in the copper-laden model group compared to those of the control group. Histopathological and ultrastructural observations revealed that the myocardial collagen volume fraction (CVF), perivascular collagen area (PVCA) and cardiomyocyte cross-sectional area (CSA) were markedly elevated in the copper-laden model group compared with the control group. Furthermore, transmission electron microscopy (TEM) showed that the mitochondrial double-layer membrane was incomplete in the copper-laden model groups. Furthermore, cytochrome C (Cyt-C) expression was downregulated in mitochondria but upregulated in the cytoplasm in response to copper accumulation. In addition, Bcl-2 expression decreased, while Bax and cleaved caspase-3 levels increased. These results indicate that copper accumulation in cardiomyocyte mitochondria induces mitochondrial injury, and Cyt-C exposure and induces apoptosis, further resulting in heart damage.
Collapse
Affiliation(s)
- Ming Pan
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Zi-Wei Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Chen-Guang Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Zhu-Qing Ye
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Li-Jun Sun
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Hua Chen
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Bei-Bei Fu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Kai Zhou
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Zhi-Rui Fang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Zi-Jian Wang
- Clinic Medical School of Medicine, Anhui Medical University, 230031, China
| | - Qing-Zhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xue-Sheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, 230022, China
| | - Feng-Qin Zhu
- Cancer Hospital, Chinese Academy of Science, Hefei 230032, China.
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
210
|
Xia R, Wang W, Gao B, Ma Q, Wang J, Dai X, Li Q. Moxibustion alleviates chronic heart failure by regulating mitochondrial dynamics and inhibiting autophagy. Exp Ther Med 2022; 23:359. [PMID: 35493422 PMCID: PMC9019604 DOI: 10.3892/etm.2022.11286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ran Xia
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Wei Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Bing Gao
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Qiang Ma
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jing Wang
- Key Laboratory of Xin'an Medicine of Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Xiaohua Dai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qingling Li
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
211
|
Imaging and analysis of neuronal mitochondria in murine acute brain slices. J Neurosci Methods 2022; 372:109558. [PMID: 35271874 DOI: 10.1016/j.jneumeth.2022.109558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mitochondrial alterations are common to many inflammatory, degenerative as well as metabolic diseases. However, due to the vulnerability of mitochondria in explanted tissue, there is a general lack of ex vivo models, especially of CNS tissue, that preserve mitochondria and allow investigation of mitochondrial dynamics. NEW METHODS Here, we present a model of acute hippocampal slices to study neuronal mitochondria ex vivo. We used two-photon microscopy to image CFP fluorescent neuronal mitochondria in B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich mice brain slices. To define the optimal processing and culturing conditions, we compared mitochondrial morphology and motility with three different sets of slicing and incubation solutions. The investigation of mitochondrial dynamics was performed on deconvoluted images. For morphological investigation, images were segmented into three different categories according to the shape of mitochondria, while motility was investigated using semi-automated tracking. RESULTS The imaging of acute brain slices by two-photon microscopy represented a suitable tool to monitor neuronal mitochondria ex vivo. We observed that mitochondrial dynamics were better preserved in slices incubated with HEPES aCSF, maintaining elongated rod-shaped morphology and the motility. COMPARISON WITH EXISTING METHODS We showed for the first time a method that allows live imaging of mitochondria and its quantification, while the existing in vitro protocol are not suitable to investigate mitochondria in live tissue. CONCLUSION We have established the best incubation conditions and microscopy tools to investigate living mitochondria in acute slices. We showed that preventing initial swelling with HEPES and addition of glucose, pyruvate, ascorbate and thiourea preserved mitochondria in adult brain slices, which could be monitored by two-photon microscopy.
Collapse
|
212
|
Li L, Cai D, Zhong H, Liu F, Jiang Q, Liang J, Li P, Song Y, Ji A, Jiao W, Song J, Li J, Chen Z, Li Q, Ke L. Mitochondrial dynamics and biogenesis indicators may serve as potential biomarkers for diagnosis of myasthenia gravis. Exp Ther Med 2022; 23:307. [PMID: 35340870 PMCID: PMC8931634 DOI: 10.3892/etm.2022.11236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/10/2022] [Indexed: 11/05/2022] Open
Abstract
Due to challenges in diagnosing myasthenia gravis (MG), identifying novel diagnostic biomarkers for this disease is essential. Mitochondria are key organelles that regulate multiple physiological functions, such as energy production, cell proliferation and cell death. In the present study, Mfn1/2, Opa1, Drp1, Fis1, AMPK, PGC-1α, NRF-1 and TFAM were compared between patients with MG and healthy subjects to identify potential diagnostic biomarkers for MG. Blood samples were collected from 50 patients with MG and 50 healthy subjects. The participants' demographic information and routine blood test results were recorded. Mitochondrial dynamics were evaluated and levels of Mfn1/2, Opa1, Drp1, Fis1, AMPK, PGC-1α, NRF-1 and TFAM were determined in peripheral blood mononuclear cells using western blotting and reverse transcription-quantitative PCR, respectively. Receiver operating characteristic curve analysis was used to evaluate the diagnostic accuracy of these indicators. The areas under the curve values of Mfn1/2, Opa1, Drp1, Fis1,AMPK, PGC-1α, NRF-1 and TFAM were 0.5408-0.8696. Compared with control subjects, mRNA expression levels of Mfn1/2, Opa1, AMPK, PGC-1α, NRF-1 and TFAM were lower, while those of Drp1 and Fis1 were higher in patients with MG. The protein expression levels of all these molecules were lower in patients with MG than in control subjects. These results suggested that mitochondrial dynamics and biogenesis indicators may be diagnostic biomarkers for MG.
Collapse
Affiliation(s)
- Lanqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Donghong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huiya Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fengbin Liu
- Department of Gastrosplenic Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qilong Jiang
- Department of Gastrosplenic Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Peiwu Li
- Department of Gastrosplenic Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jinqiu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhiwei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
| | - Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
213
|
Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, Caldwell A, Baugh LR, Meyer JN. Rotenone Modulates Caenorhabditis elegans Immunometabolism and Pathogen Susceptibility. Front Immunol 2022; 13:840272. [PMID: 35273616 PMCID: PMC8902048 DOI: 10.3389/fimmu.2022.840272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | | | - Kinsey Fisher
- Department of Biology, Duke University, Durham, NC, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC, United States
| | - Shefali R. Bijwadia
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alexis Caldwell
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Larry Ryan Baugh
- Department of Biology, Duke University, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
214
|
Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of Mitochondrial Pathways in Cell Apoptosis during He-Patic Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23042357. [PMID: 35216473 PMCID: PMC8877300 DOI: 10.3390/ijms23042357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors. Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transition pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins, unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis that account for the most deleterious effect of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sen Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sijing Rao
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China;
| | - Chen Ma
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fengfang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Correspondence: (F.H.); or (S.Y.)
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China
- Correspondence: (F.H.); or (S.Y.)
| |
Collapse
|
215
|
Liang Y, Chu PH, Tian L, Ho KF, Ip MSM, Mak JCW. Targeting mitochondrial permeability transition pore ameliorates PM 2.5-induced mitochondrial dysfunction in airway epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118720. [PMID: 34953947 DOI: 10.1016/j.envpol.2021.118720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Particulate matter with aerodynamic diameter not larger than 2.5 μm (PM2.5) escalated the risk of respiratory diseases. Mitochondrial dysfunction may play a pivotal role in PM2.5-induced airway injury. However, the potential effect of PM2.5 on mitochondrial permeability transition pore (mPTP)-related airway injury is still unknown. This study aimed to investigate the role of mPTP in PM2.5-induced mitochondrial dysfunction in airway epithelial cells in vitro. PM2.5 significantly reduced cell viability and caused apoptosis in BEAS-2B cells. We also found PM2.5 caused cellular and mitochondrial morphological alterations, evidenced by the disappearance of mitochondrial cristae, mitochondrial swelling, and the rupture of the outer mitochondrial membrane. PM2.5 induced mPTP opening via upregulation of voltage-dependent anion-selective channel (VDAC), leading to deprivation of mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) generation and intracellular calcium level. PM2.5 suppressed mitochondrial respiratory function by reducing basal and maximal respiration, and ATP production. The mPTP targeting compounds cyclosporin A [CsA; a potent inhibitor of cyclophilin D (CypD)] and VBIT-12 (a selective VDAC1 inhibitor) significantly inhibited PM2.5-induced mPTP opening and apoptosis, and preserved mitochondrial function by restoring mitochondrial membrane potential, reducing mitochondrial ROS generation and intracellular calcium content, and maintaining mitochondrial respiration function. Our data further demonstrated that PM2.5 caused reduction in nuclear expressions of PPARγ and PGC-1α, which were reversed in the presence of CsA. These findings suggest that mPTP might be a potential therapeutic target in the treatment of PM2.5-induced airway injury.
Collapse
Affiliation(s)
- Yingmin Liang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Pak Hin Chu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kin Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Mary Sau Man Ip
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judith Choi Wo Mak
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
216
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
217
|
Lei MY, Cong L, Liu ZQ, Liu ZF, Ma Z, Liu K, Li J, Deng Y, Liu W, Xu B. Resveratrol reduces DRP1-mediated mitochondrial dysfunction via the SIRT1-PGC1α signaling pathway in manganese-induced nerve damage in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:282-298. [PMID: 34738708 DOI: 10.1002/tox.23397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Excessive manganese (Mn) exposure can cause nerve damage and mitochondrial dysfunction, which may involve defects in mitochondrial dynamics. Resveratrol (RSV) exerts a wide range of beneficial effects via activation of sirtuin 1 (SIRT1) and thus may positively impact Mn-induced mitochondrial damage through the regulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) by SIRT1. In this study, we investigated the molecular mechanisms by which RSV alleviates the nerve injury and mitochondrial fragmentation caused by Mn in C57 BL/6 mice. Our results demonstrated that RSV activated the deacetylase activity of SIRT1 and protected against the surge of mitochondrial reactive oxygen species, the loss of mitochondrial membrane potential, and the attenuation of ATP caused by Mn. RSV, therefore, inhibits mitochondrial fragmentation and safeguards neural cells. Increased deacetylase activity led to a reduction in the acetylation of PGC-1α, which directly regulates DRP1 expression by binding to the DRP1 promoter. The resultant attenuation of DRP1-mediated mitochondrial fragmentation in RSV-pretreated mice was abolished by the addition of the SIRT1 inhibitor EX527. Taken together, these findings indicate that RSV alleviates Mn-induced mitochondrial dysfunction mediated by DRP1 by modulating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
218
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
219
|
Deng L, Yi S, Yin X, Li Y, Luan Q. Downregulating MFN2 promotes the differentiation of induced pluripotent stem cells into mesenchymal stem cells via the PI3K/Akt/GSK-3β/Wnt signaling pathway. Stem Cells Dev 2022; 31:181-194. [PMID: 35088597 DOI: 10.1089/scd.2021.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the mechanism of the differentiation of induced pluripotent stem cells (iPSCs) into mesenchymal stem cells (MSCs) and promoting the production efficiency of iPSC-derived MSCs (iPSC-MSCs) are critical to periodontal tissue engineering. However, the gene networks that control this differentiation process from iPSCs into MSCs are poorly understood. We demonstrated that MFN2 knockdown showed a positive effect on the triploblastic and MSC differentiation from iPSCs. Activation of the PI3K/Akt signaling pathway by MFN2 knockdown activated the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and reducing β-catenin degradation. Inhibitor of the PI3K/Akt signaling pathway normalized the enhanced efficiency of differentiation into MSCs of MFN2-KD iPSCs and Wnt activator treated control iPSCs. MFN2-OE iPSCs displayed an opposite phenotype. In conclusion, downregulating MFN2 promotes the differentiation of iPSCs into MSCs by activating the PI3K/Akt/GSK-3β/Wnt signaling pathway. Our results reveal a crucial function and mechanism for MFN2 in regulating MSC differentiation from iPSCs, which will provide new ideas for periodontal tissue engineering and periodontal regenerative treatment by using iPSC-MSCs.
Collapse
Affiliation(s)
- Lidi Deng
- Peking University, 12465, Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District,, Beijing, Beijing, China;
| | - Siqi Yi
- Peking University, 12465, Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District,, Beijing, Beijing, China;
| | - Xiaohui Yin
- Peking University, 12465, Department of First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, Beijing, China;
| | - Yang Li
- Peking University, 12465, Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University,, Beijing, Beijing, China;
| | - Qingxian Luan
- Peking University, 12465, Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District,, Beijing, Beijing, China;
| |
Collapse
|
220
|
Molecular Genetics Overview of Primary Mitochondrial Myopathies. J Clin Med 2022; 11:jcm11030632. [PMID: 35160083 PMCID: PMC8836969 DOI: 10.3390/jcm11030632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
Collapse
|
221
|
Zhu L, Huang L, Su W, Liang X, Lin W. A Fluorescent Probe Targeting Mitochondria and Lipid Droplets for Visualization of Cell Death. Chem Asian J 2022; 17:e202101304. [PMID: 35040582 DOI: 10.1002/asia.202101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/18/2021] [Indexed: 12/18/2022]
Abstract
Subcellular organelles play an indispensable role in various biological process. Therefore, it is very important to develop fluorescent probe to identify different organelles and their dynamics in specific biological processes. Herein, a new fluorescent probe has been prepared, which can be used to visualize cell death via targeting mitochondria and lipid droplets (LDs) in dual-emission channels. The new probe appeared in the form of ring-open in mitochondria to emit strong yellow fluorescence in living cells, while it carried out intramolecular spiral cyclization reaction to target LDs and give a cyan emission in dead cells. The performance of cell death in the UV-exposure, lipopolysaccharide and hydrogen peroxide treatment is successfully revealed by the probe. The probe has great potential in dual colour biomedical imaging of dynamic changes of mitochondria and LDs in biological processes.
Collapse
Affiliation(s)
- Lin Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Wanting Su
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Xing Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
222
|
Mello DF, Maurer LL, Ryde IT, Song DH, Marinakos SM, Jiang C, Wiesner MR, Hsu-Kim H, Meyer JN. In Vivo Effects of Silver Nanoparticles on Development, Behavior, and Mitochondrial Function are Altered by Genetic Defects in Mitochondrial Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1113-1124. [PMID: 35038872 PMCID: PMC8802983 DOI: 10.1021/acs.est.1c05915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs. To test this, we exposed the nematodeCaenorhabditis elegans to sublethal concentrations of AgNPs and assessed specific mitochondrial parameters as well as organismal-level endpoints that are highly reliant on mitochondrial function, such as development and chemotaxis behavior. All AgNPs tested significantly delayed nematode development, disrupted mitochondrial bioenergetics, and blocked chemotaxis. However, silver was not preferentially accumulated in mitochondria, indicating that these effects are likely not due to direct mitochondria-AgNP interactions. Mutant nematodes with deficiencies in mitochondrial dynamics displayed both greater and decreased susceptibility to AgNPs compared to wild-type nematodes, which was dependent on the assay and AgNP type. Our study suggests that AgNPs indirectly promote mitochondrial dysfunction, leading to adverse outcomes at the organismal level, and reveals a role of gene-environment interactions in the susceptibility to AgNPs. Finally, we propose a novel hypothetical adverse outcome pathway for AgNP effects to guide future research.
Collapse
Affiliation(s)
- Danielle F. Mello
- Center for the Environmental Implications of Nanotechnology, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Laura L. Maurer
- Center for the Environmental Implications of Nanotechnology, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Ian T. Ryde
- Center for the Environmental Implications of Nanotechnology, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Dong Hoon Song
- Simulation Group, Samsung SDI, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Stella M. Marinakos
- Center for the Environmental Implications of Nanotechnology, Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Mark R. Wiesner
- Center for the Environmental Implications of Nanotechnology, Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heileen Hsu-Kim
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Joel N. Meyer
- Center for the Environmental Implications of Nanotechnology, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
223
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|
224
|
Mohammad G, Kowluru RA. Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy. J Diabetes Res 2022; 2022:3555889. [PMID: 35399705 PMCID: PMC8989559 DOI: 10.1155/2022/3555889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a central role in the development of diabetic retinopathy and in the metabolic memory associated with its continued progression. Mitochondria have a regulated fusion fission process, which is essential for their homeostasis. One of the major fission proteins, dynamin-related protein 1 (Drp1), is recruited to the mitochondria by fission protein 1 (Fis1) to initiate fragmentation. Our aim is to investigate the role of Drp1 in the altered mitochondrial dynamics in the continued progression of diabetic retinopathy. Methods. Drp1 activation, mitochondrial transport, and Drp1-Fis1 interactions were analyzed in retinal endothelial cells incubated in 20 mM glucose (HG), followed by 5 mM glucose (NG), for four days each (HG-NG group). The results were confirmed in retinal microvessels from streptozotocin-induced diabetic rats with poor glycemia (>350 mg/dl blood glucose, PC group), followed by normal glycemia (~100 mg/dl), for four months each (PC-GC group). Results. GTPase activity of Drp1, Fis1-Drp1 interactions, mitochondrial levels of Drp1, and fragmentation of the mitochondria were elevated in HG group. Mitochondrial Division Inhibitor 1 (Mdiv) or Drp1-siRNA attenuated Drp1 activation, mitochondrial fragmentation, and DNA damage. In HG-NG group, NG failed to ameliorate Drp1 activation and Drp1-Fis1 interactions, and the mitochondria remained fragmented. However, Mdiv supplementation in normal glucose, which had followed four days of high glucose (HG-NG/Mdiv group), inhibited Drp1 activation, mitochondrial fragmentation, and increase in ROS and prevented mitochondrial damage. Retinal microvessels from the rats in PC and PC-GC groups had similar Drp1 activation. Conclusion. Thus, Drp1 plays a major role in mitochondrial homeostasis in diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. Supplementation of normal glycemia with a Drp1 inhibitor could retard development and further progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Renu A. Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
225
|
Durand M, Nagot N, Michel L, Le SM, Duong HT, Vallo R, Vizeneux A, Rapoud D, Giang HT, Quillet C, Thanh NTT, Hai Oanh KT, Vinh VH, Feelemyer J, Vande Perre P, Minh KP, Laureillard D, Des Jarlais D, Molès JP. Mental Disorders Are Associated With Leukocytes Telomere Shortening Among People Who Inject Drugs. Front Psychiatry 2022; 13:846844. [PMID: 35782414 PMCID: PMC9247253 DOI: 10.3389/fpsyt.2022.846844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Premature biological aging, assessed by shorter telomere length (TL) and mitochondrial DNA (mtDNA) alterations, has been reported among people with major depressive disorders or psychotic disorders. However, these markers have never been assessed together among people who inject drugs (PWIDs), although mental disorders are highly prevalent in this population, which, in addition, is subject to other aggravating exposures. Diagnosis of mental disorders was performed by a psychiatrist using the Mini International Neuropsychiatric Interview test among active PWIDs in Haiphong, Vietnam. mtDNA copy number (MCN), mtDNA deletion, and TL were assessed by quantitative PCR and compared to those without any mental disorder. We next performed a multivariate analysis to identify risk factors associated with being diagnosed with a major depressive episode (MDE) or a psychotic syndrome (PS). In total, 130 and 136 PWIDs with and without psychiatric conditions were analyzed. Among PWIDs with mental disorders, 110 and 74 were diagnosed with MDE and PS, respectively. TL attrition was significantly associated with hepatitis C virus-infected PWIDs with MDE or PS (adjusted odds ratio [OR]: 0.53 [0.36; 0.80] and 0.59 [0.39; 0.88], respectively). TL attrition was even stronger when PWIDs cumulated at least two episodes of major depressive disorders. On the other hand, no difference was observed in mtDNA alterations between groups. The telomeric age difference with drug users without a diagnosis of psychiatric condition was estimated during 4.2-12.8 years according to the number of MDEs, making this group more prone to age-related diseases.
Collapse
Affiliation(s)
- Mélusine Durand
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Laurent Michel
- Pierre Nicole Center, CESP UMR 1018, Paris-Saclay University, Paris, France
| | - Sao Mai Le
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Huong Thi Duong
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Amélie Vizeneux
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Delphine Rapoud
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Hoang Thi Giang
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Catherine Quillet
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | | | | | - Vu Hai Vinh
- Infectious and Tropical Diseases Department, Viet Tiep Hospital, Hai Phong, Vietnam
| | - Jonathan Feelemyer
- School of Global Public Health, New York University, New York, NY, United States
| | - Philippe Vande Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Khue Pham Minh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Didier Laureillard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France.,Infectious and Tropical Diseases Department, Caremeau University Hospital, Nîmes, France
| | - Don Des Jarlais
- School of Global Public Health, New York University, New York, NY, United States
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| |
Collapse
|
226
|
Nrf2 participates in the protective effect of exogenous mitochondria against mitochondrial dysfunction in myocardial ischaemic and hypoxic injury. Cell Signal 2022; 92:110266. [DOI: 10.1016/j.cellsig.2022.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
227
|
Lan J, Tang L, Wu S, Huang R, Zhong G, Jiang X, Tang Z, Hu L. Curcumin alleviates arsenic-induced injury in duck skeletal muscle via regulating the PINK1/Parkin pathway and protecting mitochondrial function. Toxicol Appl Pharmacol 2022; 434:115820. [PMID: 34896432 DOI: 10.1016/j.taap.2021.115820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Arsenic is a well-known environmental pollutant due to its toxicity, which can do harm to animals and human. Curcumin is a polyphenolic compound derived from turmeric, commonly accepted to have antioxidant properties. However, whether curcumin can ameliorate the damage caused by arsenic trioxide (ATO) in duck skeletal muscle remains largely unknown. Therefore, the present study aims to investigate the potential molecular mechanism of curcumin against ATO-induced skeletal muscle injury. The results showed that treating with curcumin could attenuate body weight loss induced by ATO and reduced arsenic content accumulation in the skeletal muscle of duck. Curcumin was also able to alleviated the oxidative stress triggered by ATO, which was manifested by the increase of T-AOC and SOD, and MDA decrease. Moreover, we observed that curcumin could ease mitochondrial damage and vacuolate degeneration of nucleus. Our further investigation found that ATO disrupted normal mitochondrial fission/fusion (Drp1, OPA1, Mfn1/2) and restrained mitochondrial biogenesis (PGC-1α, Nrf1/2, TFAM), while curcumin could promote mitochondrial fusion and activated PGC-1α pathway. Furthermore, curcumin was found that it could not only reduce the mRNA and protein levels of mitophagy (PINK1, Parkin, LC3, p62) and pro-apoptotic genes (p53, Bax, Caspase-3, Cytc), but also increased the levels of anti-apoptotic genes (Bcl-2). In conclusion, curcumin was able to alleviate ATO-induced skeletal muscle damage by improving mitophagy and preserving mitochondrial function, which can serve as a novel strategy to take precautions against ATO toxicity.
Collapse
Affiliation(s)
- Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
228
|
Caldeira DDAF, de Oliveira DF, Cavalcanti-de-Albuquerque JP, Nascimento JHM, Zin WA, Maciel L. Isolation of Mitochondria From Fresh Mice Lung Tissue. Front Physiol 2021; 12:748261. [PMID: 34916953 PMCID: PMC8670177 DOI: 10.3389/fphys.2021.748261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Direct analysis of isolated mitochondria enables a better understanding of lung dysfunction. Despite well-defined mitochondrial isolation protocols applicable to other tissues, such as the brain, kidney, heart, and liver, a robust and reproductive protocol has not yet been advanced for the lung. We describe a protocol for the isolation of mitochondria from lung tissue aiming for functional analyses of mitochondrial O2 consumption, transmembrane potential, reactive oxygen species (ROS) formation, ATP production, and swelling. We compared our protocol to that used for heart mitochondrial function that is well-established in the literature, and achieved similar results.
Collapse
Affiliation(s)
| | | | | | | | - Walter Araujo Zin
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Professor Geraldo Cidade Campus, Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| |
Collapse
|
229
|
Zhang T, Li J, Zhao G. Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy. DNA Cell Biol 2021; 40:1513-1527. [PMID: 34851723 DOI: 10.1089/dna.2021.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
Collapse
Affiliation(s)
- Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Jiannan Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
230
|
Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Environ Health Rep 2021; 8:294-308. [PMID: 34761353 PMCID: PMC8826492 DOI: 10.1007/s40572-021-00329-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA.
| |
Collapse
|
231
|
Wan MC, Tang XY, Li J, Gao P, Wang F, Shen MJ, Gu JT, Tay F, Chen JH, Niu LN, Xiao YH, Jiao K. Upregulation of mitochondrial dynamics is responsible for osteogenic differentiation of mesenchymal stem cells cultured on self-mineralized collagen membranes. Acta Biomater 2021; 136:137-146. [PMID: 34571268 DOI: 10.1016/j.actbio.2021.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Collagen membranes crosslinked with high molecular weight polyacrylic acid (HPAA) are capable of self-mineralization via in situ intrafibrillar mineralization. These HPAA-crosslinked collagen membranes (HCM) have been shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs) and enhance bone regeneration in vivo. Nevertheless, the biological triggers involved in those processes and the associated mechanisms are not known. Here, we identified the contribution of mitochondrial dynamics in HCM-mediated osteogenic differentiation of MSCs. Mitochondriogenesis markers were significantly upregulated when MSCs were cultured on HCM, committing the MSCs to osteogenic differentiation. The mitochondria fused to form an interconnected mitochondrial network in response to the high energy requirements. Mitochondrial fission in MSCs was also triggered by HCM; fission slightly declined at 14 days to restore the equilibrium in mitochondrial dynamics. Mitophagy, another event that regulates mitochondrial dynamics, occurred actively to remove dysfunctioned mitochondria and isolate damaged mitochondria from the rest of network. The mitophagy level of MSCs was significantly elevated in the presence of HCM. Taken together, the present findings indicate that upregulation of mitochondrial dynamics via mitochondriogenesis, fusion, fission and mitophagy is responsible for HCM-mediated osteogenic differentiation of MSCs. STATEMENT OF SIGNIFICANCE: High molecular weight polyacrylic acid (HPAA)-crosslinked collagen membrane (HCM) was found to promote in-situ bone regeneration because of it can stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Nevertheless, the biological triggers involved in those processes and associated mechanisms are not known. This study identifies that activation of mitochondrial dynamics is centrally involved in HCM-mediated osteogenic differentiation of MSCs. The HCM accelerates mitochondriogenesis and regulates homeostasis of the mitochondrial network in response to the increased energy demand for osteogenic differentiation. Concomitantly, mitophagy actively occurs to remove dysfunctioned mitochondria from the rest of the mitochondrial network. Identification of the involvement of mitophagy in HCM-mediated osteogenic differentiation of MSCs opens new vistas in the application of biomimetic mineralization in bone tissue regeneration.
Collapse
Affiliation(s)
- Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Yi Tang
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Peng Gao
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Yu-Hong Xiao
- Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Teaching Hospital of Kunming Medical University, Kunming, China.
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
232
|
Lee CS, Song J. Migrating Cells Dispose of Damaged Mitochondria into the Surrounding Environment Mitochondria quality control coupled with cell migration in mammalian in vivo model. Mol Cells 2021; 44:781-783. [PMID: 34819395 PMCID: PMC8627835 DOI: 10.14348/molcells.2021.5007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, World Class University, Yonsei University, Seoul 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
233
|
Gao PC, Chu JH, Chen XW, Li LX, Fan RF. Selenium alleviates mercury chloride-induced liver injury by regulating mitochondrial dynamics to inhibit the crosstalk between energy metabolism disorder and NF-κB/NLRP3 inflammasome-mediated inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113018. [PMID: 34837874 DOI: 10.1016/j.ecoenv.2021.113018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a persistent heavy metal contaminant with definite hepatotoxicity. Selenium (Se) has been shown to alleviate liver damage induced by heavy metals. Therefore, the present study aimed to explore the mechanism of the antagonistic effect of Se on mercury chloride (HgCl2)-induced hepatotoxicity in chickens. Firstly, we confirmed that Se alleviated HgCl2-induced liver injury through histopathological observation and liver function analyzation. The results also showed that Se prevented HgCl2-induced liver lipid accumulation and dyslipidemia by regulating the gene expression related to lipid as well as glucose metabolism. Moreover, Se blocked the nuclear factor kappa B (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, which was the key to alleviate the inflammation caused by HgCl2. Mechanically, Se inhibited immoderate mitochondrial division, fusion, and biogenesis caused by HgCl2, and also improved mitochondrial respiration, which were essential for preventing energy metabolism disorder and inflammation. In conclusion, our results suggested that Se inhibited energy metabolism disorder and inflammation by regulating mitochondrial dynamics, thereby alleviating HgCl2-induced liver injury in chickens. These results are expected to provide potential intervention and therapeutic targets for diseases caused by inorganic mercury poisoning.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
234
|
Liu W, Fan Y, Ding H, Han D, Yan Y, Wu R, Lv Y, Zheng X. Normothermic machine perfusion attenuates hepatic ischaemia-reperfusion injury by inhibiting CIRP-mediated oxidative stress and mitochondrial fission. J Cell Mol Med 2021; 25:11310-11321. [PMID: 34786826 PMCID: PMC8650030 DOI: 10.1111/jcmm.17062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/17/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (CIRP) is a proinflammatory mediator that aggravates ischaemia-reperfusion injury (IRI). Normothermic machine perfusion (NMP) could effectively alleviate the IRI of the liver, but the underlying mechanism remains to be explored. We show that human DCD livers secreted a large amount of CIRP during static cold storage (CS), which is released into the circulation after reperfusion. The expression of CIRP was related to postoperative IL-6 levels and liver function. In a rat model, the CIRP expression was upregulated during warm ischaemia and cold storage. Then, rat DCD livers were preserved using CS, hypothermic oxygenated machine perfusion (HOPE) and NMP. C23, a CIRP inhibitor, was administrated in the HOPE group. Compared with CS, NMP significantly inhibited CIRP expression and decreased oxidative stress by downregulating NADPH oxidase and upregulating UCP2. NMP markedly inhibited the mitochondrial fission-related proteins Drp-1 and Fis-1. Further, NMP increased the mitochondrial biogenesis-related protein, TFAM. NMP significantly reduced inflammatory reactions and apoptosis after reperfusion, and NMP-preserved liver tissue had higher bile secretion and ICG metabolism compared to the CS group. Moreover, C23 administration attenuated IRI in the HOPE group. Additionally, HL-7702 cells were stimulated with rhCIRP and C23. High rhCIRP levels increased oxidative stress and apoptosis. In summary, NMP attenuates the IRI of DCD liver by inhibiting CIRP-mediated oxidative stress and mitochondrial fission.
Collapse
Affiliation(s)
- Wenyan Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Blood Purification, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Fan
- Xi'an Medical University, Xi'an, China
| | - Hongfan Ding
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Han
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
235
|
Smith AR, Lin PID, Rifas-Shiman SL, Rahman ML, Gold DR, Baccarelli AA, Claus Henn B, Amarasiriwardena C, Wright RO, Coull B, Hivert MF, Oken E, Cardenas A. Prospective Associations of Early Pregnancy Metal Mixtures with Mitochondria DNA Copy Number and Telomere Length in Maternal and Cord Blood. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117007. [PMID: 34797165 PMCID: PMC8604047 DOI: 10.1289/ehp9294] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Metal exposure during pregnancy influences maternal and child health. Oxidative stress and inflammation may mediate adverse effects of heavy metals, whereas essential metals may act as antioxidants. Mitochondrial DNA is a prime target for metal-induced oxidative damage. Telomere dysfunction is attributed to imbalances between reactive oxidant species and antioxidants. OBJECTIVES We evaluated individual and joint associations of prenatal metals with mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) in maternal and cord blood as biomarkers of inflammation and oxidative stress. METHODS We measured six nonessential metals (arsenic, barium, cadmium, cesium, lead, mercury) and four essential metals (magnesium, manganese, selenium, zinc) in first-trimester maternal red blood cells in Project Viva, a U.S. prebirth cohort. We measured relative mtDNAcn (n=898) and TL (n=893) in second-trimester maternal blood and mtDNAcn (n=419) and TL (n=408) in cord blood. We used multivariable linear regression and quantile g-computation to estimate associations between prenatal metals and the biomarkers. We used generalized additive models and Bayesian kernel machine regression to examine nonlinearity and interactions. RESULTS A 2-fold increase in maternal magnesium was associated with lower maternal [β=-0.07, 95% confidence interval (CI): -0.10, -0.01] and cord blood (β=-0.08, 95% CI: -0.20, -0.01) mtDNAcn. Lead was associated with higher maternal mtDNAcn (β=0.04, 95% CI: 0.01, 0.06). Selenium was associated with longer cord blood TL (β=0.30, 95% CI: 0.01 0.50). An association was observed between the nonessential metal mixture and higher maternal mtDNAcn (β=0.04, 95% CI: 0.01, 0.07). There was a nonlinear relationship between cord blood mtDNAcn and magnesium; maternal mtDNAcn and barium, lead, and mercury; and maternal TL and barium. DISCUSSION Maternal exposure to metals such as lead, magnesium, and selenium was associated with mtDNAcn and TL in maternal second trimester and cord blood. Future work will evaluate whether these biomarkers are associated with child health. https://doi.org/10.1289/EHP9294.
Collapse
Affiliation(s)
- Anna R. Smith
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Mohammad L. Rahman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
236
|
Durand M, Nagot N, Nhu QBT, Vallo R, Thuy LLT, Duong HT, Thanh BN, Rapoud D, Quillet C, Tran HT, Michel L, Tuyet TNT, Hai OKT, Hai VV, Feelemyer J, Perre PV, Jarlais DD, Minh KP, Laureillard D, Molès JP. Mitochondrial Genotoxicity of Hepatitis C Treatment among People Who Inject Drugs. J Clin Med 2021; 10:jcm10214824. [PMID: 34768343 PMCID: PMC8584601 DOI: 10.3390/jcm10214824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Antiviral nucleoside analogues (ANA) are newly used therapeutics acting against the hepatitis C virus (HCV). This class of drug is well known to exhibit toxicity on mitochondrial DNA (mtDNA). People who inject drugs (PWID) are particularly affected by HCV infection and cumulated mitotoxic drug exposure from HIV treatments (antiretrovirals, ARV) and other illicit drugs. This study aims to explore the impact of direct-acting antiviral (DAA) treatments on mtDNA among PWID. A total of 470 actively injecting heroin users were included. We used quantitative PCR on whole blood to determine the mitochondrial copy number per cell (MCN) and the proportion of mitochondrial DNA deletion (MDD). These parameters were assessed before and after DAA treatment. MDD was significantly increased after HCV treatment, while MCN did not differ. MDD was even greater when subjects were cotreated with ARV. In multivariate analysis, we identified that poly-exposure to DAA and daily heroin injection or regular consumption of methamphetamines were positively associated with high MCN loss while DAA and ARV treatments or methadone use were identified as risk factors for having mtDNA deletion. These observations deserve attention since they were previously associated with premature cell ageing or cell transformation and therefore call for a long-term follow-up.
Collapse
Affiliation(s)
- Mélusine Durand
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
- Correspondence: ; Tel.: +33-43435-9120
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Quynh Bach Thi Nhu
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Linh Le Thi Thuy
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Huong Thi Duong
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Binh Nguyen Thanh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Delphine Rapoud
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Catherine Quillet
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Hong Thi Tran
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Laurent Michel
- CESP UMR1018, Paris Saclay, Pierre Nicole Center, French Red Cross, 75005 Paris, France;
| | - Thanh Nham Thi Tuyet
- Supporting Community Development Initiatives, Hanoi 11513, Vietnam; (T.N.T.T.); (O.K.T.H.)
| | - Oanh Khuat Thi Hai
- Supporting Community Development Initiatives, Hanoi 11513, Vietnam; (T.N.T.T.); (O.K.T.H.)
| | - Vinh Vu Hai
- Infectious & Tropical Diseases Department, Viet Tiep Hospital, Haiphong 04708, Vietnam;
| | - Jonathan Feelemyer
- School of Global Public Health, New York University, New York, NY 10003, USA; (J.F.); (D.D.J.)
| | - Philippe Vande Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| | - Don Des Jarlais
- School of Global Public Health, New York University, New York, NY 10003, USA; (J.F.); (D.D.J.)
| | - Khue Pham Minh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Haiphong 04212, Vietnam; (Q.B.T.N.); (L.L.T.T.); (H.T.D.); (B.N.T.); (H.T.T.); (K.P.M.)
| | - Didier Laureillard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
- Infectious & Tropical Diseases Department, Caremeau University Hospital, 30029 Nîmes, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, 34394 Montpellier, France; (N.N.); (R.V.); (D.R.); (C.Q.); (P.V.P.); (D.L.); (J.-P.M.)
| |
Collapse
|
237
|
Dose-Dependent Response to the Environmental Pollutant Dichlorodipheniletylhene (DDE) in HepG2 Cells: Focus on Cell Viability and Mitochondrial Fusion/Fission Proteins. TOXICS 2021; 9:toxics9110270. [PMID: 34822661 PMCID: PMC8619198 DOI: 10.3390/toxics9110270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022]
Abstract
Dichlorodiphenyldichloroethylene (DDE), the primary persistent metabolite of dichlorodiphenyltrichloroethane (DDT), has toxic effects on cells, but its dose-dependent impact on mitochondrial proteins involved in mitochondrial fusion and fission processes associated with cell viability impairment has not yet been analysed. Mitochondrial fusion and fission processes are critical to maintaining the mitochondrial network and allowing the cell to respond to external stressors such as environmental pollutants. Fusion processes are associated with optimizing mitochondrial function, whereas fission processes are associated with removing damaged mitochondria. We assessed the effects of different DDE doses, ranging between 0.5 and 100 µM, on cell viability and mitochondrial fusion/fission proteins in an in vitro hepatic cell model (human hepatocarcinomatous cells, HepG2); the DDE induced a decrease in cell viability in a dose-dependent manner, and its effect was enhanced in conditions of coincubation with dietary fatty acids. Fusion protein markers exhibited an inverted U-shape dose-response curve, showing the highest content in the 2.5–25 μM DDE dose range. The fission protein marker was found to increase significantly, leading to an increased fission/fusion ratio with high DDE doses. The low DDE doses elicited cell adaption by stimulating mitochondrial dynamics machinery, whereas high DDE doses induced cell viability loss associated with mitochondrial dynamics to shift toward fission. Present results are helpful to clarify the mechanisms underlying the cell fate towards survival or death in response to increasing doses of environmental pollutants.
Collapse
|
238
|
Siekacz K, Piotrowski WJ, Iwański MA, Górski P, Białas AJ. The Role of Interaction between Mitochondria and the Extracellular Matrix in the Development of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932442. [PMID: 34707784 PMCID: PMC8545566 DOI: 10.1155/2021/9932442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition which affects mainly older adults, that suggests mitochondrial dysfunction and oxidative stress, which follow cells senescence, and might contribute to the disease onset. We have assumed pathogenesis associated with crosstalk between the extracellular matrix (ECM) and mitochondria, mainly based on mitochondrial equilibrium impairment consisting of (1) tyrosine kinases and serine-threonine kinase (TKs and ST-Ks) activation via cytokines, (2) mitochondrial electron transport chain dysfunction and in consequence electrons leak with lower ATP synthesis, (3) the activation of latent TGF-β via αVβ6 integrin, (4) tensions transduction via α2β1 integrin, (5) inefficient mitophagy, and (6) stress inhibited biogenesis. Mitochondria dysfunction influences ECM composition and vice versa. Damaged mitochondria release mitochondrial reactive oxygen species (mtROS) and the mitochondrial DNA (mtDNA) to the microenvironment. Therefore, airway epithelial cells (AECs) undergo transition and secrete cytokines. Described factors initiate an inflammatory process with immunological enhancement. In consequence, local fibroblasts exposed to harmful conditions transform into myofibroblasts, produce ECM, and induce progression of fibrosis. In our review, we summarize numerous aspects of mitochondrial pathobiology, which seem to be involved in the pathogenesis of lung fibrosis. In addition, an increasing body of evidence suggests considering crosstalk between the ECM and mitochondria in this context. Moreover, mitochondria and ECM seem to be important players in the antifibrotic treatment of IPF.
Collapse
Affiliation(s)
- Kamil Siekacz
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Mikołaj A. Iwański
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Adam J. Białas
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| |
Collapse
|
239
|
Parry HA, Randall RB, Hyatt HW, Hood WR, Kavazis AN. Short and long-term effect of reproduction on mitochondrial dynamics and autophagy in rats. Heliyon 2021; 7:e08070. [PMID: 34622072 PMCID: PMC8479403 DOI: 10.1016/j.heliyon.2021.e08070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/27/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluated mitochondrial dynamics and autophagy by investigating the acute and long-term changes in the liver and skeletal muscle of rats in multiple reproductive stages. A total of 48 rats were used. Rats were randomly assigned to three groups (n = 16 per group): nonreproductive females; females that became pregnant, gave birth, but had their pups removed at birth, and thus, did not lactate; and females that experienced pregnancy, gave birth, and were allowed to lactate. Each group was further divided into two-time subgroups (n = 8 per subgroup) and data were collected at a time-point corresponding to 1) peak lactation (day 14 of lactation) in the lactating animals (4 months of age) and 2) 15 weeks after parturition (12 weeks post-weaning in lactating animals; 7 months of age). Levels of several proteins involved in mitochondrial dynamics and the autophagy system were measured in the liver and skeletal muscle. Beclin1 protein levels in the liver were higher in non-lactating rats two weeks after parturition, while Beclin1 protein levels were highest in 7-month-old animals that had previously experienced a standard reproductive event that included pregnancy and a full 3 week of lactation. These animals also exhibited higher protein levels of the mitochondrial fusion marker Mfn2 in the liver. In skeletal muscle, we also observed increased protein levels of the mitochondrial fission marker DRP1 in non-lactating animals compared to animals that lactated. In summary, our data provide insightful information on the mechanisms that influence liver and skeletal muscle remodeling in response to the metabolic challenges of reproduction, and lactation in particular. Autophagy remodeling and mitochondrial fusion seem to coincide with liver mass size during the lactation stage of reproduction. Our findings highlight the complex changes that occur in the liver and skeletal muscle during reproduction, and highlights the remarkable plasticity required during this demanding metabolic feat.
Collapse
Affiliation(s)
| | - Ryleigh B. Randall
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Hayden W. Hyatt
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Wendy R. Hood
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Corresponding author.
| |
Collapse
|
240
|
Sopha P, Phutubtim N, Chantrathonkul B, Ploypradith P, Ruchirawat S, Chittchang M. Roles of autophagy in relation to mitochondrial stress responses of HeLa cells to lamellarin cytotoxicity. Toxicology 2021; 462:152963. [PMID: 34560126 DOI: 10.1016/j.tox.2021.152963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
As a promising class of bioactive marine pyrrole alkaloids, lamellarins reportedly act on multiple targets to suppress the vitality of various cancer cell lines. Nevertheless, an in-depth understanding of the molecular mechanisms governing their cytotoxicity is still in demand. Here we report that while activating intrinsic apoptosis, up to 5 μM of lamellarins and their lactam-containing analogs, azalamellarins, also induced mitochondrial stress responses and autophagy in HeLa cervical cancer cells. Detailed characterization of the mitochondria in the treated cells revealed shifted abundance of the two optic atrophy protein 1 (Opa1) isoforms, disturbed morphology, and dissipated membrane potential, leading to PTEN-induced kinase-1 (PINK1) and microtubule-associated protein 1 light chain 3-II (LC3-II) accumulation as a molecular signature of mitophagy. Furthermore, an acute treatment with lamellarins also modulated cellular autophagy flux as evidenced by elevated LC3-II levels, LC3 puncta formation, and p62 degradation. Surprisingly, clustered regularly interspaced short palindromic repeats (CRISPR)-based suppression of autophagy transiently affected the number of apoptotic cells induced by these compounds. Our findings illustrate the potential of these alkaloids for further development into prospective anti-cancer agents.
Collapse
Affiliation(s)
- Pattarawut Sopha
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Nadgrita Phutubtim
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Bunkuea Chantrathonkul
- Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Montakarn Chittchang
- The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand.
| |
Collapse
|
241
|
Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P, Feng Y, Jian W. Myocardial Ischemia-Reperfusion Injury: Therapeutics from a Mitochondria-Centric Perspective. Cardiology 2021; 146:781-792. [PMID: 34547747 DOI: 10.1159/000518879] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
Coronary arterial disease is the most common cardiovascular disease. Myocardial ischemia-reperfusion injury caused by the initial interruption of organ blood flow and subsequent restoration of organ blood flow is an important clinical problem with various cardiac reperfusion strategies after acute myocardial infarction. Even though blood flow recovery is necessary for oxygen and nutrient supply, reperfusion causes pathological sequelae that lead to the aggravation of ischemic injury. At present, although it is known that injury will occur after reperfusion, clinical treatment always focuses on immediate recanalization. Mitochondrial fusion, fission, biogenesis, autophagy, and their intricate interaction constitute an effective mitochondrial quality control system. The mitochondrial quality control system plays an important role in maintaining cell homeostasis and cell survival. The removal of damaged, aging, and dysfunctional mitochondria is mediated by mitochondrial autophagy. With the help of appropriate changes in mitochondrial dynamics, new mitochondria are produced through mitochondrial biogenesis to meet the energy needs of cells. Mitochondrial dysfunction and the resulting oxidative stress have been associated with the pathogenesis of ischemia/reperfusion (I/R) injury, which play a crucial role in the pathophysiological process of myocardial injury. This review aimed at elucidating the mitochondrial quality control system and establishing the possibility of using mitochondria as a potential therapeutic target in the treatment of I/R injuries.
Collapse
Affiliation(s)
- Manli Zhou
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China,
| | - Yunfeng Yu
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiaoxin Luo
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianzhang Wang
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiaodong Lan
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yu Feng
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China.,National Key Discipline of Traditional Chinese Medicine Diagnostics, Hunan Provincial Key Laboratory, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
242
|
Morio A, Tsutsumi R, Kondo T, Miyoshi H, Kato T, Narasaki S, Satomi S, Nakaya E, Kuroda M, Sakaue H, Kitamura T, Tsutsumi YM. Leucine induces cardioprotection in vitro by promoting mitochondrial function via mTOR and Opa-1 signaling. Nutr Metab Cardiovasc Dis 2021; 31:2979-2986. [PMID: 34362635 DOI: 10.1016/j.numecd.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Coronary heart disease is a major global health concern. Further, severity of this condition is greatly influenced by myocardial ischemia/reperfusion (I/R) injury. Branched-chain amino acids (BCAAs) have cardioprotective effects against I/R via mammalian target of rapamycin (mTOR) activity, wherein Leu is considered to particularly regulate mTOR activation. However, the mechanism underlying cardioprotective effects of Leu via mTOR activity is not fully elucidated. Here, we aimed to study the signaling pathway of cardioprotection and mitochondrial function induced by Leu treatment. METHODS AND RESULTS Cardiac myocytes isolated from adult male Wistar rats were incubated and exposed to simulated I/R (SI/R) injury by replacing the air content. Cardiac myocytes were treated with Leu and subsequently, their survival rate was calculated. To elucidate the signaling pathway and mitochondrial function, immunoblots and mitochondrial permeability transition pore were examined. Cell survival rate was decreased with SI/R but improved by 160 μM Leu (38.5 ± 3.6% vs. 64.5 ± 4.2%, respectively, p < 0.001). Although rapamycin (mTOR inhibitor) prevented this cardioprotective effect induced by Leu, wortmannin (PI3K inhibitor) did not interfere with this effect. In addition, we indicated that overexpression of Opa-1 and mitochondrial function are ameliorated via Leu-induced mitochondrial biogenesis. In contrast, knockdown of Opa-1 suppressed Leu-induced cardioprotection. CONCLUSION Leu treatment is critical in rendering a cardioprotective effect exhibited by BCAAs via mTOR signaling. Furthermore, Leu improved mitochondrial function.
Collapse
Affiliation(s)
- Atsushi Morio
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Kondo
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan
| | - Hirotsugu Miyoshi
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan
| | - Takahiro Kato
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan
| | - Soshi Narasaki
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan
| | - Shiho Satomi
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan
| | - Erika Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuo M Tsutsumi
- Department of Anesthesiology and Critical Care, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
243
|
Jing X, Wang Q, Du T, Zhang W, Liu X, Liu Q, Li T, Wang G, Chen F, Cui X. Calcium chelator BAPTA‑AM protects against iron overload‑induced chondrocyte mitochondrial dysfunction and cartilage degeneration. Int J Mol Med 2021; 48:196. [PMID: 34468013 PMCID: PMC8416145 DOI: 10.3892/ijmm.2021.5029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease that is characterized by cartilage degradation. Iron deposition in the joints is common during the pathogenic progression of OA and recent studies have indicated that iron overload is an important contributor to OA progression. Calcium chelators have been reported to inhibit iron influx via modulating transferrin receptor protein 1 internalization, and they have been identified as a potential approach to the treatment of iron overload‑induced diseases. The aim of the present study was to investigate the effect of calcium chelators on the progression of iron overload‑induced OA. Primary chondrocytes were treated with various concentrations of ferric ammonium citrate (FAC) to mimic iron overload in vitro, followed by co‑treatment with the calcium chelator BAPTA acetoxymethyl ester (BAPTA‑AM). Subsequently, intracellular iron levels, cell viability, reactive oxygen species (ROS) levels, mitochondrial function and morphological changes, as well as MMP levels, were detected using commercial kits. It was demonstrated that FAC treatment significantly promoted chondrocyte apoptosis and the expression of MMPs, and these effects were reversed by co‑treatment with BAPTA‑AM. Moreover, BAPTA‑AM suppressed iron influx into chondrocytes and inhibited iron overload‑induced ROS production and mitochondrial dysfunction. These results indicated that calcium chelators may be of value in the treatment of iron metabolism‑related diseases and iron overload‑induced OA progression.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qiang Wang
- Department of Human Resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ting Du
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, P.R. China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qiang Liu
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, P.R. China
| | - Tao Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Guodong Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Feifei Chen
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
244
|
Kubat GB, Ulger O, Akin S. Requirements for successful mitochondrial transplantation. J Biochem Mol Toxicol 2021; 35:e22898. [PMID: 34435410 DOI: 10.1002/jbt.22898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
Maintenance of mitochondrial oxidative phosphorylation capacity and other mitochondrial functions are essential for the prevention of mitochondrial dysfunction-related diseases such as neurodegenerative, cardiovascular, and liver diseases. To date, no well-known treatment modality has been developed to prevent or reduce mitochondrial dysfunction. However, a novel approach that transplants fully functional mitochondria directly into defective cells has recently caught the attention of scientists. In this review, we provide an overview of the cell/tissue source of the mitochondria to prompt cell regeneration or tissue repair in vitro and in vivo applications. The animal and human models entail that effective procedures should be used in the isolation and confirmation of mitochondrial membrane potential and function. We believe that these procedures for mitochondrial transplantation for tissue or cell culture will confirm intact, viable, and free from contamination isolated mitochondria from the appropriate sources.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Exercise and Sports Physiology, Hacettepe University, Ankara, Turkey.,Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Oner Ulger
- Department Intensive Care, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Senay Akin
- Department of Exercise and Sports Physiology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
245
|
Zheng F, Aschner M, Li H. Evaluations of Environmental Pollutant-Induced Mitochondrial Toxicity Using Caenorhabditis elegans as a Model System. Methods Mol Biol 2021; 2326:33-46. [PMID: 34097259 DOI: 10.1007/978-1-0716-1514-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Environmental pollutants inevitably exert adverse effects on humans and other species. Quick identification and in-depth characterization of the pollutants are requisite objectives for clinicians and environmental health scientists. The nematode Caenorhabditis elegans has been utilized as a model organism for toxicity evaluation of environmental pollutants, due to its transparency, short lifespan, entire genome sequencing, and economical characteristics. However, few researchers have systematically addressed mitochondrial toxicity in response to toxicants, despite the critical role mitochondria play in energy production and respiration, as well as the generation of reactive oxygen species. Mitochondria are vulnerable to environmental pollutants, and their dysfunction contributes to cellular damage and toxicity in plethora of diseases. Here, we describe methods in step-by-step for mitochondrial toxicity evaluation in response to pollutants, including exposure of C. elegans to toxicants, mitochondrial ROS detection, mitochondrial morphology analysis, mitochondrial function analysis, such as ATP production and oxygen consumption, and gene expression studies, with the application of corresponding genetically modified strains.
Collapse
Affiliation(s)
- Fuli Zheng
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huangyuan Li
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
246
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacol Res 2021; 171:105783. [PMID: 34302976 DOI: 10.1016/j.phrs.2021.105783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Diabetes and Alzheimer's disease are common chronic illnesses in the United States and lack clearly demonstrated therapeutics. Mitochondria, the "powerhouse of the cell", is involved in the homeostatic regulation of glucose, energy, and reduction/oxidation reactions. The mitochondria has been associated with the etiology of metabolic and neurological disorders through a dysfunction of regulation of reactive oxygen species. Mitochondria-targeted chemicals, such as the Szeto-Schiller-31 peptide, have advanced therapeutic potential through the inhibition of oxidative stress and the restoration of normal mitochondrial function as compared to traditional antioxidants, such as vitamin E. In this article, we summarize the pathophysiological relevance of the mitochondria and the beneficial effects of Szeto-Schiller-31 peptide in the treatment of Diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Hadeel Aldhowayan
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
247
|
Zheng F, Chen P, Li H, Aschner M. Drp-1-Dependent Mitochondrial Fragmentation Contributes to Cobalt Chloride-Induced Toxicity in Caenorhabditis elegans. Toxicol Sci 2021; 177:158-167. [PMID: 32617571 DOI: 10.1093/toxsci/kfaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Excess cobalt may lead to metallosis, characterized by sensorineural hearing loss, visual, and cognitive impairment, and peripheral neuropathy. In the present study, we sought to address the molecular mechanisms of cobalt-induced neurotoxicity, using Caenorhabditis elegans as an experimental model. Exposure to cobalt chloride for 2 h significantly decreased the survival rate and lifespan in nematodes. Cobalt chloride exposure led to increased oxidative stress and upregulation of glutathione S-transferase 4. Consistently, its upstream regulator skn-1, a mammalian homolog of the nuclear factor erythroid 2-related factor 2, was activated. Among the mRNAs examined by quantitative real-time polymerase chain reactions, apoptotic activator egl-1, proapoptotic gene ced-9, autophagic (bec-1 and lgg-1), and mitochondrial fission regulator drp-1 were significantly upregulated upon cobalt exposure, concomitant with mitochondrial fragmentation, as determined by confocal microscopy. Moreover, drp-1 inhibition suppressed the cobalt chloride-induced reactive oxygen species generation, growth defects, and reduced mitochondrial fragmentation. Our novel findings suggest that the acute toxicity of cobalt is mediated by mitochondrial fragmentation and drp-1 upregulation.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
248
|
Sokanovic SJ, Baburski AZ, Kojic Z, Medar MLJ, Andric SA, Kostic TS. Aging-Related Increase of cGMP Disrupts Mitochondrial Homeostasis in Leydig Cells. J Gerontol A Biol Sci Med Sci 2021; 76:177-186. [PMID: 32459846 DOI: 10.1093/gerona/glaa132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Since mitochondria play an essential role in the testosterone biosynthesis, serve as power centers and are a source of oxidative stress, a possible mitochondrial dysfunction could be connected with decreased activity of Leydig cells and lowered testosterone production during aging. Here we chronologically analyzed age-related alterations of mitochondrial function in Leydig cells correlated by the progressive rise of cGMP signaling and with respect to testosterone synthesis. To target cGMP signaling in Leydig cells, acute or long-term in vivo or ex vivo treatments with sildenafil (phosphodiesterase 5 [PDE5] inhibitor) were performed. Aging-related accumulation of cGMP in the Leydig cells is associated with mitochondrial dysfunction illustrated by reduced ATP and steroid production, lowered O2 consumption, increased mitochondrial abundance and mtDNA copies number, decreased expression of genes that regulate mitochondrial biogenesis (Ppargc1a/PGC1a-Tfam-Nrf1/NRF1), mitophagy (Pink1), fusion (Mfn1, Opa1), and increased Nrf2/NRF2. Acute in vivo PDE5 inhibition overaccumulated cGMP and stimulated testosterone but reduced ATP production in Leydig cells from adult, middle-aged, and old rats. The increased ATP/O ratio observed in cells from old compared to adult rats was diminished after stimulation of cGMP signaling. Opposite, long-term PDE5 inhibition decreased cGMP signaling and improved mitochondrial function/dynamics in Leydig cells from old rats. Mitochondrial abundance in Leydig cells decreased while ATP levels increased. Chronic treatment elevated Tfam, Nrf1, Nrf2, Opa1, Mfn1, Drp1, and normalized Pink1 expression. Altogether, long-term PDE5 inhibition prevented age-related NO and cGMP elevation, improved mitochondrial dynamics/function, and testosterone production. The results pointed on cGMP signaling in Leydig cells as a target for pharmacological manipulation of aging-associated changes in mitochondrial function and testosterone production.
Collapse
Affiliation(s)
- Srdjan J Sokanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Aleksandar Z Baburski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Zvezdana Kojic
- Institute of Physiology, School of Medicine, University of Belgrade, Serbia
| | - Marija L J Medar
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Silvana A Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| | - Tatjana S Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia
| |
Collapse
|
249
|
Oxidative-Signaling in Neural Stem Cell-Mediated Plasticity: Implications for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10071088. [PMID: 34356321 PMCID: PMC8301193 DOI: 10.3390/antiox10071088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The adult mammalian brain is capable of generating new neurons from existing neural stem cells (NSCs) in a process called adult neurogenesis. This process, which is critical for sustaining cognition and mental health in the mature brain, can be severely hampered with ageing and different neurological disorders. Recently, it is believed that the beneficial effects of NSCs in the injured brain relies not only on their potential to differentiate and integrate into the preexisting network, but also on their secreted molecules. In fact, further insight into adult NSC function is being gained, pointing to these cells as powerful endogenous "factories" that produce and secrete a large range of bioactive molecules with therapeutic properties. Beyond anti-inflammatory, neurogenic and neurotrophic effects, NSC-derived secretome has antioxidant proprieties that prevent mitochondrial dysfunction and rescue recipient cells from oxidative damage. This is particularly important in neurodegenerative contexts, where oxidative stress and mitochondrial dysfunction play a significant role. In this review, we discuss the current knowledge and the therapeutic opportunities of NSC secretome for neurodegenerative diseases with a particular focus on mitochondria and its oxidative state.
Collapse
|
250
|
Wang C, Liu L, Wang Y, Xu D. Advances in the mechanism and treatment of mitochondrial quality control involved in myocardial infarction. J Cell Mol Med 2021; 25:7110-7121. [PMID: 34160885 PMCID: PMC8335700 DOI: 10.1111/jcmm.16744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are important organelles in eukaryotic cells. Normal mitochondrial homeostasis is subject to a strict mitochondrial quality control system, including the strict regulation of mitochondrial production, fission/fusion and mitophagy. The strict and accurate modulation of the mitochondrial quality control system, comprising the mitochondrial fission/fusion, mitophagy and other processes, can ameliorate the myocardial injury of myocardial ischaemia and ischaemia-reperfusion after myocardial infarction, which plays an important role in myocardial protection after myocardial infarction. Further research into the mechanism will help identify new therapeutic targets and drugs for the treatment of myocardial infarction. This article aims to summarize the recent research regarding the mitochondrial quality control system and its molecular mechanism involved in myocardial infarction, as well as the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yishu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|