201
|
Cheng HY, Wang Y, Tao X, Fan YF, Dai Y, Yang H, Ma XR. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genomics 2016; 17:423. [PMID: 27260799 PMCID: PMC4891822 DOI: 10.1186/s12864-016-2591-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Abscisic acid (ABA) is a key signaling molecule that mediates plant stress response by activating many stress-related genes. Although some miRNAs in plants are previously identified to respond to ABA, a comprehensive profile of ABA-responsive miRNAs has not yet been elucidated. RESULTS Here, we identified miRNAs responding to exogenous application of ABA, and their predicted target genes in the model plant organism tomato (Solanum lycopersicum). Deep sequencing of small RNAs from ABA-treated and untreated tomatoes revealed that miRNAs can be up- or down-regulated upon treatment with ABA. A total of 1067 miRNAs were detected (including 365 known and 702 candidate novel miRNAs), of those, 416 miRNAs which had an abundance over two TPM (transcripts per million) were selected for differential expression analysis. We identified 269 (180 known and 89 novel) miRNAs that respond to exogenous ABA treatment with a change in expression level of |log2FC|≥0.25. 136 of these miRNAs (90 known and 46 novel) were expressed at significantly different levels |log2FC|≥1 between treatments. Furthermore, stem-loop RT-PCR was applied to validate the RNA-seq data. Target prediction and analysis of the corresponding ABA-responsive transcriptome data uncovered that differentially expressed miRNAs are involved in condition stress and pathogen resistance, growth and development. Among them, approximately 90 miRNAs were predicted to target transcription factors and pathogen resistance genes. Some miRNAs had functional overlap in biotic and abiotic stress. Most of these miRNAs were down-regulated following exposure to exogenous ABA, while their related target genes were inversely up-regulated, which is consistent with their negative regulatory role in gene expression. CONCLUSIONS Exogenous ABA application influences the composition and expression level of tomato miRNAs. ABA mainly down-regulates miRNAs that their target genes involve in abiotic stress adaption and disease resistance. ABA might increase expression of stress-related genes via miRNA-mediated posttranscriptional regulation, and our results indicate that ABA treatment has the potential to improve both abiotic stress tolerance and pathogen resistance. This study presents a comprehensive profile of ABA-regulated miRNAs in the tomato, and provides a robust database for further investigation of ABA regulatory mechanisms.
Collapse
Affiliation(s)
- Hai-Yang Cheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Yan-Fen Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
202
|
Nie Z, Ren Z, Wang L, Su S, Wei X, Zhang X, Wu L, Liu D, Tang H, Liu H, Zhang S, Gao S. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize. PHYSIOLOGIA PLANTARUM 2016; 157:161-74. [PMID: 26572939 DOI: 10.1111/ppl.12409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is an essential element involved in numerous biochemical reactions. In plants, stress responses, such as the expression of microRNAs (miRNAs), are induced to help them adapt to low phosphate (Pi) concentrations. In this study, deep sequencing was performed using the roots and leaves of maize seedlings grown under low Pi concentrations to identify miRNAs that are differentially expressed during the early stages of Pi deficiency. Eight small RNA libraries were constructed, and 159 known miRNAs representing 32 miRNA families and 10 novel miRNAs. Members of the miR396 family were extremely abundant. Further, 28 Pi-responsive miRNAs were identified (27 known and 1 novel) of which 8 and 7 were significantly expressed exclusively in leaf and root tissues, respectively. The analysis of Pi-responsive miRNAs target genes suggested that most target genes functioning as transcription factors were involved in root and leaf development. The expression profiles of selected Pi-responsive miRNAs and target genes were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, we discuss the significance of the differences in expression patterns of these miRNAs during the early and later stages of Pi starvation. This study provides useful information concerning the role of miRNAs in response to Pi starvation and will further our understanding of the mechanisms governing Pi homeostasis in maize.
Collapse
Affiliation(s)
- Zhi Nie
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyong Ren
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Libo Wang
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunzong Su
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Wei
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Zhang
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Wu
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Liu
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haitao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Hailan Liu
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suzhi Zhang
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- Key laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
203
|
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YIC, San Segundo B. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 2016; 12:847-63. [PMID: 26083154 DOI: 10.1080/15476286.2015.1050577] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection.
Collapse
Affiliation(s)
- Patricia Baldrich
- a Centre for Research in Agricultural Genomics (CRAG) ; Edifici CRAG ; Barcelona , Spain
| | | | | | | | | | | |
Collapse
|
204
|
Wang Y, Lan Q, Zhao X, Xu W, Li F, Wang Q, Chen R. Comparative Profiling of microRNA Expression in Soybean Seeds from Genetically Modified Plants and their Near-Isogenic Parental Lines. PLoS One 2016; 11:e0155896. [PMID: 27214227 PMCID: PMC4876996 DOI: 10.1371/journal.pone.0155896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs). In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1). Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research.
Collapse
Affiliation(s)
- Yong Wang
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Qingkuo Lan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xin Zhao
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Feiwu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qinying Wang
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| |
Collapse
|
205
|
Yong-Villalobos L, Cervantes-Pérez SA, Gutiérrez-Alanis D, Gonzáles-Morales S, Martínez O, Herrera-Estrella L. Phosphate starvation induces DNA methylation in the vicinity of cis-acting elements known to regulate the expression of phosphate-responsive genes. PLANT SIGNALING & BEHAVIOR 2016; 11:e1173300. [PMID: 27185363 PMCID: PMC4977460 DOI: 10.1080/15592324.2016.1173300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphate (Pi) limitation is a constraint for plant growth in many natural and agricultural ecosystems. Plants possess adaptive mechanisms that enable them to cope with conditions of limited Pi supply, including a highly regulated genetic program controlling the expression of genes involved in different metabolic, signaling and development processes of plants. Recently, we showed that in response to phosphate limitation Arabidopsis thaliana sets specific DNA methylation patterns of genic features that often correlated with changes in gene expression. Our findings included, dynamic methylation changes in response to phosphate starvation and the observation that the expression of genes encoding DNA methyltransferases appear to be directly controlled by the key regulator PHOSPHATE RESPONSE 1 (PHR1). These results provide insight into how epigenetic marks can influence plant genomes and transcriptional programs to respond and adapt to harsh conditions. Here we present an analysis of DNA methylation in the upstream regions of low Pi responsive genes in Arabidopsis seedlings exposed to low Pi conditions. We found that hypo- and hyper-methylation in the vicinity of cognate binding sites for transcription factors known to regulate the phosphate starvation response clearly correlates with increased or decreased expression of low-Pi responsive genes.
Collapse
Affiliation(s)
- Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad, de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados, del IPN, Irapuato, Guanajuato, México
| | - Sergio Alan Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad, de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados, del IPN, Irapuato, Guanajuato, México
| | - Dolores Gutiérrez-Alanis
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad, de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados, del IPN, Irapuato, Guanajuato, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal, Cuernavaca, Morelos, México
| | - Sandra Gonzáles-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad, de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados, del IPN, Irapuato, Guanajuato, México
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad, de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados, del IPN, Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad, de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados, del IPN, Irapuato, Guanajuato, México
- Luis Herrera-Estrella ;
| |
Collapse
|
206
|
Wang X, Li X, Zhang S, Korpelainen H, Li C. Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. TREE PHYSIOLOGY 2016; 36:628-42. [PMID: 27095258 PMCID: PMC4886292 DOI: 10.1093/treephys/tpw019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/14/2016] [Indexed: 05/20/2023]
Abstract
The aim of this study was to reveal mechanisms responsible for nitrogen (N) stress in two contrasting Populus clones. Leaves of Nanlin 1388 (N stress-insensitive clone hybrids of Populus deltoides Bart.CV. × Populus euramericana (Dode) Guineir CV) and Nanlin 895 (N stress-sensitive clone hybrids of Populus deltoides Bart.CV. × Populus euramericana (Dode) Guineir CV) were harvested and analyzed. Different responses visible in photosynthesis, N and carbon contents, physiological traits, and chlorophyll were observed. The Solexa/Illumina's digital gene expression system was used to investigate differentially expressed miRNAs and mRNAs under N stress. Target profiling, and biological network and function analyses were also performed. Randomly selected mRNAs and miRNAs were validated by quantitative reverse transcription polymerase chain reaction. In all, 110 Nanlin 1388 and 122 Nanlin 895 miRNAs were differentially expressed, among which 34 and 23 miRNAs were newly found in the two clones, respectively. Under N stress, a total of 329 and 98 mRNAs were regulated in N stress-insensitive and -sensitive clones, respectively. Notably, the miR396 family and its regulated mRNAs were altered in both clones under N stress, while miR646 was regulated only in the N stress-insensitive clone (Nanlin 1388), and miR156, miR319 and miR393 in the N stress-sensitive clone (Nanlin 895). Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses also proved several clone-specific functions and pathways. These findings may be significant for understanding the genetic responses of Populus to N stress.
Collapse
Affiliation(s)
- Xiaoli Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Guizhou Institute of Prataculture, Guizhou Academy of Agriculture Science, Guiyang 550006, Guizhou, China
| | - Xiaodong Li
- Guizhou Institute of Prataculture, Guizhou Academy of Agriculture Science, Guiyang 550006, Guizhou, China
| | - Sheng Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Chunyang Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| |
Collapse
|
207
|
Yoo MJ, Ma T, Zhu N, Liu L, Harmon AC, Wang Q, Chen S. Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells. PLANT MOLECULAR BIOLOGY 2016; 91:211-27. [PMID: 26898295 DOI: 10.1007/s11103-016-0456-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/15/2016] [Indexed: 05/22/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) proteins constitute a small plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and plant responses to biotic and abiotic stresses. Although SnRK2s have been well-studied in Arabidopsis thaliana, little is known about SnRK2s in Brassica napus. Here we identified 30 putative sequences encoding 10 SnRK2 proteins in the B. napus genome and the expression profiles of a subset of 14 SnRK2 genes in guard cells of B. napus. In agreement with its polyploid origin, B. napus maintains both homeologs from its diploid parents. The results of quantitative real-time PCR (qRT-PCR) and reanalysis of RNA-Seq data showed that certain BnSnRK2 genes were commonly expressed in leaf tissues in different varieties of B. napus. In particular, qRT-PCR results showed that 12 of the 14 BnSnRK2s responded to drought stress in leaves and in ABA-treated guard cells. Among them, BnSnRK2.4 and BnSnRK2.6 were of interest because of their robust responsiveness to ABA treatment and drought stress. Notably, BnSnRK2 genes exhibited up-regulation of different homeologs, particularly in response to abiotic stress. The homeolog expression bias in BnSnRK2 genes suggests that parental origin of genes might be responsible for efficient regulation of stress responses in polyploids. This work has laid a foundation for future functional characterization of the different BnSnKR2 homeologs in B. napus and its parents, especially their functions in guard cell signaling and stress responses.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Tianyi Ma
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Lihong Liu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Alice C Harmon
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
208
|
Ye W, Ma W. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Curr Opin Microbiol 2016; 32:1-6. [PMID: 27104934 DOI: 10.1016/j.mib.2016.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
Abstract
Filamentous eukaryotic pathogens including fungi and oomycetes are major threats of plant health. During the co-evolutionary arms race with the hosts, these pathogens have evolved a large repertoire of secreted virulence proteins, called effectors, to facilitate colonization and infection. Many effectors are believed to directly manipulate targeted processes inside the host cells; and a fundamental function of the effectors is to dampen immunity. Recent evidence suggests that the destructive oomycete pathogens in the genus Phytophthora encode RNA silencing suppressors. These effectors play an important virulence role during infection, likely through their inhibitory effect on host small RNA-mediated defense.
Collapse
Affiliation(s)
- Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA; Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
209
|
Baldrich P, Hsing YIC, San Segundo B. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice. Genome Biol Evol 2016; 8:1104-14. [PMID: 27190137 PMCID: PMC4860694 DOI: 10.1093/gbe/evw062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional gene silencing in eukaryotes. They are frequently clustered in the genomes of animals and can be independently transcribed or simultaneously transcribed into single polycistronic transcripts. Only a few miRNA clusters have been described in plants, and most of them are generated from independent transcriptional units. Here, we used a combination of bioinformatic tools and experimental analyses to discover new polycistronic miRNAs in rice. A genome-wide analysis of clustering patterns of MIRNA loci in the rice genome was carried out using a criterion of 3 kb as the maximal distance between two miRNAs. This analysis revealed 28 loci with the ability to form the typical hairpin structure of miRNA precursors in which 2 or more mature miRNAs mapped along the same structure. RT-PCR provided evidence for the polycistronic nature of seven miRNA precursors containing homologous or nonhomologous miRNA species. Polycistronic miRNAs and candidate polycistronic miRNAs are located across different rice chromosomes, except chromosome 12, and resided in both duplicated and nonduplicated chromosomal regions. Finally, most polycistronic and candidate polycistronic miRNAs showed a pattern of conservation in the genome of rice species with an AA genome. The diversity in the organization of MIR genes that are transcribed as polycistrons suggests a versatile mechanism for the control of gene expression in different biological processes and supports additional levels of complexity in miRNA functioning in plants.
Collapse
Affiliation(s)
- Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | | | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| |
Collapse
|
210
|
In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 2016; 17:189-201. [PMID: 27068847 DOI: 10.1007/s10142-016-0488-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Plant responses to drought stress are regulated at the transcriptional and post-transcriptional levels through noncoding endogenous microRNAs. These microRNAs play key roles in gene expression, mainly by down-regulating target mRNAs. In this work, an in silico search and validation for microRNAs related to drought response in peach ('G.H. Hill'), almond ('Sefied') and an interspecific peach-almond hybrid ('GN 15') has been performed. We used qPCR to analyse the gene expression of several miRNAs described as being related to drought response in peach, including miR156, miR159, miR160, miR167, miR171, miR172, miR398, miR403, miR408, miR842 and miR2275 under mild and severe water deficit. These miRNAs were in silico selected on the basis of previous works, their conservation in plants and their drought response. qPCR analysis confirmed the implication of these miRNAs in the dehydration stress response in the three assayed genotypes. Comparison of miRNA expression patterns in the three evaluated genotypes indicated that the hybrid GN 15 showed higher expression levels of specific miRNAs which should be related to the observed drought tolerance. mRNA target transcripts of the miRNAs studied were predicted using the Rose database, which includes transcription factors that regulate plant growth and development. In addition, results showed that the promoter region contains responsive elements to hormone-mediated regulatory elements. Network analysis not only unravelled the interaction between miRNAs and their predicted gene targets but also highlighted the roles of miRNAs in response to drought stress.
Collapse
|
211
|
Melnikova NV, Dmitriev AA, Belenikin MS, Koroban NV, Speranskaya AS, Krinitsina AA, Krasnov GS, Lakunina VA, Snezhkina AV, Sadritdinova AF, Kishlyan NV, Rozhmina TA, Klimina KM, Amosova AV, Zelenin AV, Muravenko OV, Bolsheva NL, Kudryavtseva AV. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:399. [PMID: 27092149 PMCID: PMC4821855 DOI: 10.3389/fpls.2016.00399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars.
Collapse
Affiliation(s)
- Nataliya V. Melnikova
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexey A. Dmitriev
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Maxim S. Belenikin
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- Department of Higher Plants, Lomonosov Moscow State UniversityMoscow, Russia
| | - Nadezhda V. Koroban
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Speranskaya
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- Department of Higher Plants, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - George S. Krasnov
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Valentina A. Lakunina
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anastasiya V. Snezhkina
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Asiya F. Sadritdinova
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Natalya V. Kishlyan
- Laboratory of Genetics, All-Russian Research Institute for FlaxTorzhok, Russia
| | - Tatiana A. Rozhmina
- Laboratory of Genetics, All-Russian Research Institute for FlaxTorzhok, Russia
| | - Kseniya M. Klimina
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
| | - Alexandra V. Amosova
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexander V. Zelenin
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna V. Kudryavtseva
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
212
|
Mason GA, Lemus T, Queitsch C. The Mechanistic Underpinnings of an ago1-Mediated, Environmentally Dependent, and Stochastic Phenotype. PLANT PHYSIOLOGY 2016; 170:2420-31. [PMID: 26872948 PMCID: PMC4825122 DOI: 10.1104/pp.15.01928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 05/07/2023]
Abstract
The crucial role of microRNAs in plant development is exceedingly well supported; their importance in environmental robustness is studied in less detail. Here, we describe a novel, environmentally dependent phenotype in hypomorphic argonaute1 (ago1) mutants and uncover its mechanistic underpinnings in Arabidopsis (Arabidopsis thaliana). AGO1 is a key player in microRNA-mediated gene regulation. We observed transparent lesions on embryonic leaves of ago1 mutant seedlings. These lesions increased in frequency in full-spectrum light. Notably, the lesion phenotype was most environmentally responsive in ago1-27 mutants. This allele is thought to primarily affect translational repression, which has been linked with the response to environmental perturbation. Using several lines of evidence, we found that these lesions represent dead and dying tissues due to an aberrant hypersensitive response. Although all three canonical defense hormone pathways (salicylic acid, jasmonate, and jasmonate/ethylene pathways) were up-regulated in ago1 mutants, we demonstrate that jasmonate perception drives the lesion phenotype. Double mutants of ago1 and coronatine insensitive1, the jasmonate receptor, showed greatly decreased frequency of affected seedlings. The chaperone HEAT SHOCK PROTEIN 90 (HSP90), which maintains phenotypic robustness in the face of environmental perturbations, is known to facilitate AGO1 function. HSP90 perturbation has been shown previously to up-regulate jasmonate signaling and to increase plant resistance to herbivory. Although single HSP90 mutants showed subtly elevated levels of lesions, double mutant analysis disagreed with a simple epistatic model for HSP90 and AGO1 interaction; rather, both appeared to act nonadditively in producing lesions. In summary, our study identifies AGO1 as a major, largely HSP90-independent, factor in providing environmental robustness to plants.
Collapse
Affiliation(s)
- G Alex Mason
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Tzitziki Lemus
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Christine Queitsch
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| |
Collapse
|
213
|
Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 2016; 6:22900. [PMID: 26962011 PMCID: PMC4790630 DOI: 10.1038/srep22900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying tolerance to B-toxicity in plants are still controversial. Our previous studies indicated that B-toxicity is mainly limited to leaves in Citrus and that alternations of cell-wall structure in vascular bundles are involved in tolerance to B-toxicity. Here, miRNAs and their expression patterns were first identified in B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves via high-throughput sequencing. Candidate miRNAs were then verified with molecular and anatomical approaches. The results showed that 51 miRNAs in C. grandis and 20 miRNAs in C. sinensis were differentially expressed after B-toxic treatment. MiR395a and miR397a were the most significantly up-regulated miRNAs in B-toxic C. grandis leaves, but both were down-regulated in B-toxic C. sinensis leaves. Four auxin response factor genes and two laccase (LAC) genes were confirmed through 5′-RACE to be real targets of miR160a and miR397a, respectively. Up-regulation of LAC4 resulted in secondary deposition of cell-wall polysaccharides in vessel elements of C. sinensis, whereas down-regulation of both LAC17 and LAC4, led to poorly developed vessel elements in C. grandis. Our findings demonstrated that miR397a plays a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, both of which are responsible for secondary cell-wall synthesis.
Collapse
Affiliation(s)
- Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Shou-Xing Wen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China
| | - Xiao-Min Chen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China.,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
214
|
Chand SK, Nanda S, Joshi RK. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L). FRONTIERS IN PLANT SCIENCE 2016; 7:258. [PMID: 26973694 PMCID: PMC4777725 DOI: 10.3389/fpls.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/16/2016] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.
Collapse
|
215
|
Sajeevan R, Nataraja KN. Molecular cloning and characterization of a novel basic helix–loop–helix-144 (bHLH144)-like transcription factor from Morus alba (L.). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
216
|
Baek D, Chun HJ, Kang S, Shin G, Park SJ, Hong H, Kim C, Kim DH, Lee SY, Kim MC, Yun DJ. A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling. Mol Cells 2016; 39:111-8. [PMID: 26674968 PMCID: PMC4757798 DOI: 10.14348/molcells.2016.2188] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022] Open
Abstract
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Hyun Jin Chun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Songhwa Kang
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Gilok Shin
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Su Jung Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Chanmin Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 604-714,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
217
|
Yang J, Zhang F, Li J, Chen JP, Zhang HM. Integrative Analysis of the microRNAome and Transcriptome Illuminates the Response of Susceptible Rice Plants to Rice Stripe Virus. PLoS One 2016; 11:e0146946. [PMID: 26799317 PMCID: PMC4723043 DOI: 10.1371/journal.pone.0146946] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most serious rice viruses in East Asia. To investigate how rice responds to RSV infection, we integrated miRNA expression with parallel mRNA transcription profiling by deep sequencing. A total of 570 miRNAs were identified of which 69 miRNAs (56 up-regulated and 13 down-regulated) were significantly modified by RSV infection. Digital gene expression (DGE) analysis showed that 1274 mRNAs (431 up-regulated and 843 down-regulated genes) were differentially expressed as a result of RSV infection. The differential expression of selected miRNAs and mRNAs was confirmed by qRT-PCR. Gene ontology (GO) and pathway enrichment analysis showed that a complex set of miRNA and mRNA networks were selectively regulated by RSV infection. In particular, 63 differentially expressed miRNAs were found to be significantly and negatively correlated with 160 target mRNAs. Interestingly, 22 up-regulated miRNAs were negatively correlated with 24 down-regulated mRNAs encoding disease resistance-related proteins, indicating that the host defense responses were selectively suppressed by RSV infection. The suppression of both osa-miR1423-5p- and osa-miR1870-5p-mediated resistance pathways was further confirmed by qRT-PCR. Chloroplast functions were also targeted by RSV, especially the zeaxanthin cycle, which would affect the stability of thylakoid membranes and the biosynthesis of ABA. All these modifications may contribute to viral symptom development and provide new insights into the pathogenicity mechanisms of RSV.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: (HZ); (JC)
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: (HZ); (JC)
| |
Collapse
|
218
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
219
|
Nawaz MA, Imtiaz M, Kong Q, Cheng F, Ahmed W, Huang Y, Bie Z. Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. FRONTIERS IN PLANT SCIENCE 2016; 7:1457. [PMID: 27818663 PMCID: PMC5073839 DOI: 10.3389/fpls.2016.01457] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/12/2016] [Indexed: 05/06/2023]
Abstract
Grafting is a centuries-old technique used in plants to obtain economic benefits. Grafting increases nutrient uptake and utilization efficiency in a number of plant species, including fruits, vegetables, and ornamentals. Selected rootstocks of the same species or close relatives are utilized in grafting. Rootstocks absorb more water and ions than self-rooted plants and transport these water and ions to the aboveground scion. Ion uptake is regulated by a complex communication mechanism between the scion and rootstock. Sugars, hormones, and miRNAs function as long-distance signaling molecules and regulate ion uptake and ion homeostasis by affecting the activity of ion transporters. This review summarizes available information on the effect of rootstock on nutrient uptake and utilization and the mechanisms involved. Information on specific nutrient-efficient rootstocks for different crops of commercial importance is also provided. Several other important approaches, such as interstocking (during double grafting), inarching, use of plant-growth-promoting rhizobacteria, use of arbuscular mycorrhizal fungi, use of plant growth substances (e.g., auxin and melatonin), and use of genetically engineered rootstocks and scions (transgrafting), are highlighted; these approaches can be combined with grafting to enhance nutrient uptake and utilization in commercially important plant species. Whether the rootstock and scion affect each other's soil microbiota and their effect on the nutrient absorption of rootstocks remain largely unknown. Similarly, the physiological and molecular bases of grafting, crease formation, and incompatibility are not fully identified and require investigation. Grafting in horticultural crops can help reveal the basic biology of grafting, the reasons for incompatibility, sensing, and signaling of nutrients, ion uptake and transport, and the mechanism of heavy metal accumulation and restriction in rootstocks. Ion transporter and miRNA-regulated nutrient studies have focused on model and non-grafted plants, and information on grafted plants is limited. Such information will improve the development of nutrient-efficient rootstocks.
Collapse
Affiliation(s)
- Muhammad A. Nawaz
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
- Department of Horticulture, University College of Agriculture, University of SargodhaSargodha, Pakistan
| | - Muhammad Imtiaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Qiusheng Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
| | - Fei Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
| | - Waqar Ahmed
- United States Agency for International Development (USDA) and Cultivating New Frontiers in Agriculture (CNFA)Lahore, Pakistan
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
- *Correspondence: Yuan Huang
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
- Zhilong Bie
| |
Collapse
|
220
|
Qu D, Yan F, Meng R, Jiang X, Yang H, Gao Z, Dong Y, Yang Y, Zhao Z. Identification of MicroRNAs and Their Targets Associated with Fruit-Bagging and Subsequent Sunlight Re-exposure in the "Granny Smith" Apple Exocarp Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:27. [PMID: 26870053 PMCID: PMC4734179 DOI: 10.3389/fpls.2016.00027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/09/2016] [Indexed: 05/06/2023]
Abstract
Bagged fruits of green apple cultivar "Granny Smith" have been found to turn cardinal red after debagging during fruit-ripening in the Loess Plateau region of China. To understand this phenomenon at post-transcriptional level, we have investigated the roles of microRNAs (miRNAs) in response to debagging. Three small RNA libraries were primarily constructed from peels of "Granny Smith" apples subjected to bagging followed by sunlight re-exposure treatments (0, 6 h, 1 day) (debagging), and from peels of apples without any bagging treatments (0, 6 h, 1 day). 201 known miRNAs belonging to 43 miRNA families and 220 novel miRNAs were identified via high-throughput sequencing. Some miRNAs were found to be differentially expressed after debagging, which indicated that miRNAs affected anthocyanin accumulation through their target genes in mature apple. To further explore the effect of debagging on miRNAs regulating the expression of anthocyanin regulatory genes, four miRNAs and their target genes regulating anthocyanin accumulation, miR156, miR828, miR858, and miR5072, were compared between green cultivar "Granny Smith" and red cultivar "Starkrimson." Results showed that mdm-miR828 and mdm-miR858 regulated anthocyanin contents in both apple cultivars, while mdm-miR156 only affected anthocyanin accumulation in "Granny Smith," and miR5072 affected anthocyanin accumulation in "Starkrimson." Additional analysis of gene ontology for the differentially expressed miRNAs after debagging treatments and their predicted target genes showed that they were involved in photo-protective response after debagging from 0 h to 1 day; they might play important roles in fruit development and adaptation to high light stress.
Collapse
Affiliation(s)
- Dong Qu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Fei Yan
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of TechnologyHanzhong, China
| | - Rui Meng
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Xiaobing Jiang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Huijuan Yang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Ziyi Gao
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Yazhou Yang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Apple E&T Research Centre of Shaanxi ProvinceYangling, China
- *Correspondence: Zhengyang Zhao ;
| |
Collapse
|
221
|
Park H, Kim WY, Pardo J, Yun DJ. Molecular Interactions Between Flowering Time and Abiotic Stress Pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:371-412. [DOI: 10.1016/bs.ircmb.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
222
|
Khaldun ABM, Huang W, Lv H, Liao S, Zeng S, Wang Y. Comparative Profiling of miRNAs and Target Gene Identification in Distant-Grafting between Tomato and Lycium (Goji Berry). FRONTIERS IN PLANT SCIENCE 2016; 7:1475. [PMID: 27803702 PMCID: PMC5067468 DOI: 10.3389/fpls.2016.01475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/16/2016] [Indexed: 05/10/2023]
Abstract
Local translocation of small RNAs between cells is proved. Long distance translocation between rootstock and scion is also well documented in the homo-grafting system, but the process in distant-grafting is widely unexplored where rootstock and scion belonging to different genera. Micro RNAs are a class of small, endogenous, noncoding, gene silencing RNAs that regulate target genes of a wide range of important biological pathways in plants. In this study, tomato was grafted onto goji (Lycium chinense Mill.) to reveal the insight of miRNAs regulation and expression patterns within a distant-grafting system. Goji is an important traditional Chinese medicinal plant with enriched phytochemicals. Illumina sequencing technology has identified 68 evolutionary known miRNAs of 37 miRNA families. Moreover, 168 putative novel miRNAs were also identified. Compared with control tomato, 43 (11 known and 32 novels) and 163 (33 known and 130 novels) miRNAs were expressed significantly different in shoot and fruit of grafted tomato, respectively. The fruiting stage was identified as the most responsive in the distant-grafting approach and 123 miRNAs were found as up-regulating in the grafted fruit which is remarkably higher compare to the grafted shoot tip (28). Potential targets of differentially expressed miRNAs were found to be involved in diverse metabolic and regulatory pathways. ADP binding activities, molybdopterin synthase complex and RNA helicase activity were found as enriched terms in GO (Gene Ontology) analysis. Additionally, "metabolic pathways" was revealed as the most significant pathway in KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The information of the small RNA transcriptomes that are obtained from this study might be the first miRNAs elucidation for a distant-grafting system, particularly between goji and tomato. The results from this study will provide the insights into the molecular aspects of miRNA-mediated regulation in the medicinal plant goji, and in grafted tomato. Noteworthy, it would provide a basis how miRNA signals could exchange between rootstock and scion, and the relevance to diverse biological processes.
Collapse
Affiliation(s)
- A. B. M. Khaldun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
- University of the Chinese Academy of SciencesBeijing, China
- Oilseed Research Center, Bangladesh Agricultural Research Institute (BARI)Joydebpur, Gazipur, Bangladesh
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
| | - Sihong Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
- University of the Chinese Academy of SciencesBeijing, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden (CAS)Guangzhou, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden (CAS)Guangzhou, China
- Northwest Center for Agrobiotechnology (Ningxia), CASBeijing, China
- *Correspondence: Ying Wang
| |
Collapse
|
223
|
Jian H, Wang J, Wang T, Wei L, Li J, Liu L. Identification of Rapeseed MicroRNAs Involved in Early Stage Seed Germination under Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:658. [PMID: 27242859 PMCID: PMC4865509 DOI: 10.3389/fpls.2016.00658] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/29/2016] [Indexed: 05/18/2023]
Abstract
Drought and salinity are severe and wide-ranging abiotic stresses that substantially affect crop germination, development and productivity, and seed germination is the first critical step in plant growth and development. To comprehensively investigate small-RNA targets and improve our understanding of miRNA-mediated post-transcriptional regulation networks during Brassica napus seed imbibition under drought and salt stresses, we constructed three small-RNA libraries from B. napus variety ZS11 embryos exposed to salt (200 mM NaCl, denoted "S"), drought (200 g L(-1) PEG-6000, denoted "D"), and distilled water (denoted "CK") during imbibition and sequenced them using an Illumina Genome Analyzer. A total of 11,528,557, 12,080,081, and 12,315,608 raw reads were obtained from the CK, D, and S libraries, respectively. Further analysis identified 85 known miRNAs belonging to 31 miRNA families and 882 novel miRNAs among the three libraries. Comparison of the D and CK libraries revealed significant down-regulation of six miRNA families, miR156, miR169, miR860, miR399, miR171, and miR395, whereas only miR172 was significantly up-regulated. In contrast, comparison of the S library with the CK library showed significant down-regulation of only two miRNA families: miRNA393 and miRNA399. Putative targets for 336, 376, and 340 novel miRNAs were successfully predicted in the CK, D, and S libraries, respectively, and 271 miRNA families and 20 target gene families [including disease resistance protein (DIRP), drought-responsive family protein (DRRP), early responsive to dehydration stress protein (ERD), stress-responsive alpha-beta barrel domain protein (SRAP), and salt tolerance homolog2 (STH2)] were confirmed as being core miRNAs and genes involved in the seed imbibition response to salt and drought stresses. The sequencing results were partially validated by quantitative RT-PCR for both conserved and novel miRNAs as well as the predicted target genes. Our data suggest that diverse and complex miRNAs are involved in seed imbibition, indicating that miRNAs are involved in plant hormone regulation, and may play important roles during seed germination under salt- or drought-stress conditions.
Collapse
|
224
|
Chen L, Luan Y, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. PLANT CELL REPORTS 2015; 34:2013-25. [PMID: 26242449 DOI: 10.1007/s00299-015-1847-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/27/2015] [Accepted: 07/15/2015] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Overexpression of Sp-miR396a-5p in tobacco increased tolerance to salt, drought, cold stress and susceptibility to Phytophthora nicotianae infection. MicroRNA396 (miR396) is one of the conserved microRNA families in plants, and it targeted growth-regulating factors (GRFs) family. The GRF transcription factors are associated with growth and stress responses. However, the molecular mechanisms of miR396 responding to environmental stresses are elusive. The purpose of this study was to explore the function of tomato miR396a-5p (Sp-miR396a-5p) in Solanaceae responses to abiotic and biotic stresses. We showed that Sp-miR396a-5p transcript levels were up-regulated under salt and drought stresses and down-regulated after Phytophthora infestans (P. infestans) infection. Consistently, overexpression of Sp-miR396a-5p in tobacco enhanced its tolerance to salt, drought and cold stresses. Additionally, the expression of Sp-miR396a-5p was found to be down-regulated under pathogen-related biotic stress. Tobacco plants overexpressing Sp-miR396a-5p showed increased susceptibility to Phytophthora nicotianae (P. nicotianae) infection. Physiological analysis indicated that Sp-miR396a-5p overexpression enhanced osmoregulation and decreased production of reactive oxygen species (ROS). Furthermore, four Sp-miR396a-5p target genes, NtGRF1, NtGRF3, NtGRF7 and NtGRF8, were down-regulated in these plants. Our results suggested that Sp-miR396a-5p plays critical roles in both abiotic stresses through targeting NtGRF7-regulated expression of osmotic stress-responsive genes and pathogen infection via the regulatory networks of NtGRF1 and NtGRF3.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yushi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Junmiao Zhai
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| |
Collapse
|
225
|
Fan K, Fan D, Ding Z, Su Y, Wang X. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:350-360. [PMID: 26520678 DOI: 10.1016/j.plaphy.2015.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The nitrogen source affects the growth of tea plants and regulates the accumulation of catechins in the leaves. In this report, we assessed the influences of NH4(+) and NO3(-) on plant growth, catechins accumulation and associated gene expression. Compared with the preferential nitrogen source NH4(+), when NO3(-) was supplied as the sole nitrogen source, tea plants showed similar symptoms with the nitrogen-free treatments and showed lower nitrogen, free amino acid accumulation, chlorophyll content and biomass gain, indicating NO3(-) was not efficiently used by these plants. However, the total shoot catechins content was significantly higher for NO3(-) treatments than that for NH4(+) treatment or combined NH4(+)+NO3(-) treatment, suggesting that, in addition to its influence on plant growth, the nitrogen form regulated the accumulation of catechins in tea. The expression of catechins biosynthesis-related genes was associated with the regulation of catechins accumulation and composition changes mediated by nitrogen form. PAL, CHS, CHI, and DFR genes exhibited higher expression levels in plants supplied with NO3(-), in which the transcript level of DFR in the shoots was significantly correlated with the catechins content. In the end, we identified a new function for the Cs-miR156, which was drastically induced through NH4(+). Moreover, a potential mechanism of the Cs-miR156 pathway in regulating catechins biosynthesis in tea plants has been suggested, with particular respect to nitrogen forms. Cs-miR156 might repress the expression of the target gene SPL to regulate the DFR gene, which plays a vital role in catechins biosynthesis.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Dongmei Fan
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zhaotang Ding
- Institute of Tea Science, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xiaochang Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
226
|
Tripathi A, Goswami K, Sanan-Mishra N. Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 2015; 6:286. [PMID: 26578966 PMCID: PMC4620411 DOI: 10.3389/fphys.2015.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRs) are a class of 21-24 nucleotide long non-coding RNAs responsible for regulating the expression of associated genes mainly by cleavage or translational inhibition of the target transcripts. With this characteristic of silencing, miRs act as an important component in regulation of plant responses in various stress conditions. In recent years, with drastic change in environmental and soil conditions different type of stresses have emerged as a major challenge for plants growth and productivity. The identification and profiling of miRs has itself been a challenge for research workers given their small size and large number of many probable sequences in the genome. Application of computational approaches has expedited the process of identification of miRs and their expression profiling in different conditions. The development of High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the global profiles of the miRs for understanding their mode of action in plants. Introduction of various bioinformatics databases and tools have revolutionized the study of miRs and other small RNAs. This review focuses the role of bioinformatics approaches in the identification and study of the regulatory roles of plant miRs in the adaptive response to stresses.
Collapse
Affiliation(s)
- Anita Tripathi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Kavita Goswami
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| |
Collapse
|
227
|
Wei X, Zhang X, Yao Q, Yuan Y, Li X, Wei F, Zhao Y, Zhang Q, Wang Z, Jiang W, Zhang X. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. FRONTIERS IN PLANT SCIENCE 2015; 6:894. [PMID: 26557132 PMCID: PMC4617173 DOI: 10.3389/fpls.2015.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/08/2015] [Indexed: 05/23/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H (+) -ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qiuju Yao
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Fang Wei
- College of Life Science, Zhengzhou UniversityZhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Qiang Zhang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Wusheng Jiang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| |
Collapse
|
228
|
Fan C, Hao Z, Yan J, Li G. Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics 2015; 16:793. [PMID: 26470872 PMCID: PMC4608266 DOI: 10.1186/s12864-015-2024-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Background Long intergenic noncoding RNAs (lincRNAs) are endogenous non-coding RNAs (ncRNAs) that are transcribed from ‘intergenic’ regions of the genome and may play critical roles in regulating gene expression through multiple RNA-mediated mechanisms. MicroRNAs (miRNAs) are single-stranded small ncRNAs of approximately 21–24 nucleotide (nt) that are involved in transcriptional and post-transcriptional gene regulation. While miRNAs functioning as mRNA repressors have been studied in detail, the influence of miRNAs on lincRNAs has seldom been investigated in plants. Methods LincRNAs as miRNA targets or decoys were predicted via GSTAr.pl script with a set of rules, and lincRNAs as miRNA targets were validated by degradome data. Conservation analysis of lincRNAs as miRNA targets or decoys were conducted using BLASTN and MAFFT. The function of lincRNAs as miRNA targets were predicted via a lincRNA-mRNA co-expression network, and the function of lincRNAs as miRNA decoys were predicted according to the competing endogenous RNA (ceRNA) hypothesis. Results In this work, we developed a computational method and systematically predicted 466 lincRNAs as 165 miRNA targets and 86 lincRNAs as 58 miRNA decoys in maize (Zea mays L.). Furthermore, 34 lincRNAs predicted as 33 miRNA targets were validated based on degradome data. We found that lincRNAs acting as miRNA targets or decoys are a common phenomenon, which indicates that the regulated networks of miRNAs also involve lincRNAs. To elucidate the function of lincRNAs, we reconstructed a miRNA-regulated network involving 78 miRNAs, 117 lincRNAs and 8834 mRNAs. Based on the lincRNA-mRNA co-expression network and the competing endogenous RNA hypothesis, we predicted that 34 lincRNAs that function as miRNA targets and 86 lincRNAs that function as miRNA decoys participate in cellular and metabolic processes, and play role in catalytic activity and molecular binding functions. Conclusions This work provides a comprehensive view of miRNA-regulated networks and indicates that lincRNAs can participate in a layer of regulatory interactions as miRNA targets or decoys in plants, which will enable in-depth functional analysis of lincRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2024-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunyan Fan
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhiqiang Hao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jiahong Yan
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Guanglin Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
229
|
Yu H, Cong L, Zhu Z, Wang C, Zou J, Tao C, Shi Z, Lu X. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Gene 2015; 571:221-30. [DOI: 10.1016/j.gene.2015.06.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/06/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
|
230
|
Bokszczanin KL, Krezdorn N, Fragkostefanakis S, Müller S, Rycak L, Chen Y, Hoffmeier K, Kreutz J, Paupière MJ, Chaturvedi P, Iannacone R, Müller F, Bostan H, Chiusano ML, Scharf KD, Rotter B, Schleiff E, Winter P. Identification of novel small ncRNAs in pollen of tomato. BMC Genomics 2015; 16:714. [PMID: 26385469 PMCID: PMC4575465 DOI: 10.1186/s12864-015-1901-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The unprecedented role of sncRNAs in the regulation of pollen biogenesis on both transcriptional and epigenetic levels has been experimentally proven. However, little is known about their global regulation, especially under stress conditions. We used tomato pollen in order to identify pollen stage-specific sncRNAs and their target mRNAs. We further deployed elevated temperatures to discern stress responsive sncRNAs. For this purpose high throughput sncRNA-sequencing as well as Massive Analysis of cDNA Ends (MACE) were performed for three-replicated sncRNAs libraries derived from tomato tetrad, post-meiotic, and mature pollen under control and heat stress conditions. RESULTS Using the omiRas analysis pipeline we identified known and predicted novel miRNAs as well as sncRNAs from other classes, responsive or not to heat. Differential expression analysis revealed that post-meiotic and mature pollen react most strongly by regulation of the expression of coding and non-coding genomic regions in response to heat. To gain insight to the function of these miRNAs, we predicted targets and annotated them to Gene Ontology terms. This approach revealed that most of them belong to protein binding, transcription, and Serine/Threonine kinase activity GO categories. Beside miRNAs, we observed differential expression of both tRNAs and snoRNAs in tetrad, post-meiotic, and mature pollen when comparing normal and heat stress conditions. CONCLUSIONS Thus, we describe a global spectrum of sncRNAs expressed in pollen as well as unveiled those which are regulated at specific time-points during pollen biogenesis. We integrated the small RNAs into the regulatory network of tomato heat stress response in pollen.
Collapse
Affiliation(s)
| | | | - Sotirios Fragkostefanakis
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | - Marine J Paupière
- Department of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Palak Chaturvedi
- Department for Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Rina Iannacone
- ALSIA Research Center Metapontum Agrobios Metaponto (MT), Metaponto, Italy
| | - Florian Müller
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Klaus-Dieter Scharf
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | - Enrico Schleiff
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
231
|
Discovery of microRNAs and transcript targets related to witches' broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol Genet Genomics 2015; 291:181-91. [PMID: 26243687 DOI: 10.1007/s00438-015-1102-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Paulownia witches' broom (PaWB) caused by the phytoplasma is a devastating disease of Paulownia trees. It has caused heavy yield losses to Paulownia production worldwide. However, knowledge of the transcriptional and post-transcriptional regulation of gene expression by microRNAs (miRNAs), especially miRNAs responsive to PaWB disease stress, is still rudimentary. In this study, to identify miRNAs and their transcript targets that are responsive to PaWB disease stress, six sequencing libraries were constructed from healthy (PF), PaWB-infected (PFI), and PaWB-infected, 20 mg L(-1) methyl methane sulfonate-treated (PFI20) P. fortunei seedlings. As a result, 95 conserved miRNAs belonging to 18 miRNA families, as well as 122 potential novel miRNAs, were identified. Most of them were found to be a response to PaWB disease-induced stress, and the expression levels of these miRNAs were validated by quantitative real-time PCR analysis. The study simultaneously identified 109 target genes from the P. fortunei for 14 conserved miRNA families and 24 novel miRNAs by degradome sequencing. Furthermore, the functions of the miRNA targets were annotated based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The results presented here provide the groundwork for further analysis of miRNAs and target genes responsive to the PaWB disease stress, and could be also useful for addressing new questions to better understand the mechanisms of plant infection by phytoplasma in the future.
Collapse
|
232
|
Zhang D, Liu M, Tang M, Dong B, Wu D, Zhang Z, Zhou B. Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:24-32. [PMID: 26089149 DOI: 10.1016/j.plantsci.2015.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
The RNaseIII enzyme Dicer-like 1 (DCL1) processes the microRNA biogenesis and plays a determinant role in plant development. In this study, we reported the function of OsDCL1 in the immunity to rice blast, the devastating disease caused by the fungal pathogen, Magnaporthe oryzae. Expression profiling demonstrated that different OsDCLs responded dynamically and OsDCL1 reduced its expression upon the challenge of rice blast pathogen. In contrast, miR162a predicted to target OsDCL1 increased its expression, implying a negative feedback loop between OsDCL1 and miR162a in rice. In addition to developmental defects, the OsDCL1-silencing mutants showed enhanced resistance to virulent rice blast strains in a non-race specific manner. Accumulation of hydrogen peroxide and cell death were observed in the contact cells with infectious hyphae, revealing that silencing of OsDCL1 activated cellular defense responses. In OsDCL1 RNAi lines, 12 differentially expressed miRNAs were identified, of which 5 and 7 were down- and up-regulated, respectively, indicating that miRNAs responded dynamically in the interaction between rice and rice blast. Moreover, silencing of OsDCL1 activated the constitutive expression of defense related genes. Taken together, our results indicate that rice is capable of activating basal resistance against rice blast by perturbing OsDCL1-dependent miRNA biogenesis pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Mingzhi Tang
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bo Dong
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bo Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines.
| |
Collapse
|
233
|
Li W, Wang P, Li Y, Zhang K, Ding F, Nie T, Yang X, Lv Q, Zhao L. Identification of MicroRNAs in Response to Different Day Lengths in Soybean Using High-Throughput Sequencing and qRT-PCR. PLoS One 2015; 10:e0132621. [PMID: 26162069 PMCID: PMC4498749 DOI: 10.1371/journal.pone.0132621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding single-strand RNA molecules that play important roles in plant growth, development and stress responses. Flowering time affects the seed yield and quality of soybean. However, the miRNAs involved in the regulation of flowering time in soybean have not been reported until recently. Here, high-throughput sequencing and qRT-PCR were used to identify miRNAs involved in soybean photoperiodic pathways. The first trifoliate leaves of soybean that receive the signal of light treatment were used to construct six libraries (0, 8, and 16 h under short-day (SD) treatment and 0, 8, and 16 h under long-day (LD) treatment). The libraries were sequenced using Illumina Solexa. A total of 318 known plant miRNAs belonging to 163 miRNA families and 81 novel predicted miRNAs were identified. Among these, 23 miRNAs at 0 h, 65 miRNAs at 8 h and 83 miRNAs at 16 h, including six novel predicted miRNAs at 8 h and six novel predicted miRNAs at 16 h, showed differences in abundance between LD and SD treatments. Furthermore, the results of GO and KEGG analyses indicated that most of the miRNA targets were transcription factors. Seven miRNAs at 0 h, 23 miRNAs (including four novel predicted miRNAs) at 8 h, 16 miRNAs (including one novel predicted miRNA) at 16 h and miRNA targets were selected for qRT-PCR analysis to assess the accuracy of the sequencing and target prediction. The results indicated that the expression patterns of the selected miRNAs and miRNA targets showed no differences between the qRT-PCR and sequencing results. In addition, 23 miRNAs at 0 h, 65 miRNAs at 8 h and 83 miRNAs at 16 h responded to day length changes in soybean, including six novel predicted miRNAs at 8 h and six novel predicted miRNAs at 16 h. These results provided an important molecular basis to understand the regulation of flowering time through photoperiodic pathways in soybean.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Pengpeng Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Kexin Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Fuquan Ding
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Tengkun Nie
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Xue Yang
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Qingxue Lv
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
234
|
miRNA-based drought regulation in wheat. Funct Integr Genomics 2015; 16:221-33. [PMID: 26141043 DOI: 10.1007/s10142-015-0452-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. Drought is a common environmental stress influencing crop growth and development. To date, it has been reported that a number of plant miRNA are involved in drought stress response. In this study, we comparatively investigated drought stress-responsive miRNAs in the root and leaf of bread wheat (Triticum aestivum cv. Sivas 111/33) by miRNA microarray screening. miRNA microarray analysis showed that 285 miRNAs (207 upregulated and 78 downregulated) and 244 miRNAs (115 upregulated and 129 downregulated) were differentially expressed in leaf and root tissues, respectively. Among the differentially expressed miRNAs, 23 miRNAs were only expressed in the leaf and 26 miRNAs were only expressed in the root of wheat growth under drought stress. Upon drought treatment, expression of miR159, miR160, miR166, miR169, miR172, miR395, miR396, miR408, miR472, miR477, miR482, miR1858, miR2118, and miR5049 were found to be significantly differentiated in bread wheat. The regulatory network analysis showed that miR395 has connections with a number of target transcripts, and miR159 and miR319 share a number of target genes. Drought-tolerant and drought-sensitive wheat cultivars showed altered expression pattern upon drought stress in terms of investigated miRNA and their target transcript expression level.
Collapse
|
235
|
Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E. Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:329-40. [PMID: 26261397 PMCID: PMC4524867 DOI: 10.1007/s12298-015-0311-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 05/14/2023]
Abstract
It is of great significance to understand the regulatory mechanisms by which plants deal with drought stress. Two EST libraries derived from rapeseed (Brassica napus) leaves in non-stressed and drought stress conditions were analyzed in order to obtain the transcriptomic landscape of drought-exposed B. napus plants, and also to identify and characterize significant drought responsive regulatory genes and microRNAs. The functional ontology analysis revealed a substantial shift in the B. napus transcriptome to govern cellular drought responsiveness via different stress-activated mechanisms. The activity of transcription factor and protein kinase modules generally increased in response to drought stress. The 26 regulatory genes consisting of 17 transcription factor genes, eight protein kinase genes and one protein phosphatase gene were identified showing significant alterations in their expressions in response to drought stress. We also found the six microRNAs which were differentially expressed during drought stress supporting the involvement of a post-transcriptional level of regulation for B. napus drought response. The drought responsive regulatory network shed light on the significance of some regulatory components involved in biosynthesis and signaling of various plant hormones (abscisic acid, auxin and brassinosteroids), ubiquitin proteasome system, and signaling through Reactive Oxygen Species (ROS). Our findings suggested a complex and multi-level regulatory system modulating response to drought stress in B. napus.
Collapse
Affiliation(s)
| | - Hooman Razi
- />Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Esmaeil Ebrahimie
- />Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran
- />Institute of Biotechnology, Shiraz University, Shiraz, Iran
- />School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
236
|
Leng X, Fang J, Pervaiz T, Li Y, Wang X, Liu D, Zhu X, Fang J. Characterization of Expression Patterns of Grapevine MicroRNA Family Members using MicroRNA Rapid Amplification of Complementary DNA Ends. THE PLANT GENOME 2015; 8:eplantgenome2014.10.0069. [PMID: 33228326 DOI: 10.3835/plantgenome2014.10.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/11/2015] [Indexed: 06/11/2023]
Abstract
Grapevine (Vitis vinifera L.), with important nutritional values and health benefits, is one of the most economically fruit crop worldwide. In the present study, real-time quantitative polymerase chain reaction (qRT-PCR) and microRNA rapid amplification of cDNA ends (miR-RACE) techniques were used to characterize the expression and diversification patterns of various grapevine microRNAs (Vv-miRNAs) and their family members in grapevine. Based on our results, eight different grapevine miRNAs (miR159, miR164, miR167, miR172, miR319, miR393, miR396, and miR398) and their family members were expressed in different tissues at various developmental stages. The qRT-PCR results showed that the expression levels of Vv-miRNAs during grapevine development were dynamic. Furthermore, based on miR-RACE analysis and polymerase chain reaction (PCR) product sequencing results, different members within the same miRNA family were also expressed at different levels. Comparing the spatiotemporal expression levels of different members in the same miRNA family indicated that some miRNA families might have a key miRNA member that played the prominent role in regulation of their subsequent common target genes. In conclusion, our results showed that miR-RACE is a powerful technique to analyze the expression patterns of different members in the same miRNA family in terms of reverse-transcription (RT) efficiency and specificity. The findings of the expression diversification among Vv-miRNA family members and the existence of some Vv-miRNAs playing the key role could add to our understanding about the regulatory role of miRNAs in grapevine.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Jinxiang Fang
- Chinese Medicine Hospital in Linyi City, Jiefang Rd. 211, Linyi, 276003, P.R. China
| | - Tariq Pervaiz
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Yu Li
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Xiaomin Wang
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, P.O. Box1435, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, 210014, P.R. China
| | - Dan Liu
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| |
Collapse
|
237
|
Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS. MicroRNAs expression patterns in the response of poplar woody root to bending stress. PLANTA 2015; 242:339-351. [PMID: 25963516 DOI: 10.1007/s00425-015-2311-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18-24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.
Collapse
Affiliation(s)
- Miriam Rossi
- Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS), Italy
| | | | | | | | | | | | | |
Collapse
|
238
|
Htwe NMPS, Luo ZQ, Jin LG, Nadon B, Wang KJ, Qiu LJ. Functional marker development of miR1511-InDel and allelic diversity within the genus Glycine. BMC Genomics 2015; 16:467. [PMID: 26084707 PMCID: PMC4470002 DOI: 10.1186/s12864-015-1665-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Single-stranded non-protein coding small RNAs, 18-25 nucleotides in length, are ubiquitous throughout plants genomes and are involved in post-transcriptional gene regulation. Several types of DNA markers have been reported for the detection of genetic diversity or sequence variation in soybean, one of the most important legume crops in worldwide for seed protein and oil content. Recently, with the available of public genomic databases, there has been a shift from the labor-intensive development of PCR-based markers to sequence-based genotyping and the development of functional markers within genes, often coupled with the use of RNA information. But thus far miRNA-based markers have been only developed in rice and tobacco. Here we report the first functional molecular miRNA marker, miR1511-InDel, in soybean for a specific single copy locus used to assess genetic variation in domesticated soybean (Glycine max [L.] Merr) and its wild progenitor (Glycine soja Sieb. & Zucc.). RESULTS We genotyped a total of 1,669 accessions of domesticated soybean (G. max) and its wild progenitor G. soja which are native throughout the China and parts of Korea, Japan and Russia. The results indicate that the miR1511 locus is distributed in cultivated soybean and has three alleles in annual wild soybean. Based on this result, we proposed that miR-InDel marker technology can be used to assess genetic variation. The inclusion of geo-reference data with miR1511-InDel marker data corroborated that accessions from the Yellow River basin (Huanghuai) exhibited high genetic diversity which provides more molecular evidence for gene diversity in annual wild soybean and domestication of soybean. CONCLUSIONS These results provide evidence for the use of RNA marker, miRNA1511-InDel, as a soybean-specific functional maker for the study of genetic diversity, genotyping of germplasm and evolution studies. This is also the first report of functional marker developed from soybean miRNA located within the functional region of pre-miRNA1511.
Collapse
Affiliation(s)
- Nang Myint Phyu Sin Htwe
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Zhong-Qin Luo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Long-Guo Jin
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Brian Nadon
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, USA.
| | - Ke-Jing Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
239
|
Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC PLANT BIOLOGY 2015; 15:132. [PMID: 26048292 PMCID: PMC4458020 DOI: 10.1186/s12870-015-0521-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Solanum lycopersicum and Solanum habrochaites are closely related plant species; however, their cold tolerance capacities are different. The wild species S. habrochaites is more cold tolerant than the cultivated species S. lycopersicum. RESULTS The transcriptomes of S. lycopersicum and S. habrochaites leaf tissues under cold stress were studied using Illumina high-throughput RNA sequencing. The results showed that more than 200 million reads could be mapped to identify genes, microRNAs (miRNAs), and alternative splicing (AS) events to confirm the transcript abundance under cold stress. The results indicated that 21% and 23% of genes were differentially expressed in the cultivated and wild tomato species, respectively, and a series of changes in S. lycopersicum and S. habrochaites transcriptomes occur when plants are moved from warm to cold conditions. Moreover, the gene expression patterns for S. lycopersicum and S. habrochaites were dissimilar; however, there were some overlapping genes that were regulated by low temperature in both tomato species. An AS analysis identified 75,885 novel splice junctions among 172,910 total splice junctions, which suggested that the relative abundance of alternative intron isoforms in S. lycopersicum and S. habrochaites shifted significantly under cold stress. In addition, we identified 89 miRNA sequences that may regulate relevant target genes. Our data indicated that some miRNAs (e.g., miR159, miR319, and miR6022) play roles in the response to cold stress. CONCLUSIONS Differences in gene expression, AS events, and miRNAs under cold stress may contribute to the observed differences in cold tolerance of these two tomato species.
Collapse
Affiliation(s)
- Hongyu Chen
- Heilongjiang Provincial Key University Laboratory of Agricultural Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuling Chen
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | | | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yi Zhang
- ABLife, Inc, Wuhan, 430075, China.
| | - Aoxue Wang
- Heilongjiang Provincial Key University Laboratory of Agricultural Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
240
|
Tian C, Zuo Z, Qiu JL. Identification and Characterization of ABA-Responsive MicroRNAs in Rice. J Genet Genomics 2015; 42:393-402. [PMID: 26233894 DOI: 10.1016/j.jgg.2015.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that silence genes through mRNA degradation or translational inhibition. The phytohormone abscisic acid (ABA) is essential for plant development and adaptation to abiotic and biotic stresses. In Arabidopsis, miRNAs are implicated in ABA functions. However, ABA-responsive miRNAs have not been systematically studied in rice. Here high throughput sequencing of small RNAs revealed that 107 miRNAs were differentially expressed in the rice ABA deficient mutant, Osaba1. Of these, 13 were confirmed by stem-loop RT-PCR. Among them, miR1425-5P, miR169a, miR169n, miR390-5P, miR397a and miR397b were up-regulated, but miR162b reduced in expression in Osaba1. The targets of these 13 miRNAs were predicted and validated by gene expression profiling. Interestingly, the expression levels of these miRNAs and their targets were regulated by ABA. Cleavage sites were detected on 7 of the miRNA targets by 5'-Rapid Amplification of cDNA Ends (5'-RACE). Finally, miR162b and its target OsTRE1 were shown to affect rice resistance to drought stress, suggesting that miR162b increases resistance to drought by targeting OsTRE1. Our work provides important information for further characterization and functional analysis of ABA-responsive miRNAs in rice.
Collapse
Affiliation(s)
- Caijuan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangli Zuo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
241
|
Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa). Comput Biol Chem 2015; 58:69-80. [PMID: 26057839 DOI: 10.1016/j.compbiolchem.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/16/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
Abstract
Plants have evolved exquisite molecular mechanisms to adapt to diverse abiotic stresses. MicroRNAs play an important role in stress response in plants. However, whether the other small RNAs (sRNAs) possess stress-related roles remains elusive. In this study, thousands of sRNAs responsive to cold, drought and salt stresses were identified in rice seedlings and panicles by using high-throughput sequencing data. These sRNAs were classified into 12 categories, including "Panicle_Cold_Down", "Panicle_Cold_Up", "Panicle_Drought_Down", "Panicle_Drought_Up", "Panicle_Salt_Down", "Panicle_Salt_Up", "Seedling_Cold_Down", "Seedling_Cold_Up", "Seedling_Drought_Down", "Seedling_Drought_Up", "Seedling_Salt_Down" and "Seedling_Salt_Up". The stress-responsive sRNAs enriched in Argonaute 1 were extracted for target prediction and degradome sequencing data-based validation, which enabled network construction. Within certain subnetworks, some target genes were further supported by microarray data. Literature mining indicated that certain targets were potentially involved in stress response. These results demonstrate that the established networks are biologically meaningful. We discovered that in some cases, one sRNA sequence could be assigned to two or more categories. Moreover, within certain target-centered subnetworks, one transcript was regulated by several stress-responsive sRNAs assigned to different categories. It implies that these subnetworks are potentially implicated in stress signal crosstalk. Together, our results could advance the current understanding of the biological role of plant sRNAs in stress signaling.
Collapse
|
242
|
Jiao J, Wang Y, Selvaraj JN, Xing F, Liu Y. Barley Stripe Mosaic Virus (BSMV) Induced MicroRNA Silencing in Common Wheat (Triticum aestivum L.). PLoS One 2015; 10:e0126621. [PMID: 25955840 PMCID: PMC4425524 DOI: 10.1371/journal.pone.0126621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/03/2015] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in growth, development, and response to environmental changes in plants. Based on the whole-genome shotgun sequencing strategy, more and more wheat miRNAs have been annotated. Now, there is a need for an effective technology to analyse endogenous miRNAs function in wheat. We report here that the modified barley stripe mosaic virus (BSMV)-induced miRNAs silencing system can be utilized to silence miRNAs in wheat. BSMV-based miRNA silencing system is performed through BSMV-based expression of miRNA target mimics to suppress miR159a and miR3134a. The relative expression levels of mature miR159a and miR3134a decrease with increasing transcript levels of their target genes in wheat plants. In summary, the developed approach is effective in silencing endogenous miRNAs, thereby providing a powerful tool for biological function analyses of miRNA molecules in common wheat.
Collapse
Affiliation(s)
- Jian Jiao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P.R. China
| | - Yichun Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P.R. China
| | - Jonathan Nimal Selvaraj
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P.R. China
| | - Fuguo Xing
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P.R. China
| | - Yang Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
243
|
Long RC, Li MN, Kang JM, Zhang TJ, Sun Y, Yang QC. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. PHYSIOLOGIA PLANTARUM 2015; 154:13-27. [PMID: 25156209 DOI: 10.1111/ppl.12266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/25/2014] [Accepted: 07/11/2014] [Indexed: 05/23/2023]
Abstract
Small 21- to 24-nucleotide (nt) ribonucleic acids (RNAs), notably the microRNA (miRNA), are emerging as a posttranscriptional regulation mechanism. Salt stress is one of the primary abiotic stresses that cause the crop losses worldwide. In saline lands, root growth and function of plant are determined by the action of environmental salt stress through specific genes that adapt root development to the restrictive condition. To elucidate the role of miRNAs in salt stress regulation in Medicago, we used a high-throughput sequencing approach to analyze four small RNA libraries from roots of Zhongmu-1 (Medicago sativa) and Jemalong A17 (Medicago truncatula), which were treated with 300 mM NaCl for 0 and 8 h. Each library generated about 20 million short sequences and contained predominantly small RNAs of 24-nt length, followed by 21-nt and 22-nt small RNAs. Using sequence analysis, we identified 385 conserved miRNAs from 96 families, along with 68 novel candidate miRNAs. Of all the 68 predicted novel miRNAs, 15 miRNAs were identified to have miRNA*. Statistical analysis on abundance of sequencing read revealed specific miRNA showing contrasting expression patterns between M. sativa and M. truncatula roots, as well as between roots treated for 0 and 8 h. The expression of 10 conserved and novel miRNAs was also quantified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The miRNA precursor and target genes were predicted by bioinformatics analysis. We concluded that the salt stress related conserved and novel miRNAs may have a large variety of target mRNAs, some of which might play key roles in salt stress regulation of Medicago.
Collapse
Affiliation(s)
- Rui-Cai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
244
|
Anami SE, Zhang L, Xia Y, Zhang Y, Liu Z, Jing H. Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur 2015. [DOI: 10.1002/fes3.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvester Elikana Anami
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Institute of Biotechnology Research Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya
| | - Li‐Min Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yan Xia
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yu‐Miao Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Zhi‐Quan Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Hai‐Chun Jing
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
245
|
Kitazumi A, Kawahara Y, Onda TS, De Koeyer D, de los Reyes BG. Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis. Genome 2015; 58:13-24. [PMID: 25955479 DOI: 10.1139/gen-2015-0011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) mediated changes in gene expression by post-transcriptional modulation of major regulatory transcription factors is a potent mechanism for integrating growth and stress-related responses. Exotic plants including many traditional varieties of Andean potatoes (Solanum tuberosum subsp. andigena) are known for better adaptation to marginal environments. Stress physiological studies confirmed earlier reports on the salinity tolerance potentials of certain andigena cultivars. Guided by the hypothesis that certain miRNAs play important roles in growth modulation under suboptimal conditions, we identified and characterized salinity stress-responsive miRNA-target gene pairs in the andigena cultivar Sullu by parallel analysis of noncoding and coding RNA transcriptomes. Inverse relationships were established by the reverse co-expression between two salinity stress-regulated miRNAs (miR166, miR159) and their target transcriptional regulators HD-ZIP-Phabulosa/Phavulota and Myb101, respectively. Based on heterologous models in Arabidopsis, the miR166-HD-ZIP-Phabulosa/Phavulota network appears to be involved in modulating growth perhaps by mediating vegetative dormancy, with linkages to defense-related pathways. The miR159-Myb101 network may be important for the modulation of vegetative growth while also controlling stress-induced premature transition to reproductive phase. We postulate that the induction of miR166 and miR159 under salinity stress represents important network hubs for balancing gene expression required for basal growth adjustments.
Collapse
Affiliation(s)
- Ai Kitazumi
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|
246
|
Ferdous J, Hussain SS, Shi BJ. Role of microRNAs in plant drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:293-305. [PMID: 25583362 PMCID: PMC6680329 DOI: 10.1111/pbi.12318] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 05/19/2023]
Abstract
Drought is a normal and recurring climate feature in most parts of the world and plays a major role in limiting crop productivity. However, plants have their own defence systems to cope with adverse climatic conditions. One of these defence mechanisms is the reprogramming of gene expression by microRNAs (miRNAs). miRNAs are small noncoding RNAs of approximately 22 nucleotides length, which have emerged as important regulators of genes at post-transcriptional levels in a range of organisms. Some miRNAs are functionally conserved across plant species and are regulated by drought stress. These properties suggest that miRNA-based genetic modifications have the potential to enhance drought tolerance in cereal crops. This review summarizes the current understanding of the regulatory mechanisms of plant miRNAs, involvement of plant miRNAs in drought stress responses in barley (Hordeum vulgare L.), wheat (Triticum spp.) and other plant species, and the involvement of miRNAs in plant-adaptive mechanisms under drought stress. Potential strategies and directions for future miRNA research and the utilization of miRNAs in the improvement of cereal crops for drought tolerance are also discussed.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Urrbrae, SA, Australia
| | | | | |
Collapse
|
247
|
Wang B, Duan CG, Wang X, Hou YJ, Yan J, Gao C, Kim JH, Zhang H, Zhu JK. HOS1 regulates Argonaute1 by promoting transcription of the microRNA gene MIR168b in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:861-70. [PMID: 25619693 PMCID: PMC4355216 DOI: 10.1111/tpj.12772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 05/22/2023]
Abstract
Proper accumulation and function of miRNAs is essential for plant growth and development. While core components of the miRNA biogenesis pathway and miRNA-induced silencing complex have been well characterized, cellular regulators of miRNAs remain to be fully explored. Here we report that High Expression Of Osmotically Responsive Genes1 (HOS1) is a regulator of an important miRNA, mi168a/b, that targets the Argonaute1 (AGO1) gene in Arabidopsis. HOS1 functions as an ubiquitin E3 ligase to regulate plant cold-stress responses, associates with the nuclear pores to regulate mRNA export, and regulates the circadian clock and flowering time by binding to chromatin of the flowering regulator gene Flowering Locus C (FLC). In a genetic screen for enhancers of sic-1, we isolated a loss-of-function Arabidopsis mutant of HOS1 that is defective in miRNA biogenesis. Like other hos1 mutant alleles, the hos1-7 mutant flowered early and was smaller in stature than the wild-type. Dysfunction in HOS1 reduced the abundance of miR168a/b but not of other miRNAs. In hos1 mutants, pri-MIR168b and pre-MIR168b levels were decreased, and RNA polymerase II occupancy was reduced at the promoter of MIR168b but not that of MIR168a. Chromatin immunoprecipitation assays revealed that HOS1 protein is enriched at the chromatin of the MIR168b promoter. The reduced miR168a/b level in hos1 mutants results in an increase in the mRNA and protein levels of its target gene, AGO1. Our results reveal that HOS1 regulates miR168a/b and AGO1 levels in Arabidopsis by maintaining proper transcription of MIR168b.
Collapse
Affiliation(s)
- Bangshing Wang
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Guo Duan
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Xingang Wang
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yueh-Ju Hou
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Yan
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Caiqiu Gao
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jin-Hong Kim
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Genmgu-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Huiming Zhang
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author:
| |
Collapse
|
248
|
Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC PLANT BIOLOGY 2015; 15:63. [PMID: 25848810 PMCID: PMC4349674 DOI: 10.1186/s12870-015-0451-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/06/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are implicated in plant development processes and play pivotal roles in plant adaptation to environmental stresses. Salicornia europaea, a salt mash euhalophyte, is a suitable model plant to study salt adaptation mechanisms. S. europaea is also a vegetable, forage, and oilseed that can be used for saline land reclamation and biofuel precursor production on marginal lands. Despite its importance, no miRNA has been identified from S. europaea thus far. RESULTS Deep sequencing was performed to investigate small RNA transcriptome of S. europaea. Two hundred and ten conserved miRNAs comprising 51 families and 31 novel miRNAs (including seven miRNA star sequences) belonging to 30 families were identified. About half (13 out of 31) of the novel miRNAs were only detected in salt-treated samples. The expression of 43 conserved and 13 novel miRNAs significantly changed in response to salinity. In addition, 53 conserved and 13 novel miRNAs were differentially expressed between the shoots and roots. Furthermore, 306 and 195 S. europaea unigenes were predicted to be targets of 41 conserved and 29 novel miRNA families, respectively. These targets encoded a wide range of proteins, and genes involved in transcription regulation constituted the largest category. Four of these genes encoding laccase, F-box family protein, SAC3/GANP family protein, and NADPH cytochrome P-450 reductase were validated using 5'-RACE. CONCLUSIONS Our results indicate that specific miRNAs are tightly regulated by salinity in the shoots and/or roots of S. europaea, which may play important roles in salt tolerance of this euhalophyte. The S. europaea salt-responsive miRNAs and miRNAs that target transcription factors, nucleotide binding site-leucine-rich repeat proteins and enzymes involved in lignin biosynthesis as well as carbon and nitrogen metabolism may be applied in genetic engineering of crops with high stress tolerance, and genetic modification of biofuel crops with high biomass and regulatable lignin biosynthesis.
Collapse
Affiliation(s)
- Juanjuan Feng
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Jinhui Wang
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Pengxiang Fan
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
- />Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson road, East Lansing, MI 48824 USA
| | - Weitao Jia
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lingling Nie
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Ping Jiang
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Xianyang Chen
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sulian Lv
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lichuan Wan
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sandra Chang
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Shizhong Li
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Yinxin Li
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
249
|
Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:57. [PMID: 25717333 PMCID: PMC4324062 DOI: 10.3389/fpls.2015.00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 05/14/2023]
Abstract
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Collapse
Affiliation(s)
- Davide Guerra
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Cristina Crosatti
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Hamid H. Khoshro
- Department of Agronomy and Plant Breeding, Ilam University, Ilam, Iran
| | - Anna M. Mastrangelo
- Cereal Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Foggia, Italy
| | - Erica Mica
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Mazzucotelli
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
250
|
Wang HLV, Dinwiddie BL, Lee H, Chekanova JA. Stress-induced endogenous siRNAs targeting regulatory intron sequences in Brachypodium. RNA (NEW YORK, N.Y.) 2015; 21:145-63. [PMID: 25480817 PMCID: PMC4338343 DOI: 10.1261/rna.047662.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exposure to abiotic stresses triggers global changes in the expression of thousands of eukaryotic genes at the transcriptional and post-transcriptional levels. Small RNA (smRNA) pathways and splicing both function as crucial mechanisms regulating stress-responsive gene expression. However, examples of smRNAs regulating gene expression remain largely limited to effects on mRNA stability, translation, and epigenetic regulation. Also, our understanding of the networks controlling plant gene expression in response to environmental changes, and examples of these regulatory pathways intersecting, remains limited. Here, to investigate the role of smRNAs in stress responses we examined smRNA transcriptomes of Brachypodium distachyon plants subjected to various abiotic stresses. We found that exposure to different abiotic stresses specifically induced a group of novel, endogenous small interfering RNAs (stress-induced, UTR-derived siRNAs, or sutr-siRNAs) that originate from the 3' UTRs of a subset of coding genes. Our bioinformatics analyses predicted that sutr-siRNAs have potential regulatory functions and that over 90% of sutr-siRNAs target intronic regions of many mRNAs in trans. Importantly, a subgroup of these sutr-siRNAs target the important intron regulatory regions, such as branch point sequences, that could affect splicing. Our study indicates that in Brachypodium, sutr-siRNAs may affect splicing by masking or changing accessibility of specific cis-elements through base-pairing interactions to mediate gene expression in response to stresses. We hypothesize that this mode of regulation of gene expression may also serve as a general mechanism for regulation of gene expression in plants and potentially in other eukaryotes.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Brandon L Dinwiddie
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Herman Lee
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| |
Collapse
|