201
|
DeTure MA, Zhang EY, Bubb MR, Purich DL. In vitro polymerization of embryonic MAP-2c and fragments of the MAP-2 microtubule binding region into structures resembling paired helical filaments. J Biol Chem 1996; 271:32702-6. [PMID: 8955102 DOI: 10.1074/jbc.271.51.32702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The microtubule-associated protein Tau is widely regarded as the principal component of paired helical filaments comprising Alzheimer neurofibrillary tangles. Tau fragments containing the non-identical repeat region formed structures resembling paired helical filaments (Schweers, O., Mandelkow, M., Biernat, J., and Mandelkow, E. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8463-8467). MAP-2, the other structurally related neuronal microtubule-associated protein, has not been implicated in paired helical filament formation. We now describe the assembly of paired helical filament-like structures from MAP-2 polypeptides containing only 100 residues. A dimeric species, stabilized by an interchain disulfide, appears to be involved in the assembly reaction. We also investigated the polymerization of embryonic MAP-2c, which, except for its microtubule binding region, is structurally distinct from Tau. Full-length MAP-2c formed paired helical filament-like polymers. Polymerized MAP-2c and the microtubule binding region fragment readily bound thioflavin-S, a dye that stains paired helical filaments in the histochemical diagnosis of Alzheimer's disease. Our unprecedented finding that a small MAP-2 microtubule binding region fragment and MAP-2c can form structures resembling straight filaments or Pronase-treated paired helical filaments raises fundamental questions concerning the role of MAP-2 in the pathobiology of Alzheimer disease.
Collapse
Affiliation(s)
- M A DeTure
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine Health Science Center, Gainesville, FL 32610-0245, USA
| | | | | | | |
Collapse
|
202
|
Choo LP, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH. In situ characterization of beta-amyloid in Alzheimer's diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 1996; 71:1672-9. [PMID: 8889145 PMCID: PMC1233637 DOI: 10.1016/s0006-3495(96)79411-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the first evidence of the structure of beta-amyloid protein as it exists in situ within a slice of human Alzheimer's diseased brain tissue. Using a Fourier transform infrared microspectroscopic technique, areas of interest can be selected for spectral measurements with regions of potential contamination masked. In so doing, it is possible to obtain infrared spectra only of beta-amyloid and not the surrounding grey matter within which it lies. However, to obtain spectra of high-quality signal-to-noise ratio using a conventional infrared source, we were limited to aperture sizes between 24 microns x 24 microns to 50 microns x 50 microns. Markedly improved high-quality spectra were acquired with infrared radiation provided by a synchrotron light source (National Synchrotron Light Source, Brookhaven National Laboratories), using aperture sizes as small as 12 microns x 12 microns. This allowed spectroscopic mapping of brain tissue regions containing amyloid. We observe that in situ protein of grey matter exist predominantly in an alpha-helical and/or unordered conformation, whereas within amyloid deposits a beta-sheet structure predominates. The hydrogen bonding strength of the beta-structure found in situ is different from that reported in the literature for isolated/chemically synthesized beta-amyloid peptides.
Collapse
Affiliation(s)
- L P Choo
- Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Manitoba
| | | | | | | | | | | |
Collapse
|
203
|
Bonifácio MJ, Sakaki Y, Saraiva MJ. 'In vitro' amyloid fibril formation from transthyretin: the influence of ions and the amyloidogenicity of TTR variants. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1316:35-42. [PMID: 8634341 DOI: 10.1016/0925-4439(96)00014-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanisms of amyloid formation in Familial Amyloidotic Polyneuropathy (FAP) are unknown, as well as the factors determining the development of this pathology. To get some insights into this process, we have first tested a fluorimetric assay with thioflavine T, as a quantitative method for transthyretin (TTR) amyloid estimation, using amyloid isolated from post-mortem tissues of a FAP patient. Then production of amyloid fibrils from soluble TTR was achieved by acidification and optimized for protein concentration and pH. The effect of different ions such as metal and sulphate ions in the process of amyloid formation from wild type TTR was compared using a kinetic assay. Under the conditions tested sulphate diminishes the amount of amyloid formed from wild type TTR and in addition appears to promote aggregation of preexisting amyloid fibrils. The relative amyloidogenicity of three TTR variants, TTR Met30, TTR Pro55 and TTR Met119 respectively, was evaluated using a pH dependent assay. It was shown that the Pro55 variant is highly susceptible to amyloid formation as compared to the wild type protein; on the contrary, the Met119 variant is more resistant than the other TTR proteins towards precipitation into amyloid. These results are in agreement with the pathological conditions associated with these mutations. This type of assay has a wide application for testing the influence of other factors, such as therapeutical agents, on amyloid formation.
Collapse
Affiliation(s)
- M J Bonifácio
- Centro de Estudos de Paramiloidose, Hospital de Sto António, Porto, Portugal
| | | | | |
Collapse
|
204
|
Abstract
The ability to form stable cross-beta fibrils is an intrinsic physicochemical characteristic of the human beta-amyloid peptide (A beta), which forms the brain amyloid of Alzheimer's disease (AD). The high amyloidogenicity and low solubility of this hydrophobic approximately 40-mer have been barriers to its study in the past, but the availability of synthetic peptide and new physical methods has enabled many novel approaches in recent years. Model systems for A beta aggregation (relevant to initial nidus formation) and A beta deposition (relevant to plaque growth and maturation) in vitro have allowed structure/activity relationships and kinetics to be explored quantitatively, and established that these processes are biochemically distinct. Different forms of the peptide, with different physiochemical characteristics, are found in vascular and parenchymal amyloid. Various spectroscopic methods have been used to explore the three-dimensional conformation of A beta both in solution and in solid phase, and demonstrated that the peptide adopts a different configuration in each state. A significant conformational transition is essential to the transformation of A beta from solution to fibril. These observations suggest new therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- J E Maggio
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
205
|
Stine WB, Snyder SW, Ladror US, Wade WS, Miller MF, Perun TJ, Holzman TF, Krafft GA. The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:193-203. [PMID: 8924204 DOI: 10.1007/bf01887400] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloid-beta (A beta) is the major protein component of neuritic plaques found in Alzheimer's disease. Evidence suggests that the physical aggregation state of A beta directly influences neurotoxicity and specific cellular biochemical events. Atomic force microscopy (AFM) is used to investigate the three-dimensional structure of aggregated A beta and characterize aggregate/fibril size, structure, and distribution. Aggregates are characterized by fibril length and packing densities. The packing densities correspond to the differential thickness of fiber aggregates along a zeta axis (fiber height above the x-y imaging surface). Densely packed aggregates ( > or = 100 nm thick) were observed. At the edges of these densely packed regions and in dispersed regions, three types of A beta fibrils were observed. These were classified by fibril thickness into three size ranges: 2-3 nm thick, 4-6 nm thick, and 8-12 nm thick. Some of the two thicker classes of fibrils exhibited pronounced axial periodicity. Substructural features observed included fibril branching or annealing and a height periodicity which varied with fibril thickness. When identical samples were visualized with AFM and electron microscopy (EM) the thicker fibrils (4-6 nm and 8-12 nm thick) had similar morphology. In comparison, the densely packed regions of approximately > or = 100 nm thickness observed by AFM were difficult to resolve by EM. The small, 2- to 3-nm-thick, fibrils were not observed by EM even though they were routinely imaged by AFM. These studies demonstrate that AFM imaging of A beta fibrils can, for the first time, resolve nanometer-scale, zeta-axis, surface-height (thickness) fibril features. Concurrent x-y surface scans of fibrils reveal the surface submicrometer structure and organization of aggregated A beta. Thus, when AFM imaging of A beta is combined with, and correlated to, careful studies of cellular A beta toxicity it may be possible to relate certain A beta structural features to cellular neurotoxicity.
Collapse
Affiliation(s)
- W B Stine
- Cellular and Microscopic Research, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, Mandelkow E. Structure, microtubule interactions, and phosphorylation of tau protein. Ann N Y Acad Sci 1996; 777:96-106. [PMID: 8624133 DOI: 10.1111/j.1749-6632.1996.tb34407.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper summarizes recent structural and functional studies on tau protein, its interactions with microtubules, its self-assembly into paired helical filaments (PHF)-like fibers, and its modification by phosphorylation. The structure of tau in solution resembles that of a random coil. Both tau and Alzheimer PHFs have very little secondary structure, making it improbable that the assembly of tau into PHFs is based on interacting beta sheets. Tau's binding to microtubules can be described by a "jaws" effect. The domain containing the repeats binds very weakly, while the flanking regions (jaws) bind strongly, even without the repeats. However, only the combination of flanking regions and repeats makes binding productive in terms of microtubule nucleation and assembly. Although the majority of Alzheimer-like phosphorylation sites are outside the repeats they have only a weak influence on binding, whereas the phosphorylation at Ser262 inside the repeats inhibits binding and makes microtubules dynamically unstable. This site can be phosphorylated by kinases present in brain tissue, and it is uniquely phosphorylated in Alzheimer brain.
Collapse
Affiliation(s)
- E M Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
Aqueous solutions of beta(1-40) peptide spontaneously associate to form pentameric/hexameric complexes that can be demonstrated by SDS-PAGE following treatment with glutaraldehyde and borohydride reduction. Under amyloidogenic conditions of pH and high peptide concentration these aggregates can further associate to form pentameric/hexameric complexes that can be demonstrated by SDS-PAGE following treatment with glutaraldehyde and borohydride reduction. Under amyloidogenic conditions of pH and high peptide concentration these aggregates can further associate to form sedimentable and filterable structures with beta-sheet amyloid characteristics of Thioflavine T fluorescence. The presence of such preamyloid structures at low peptide concentration suggests a mechanism by which amyloid plaques can accrete additional material by a cooperative rather than monomeric growth. The existence of a monomer<==>multimer equilibrium may partly explain the divergence of biological consequences with respect to neurotoxicity.
Collapse
Affiliation(s)
- H Levine
- Department of Neurodegenerative Diseases, Parke-Davis Pharmaceutical Research Division of the Warner-Lambert Company, Ann Arbor, MI 48106-1047, USA
| |
Collapse
|
208
|
Affiliation(s)
- D Kominos
- Hoechst-Roussel Pharmaceuticals, Inc., Somerville, New Jersey 08876, USA
| |
Collapse
|
209
|
Schweers O, Mandelkow EM, Biernat J, Mandelkow E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci U S A 1995; 92:8463-7. [PMID: 7667312 PMCID: PMC41177 DOI: 10.1073/pnas.92.18.8463] [Citation(s) in RCA: 283] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
One of the hallmarks of Alzheimer disease is the pathological aggregation of tau protein into paired helical filaments (PHFs) and neurofibrillary tangles. Here we describe the in vitro assembly of recombinant tau protein and constructs derived from it into PHFs. Though whole tau assembled poorly, constructs containing three internal repeats (corresponding to the fetal tau isoform) formed PHFs reproducibly. This ability depended on intermolecular disulfide bridges formed by the single Cys-322. Blocking the SH group, mutating Cys for Ala, or keeping tau in a reducing environment all inhibited assembly. With constructs derived from four-repeat tau (having the additional repeat no. 2 and a second Cys-291), PHF assembly was blocked because Cys-291 and Cys-322 interact within the molecule. PHF assembly was enabled again by mutating Cys-291 for Ala. The synthetic PHFs bound the dye thioflavin S used in Alzheimer disease diagnostics. The data imply that the redox potential in the neuron is crucial for PHF assembly, independently or in addition to pathological phosphorylation reactions.
Collapse
Affiliation(s)
- O Schweers
- Max-Planck Unit for Structural Molecular Biology, c/o Deutsches Elektronen Synchroton, Hamburg, Germany
| | | | | | | |
Collapse
|
210
|
Abstract
beta-amyloid peptide (A beta) is the primary protein component of senile plaques in Alzheimer's disease patients. Synthetic A beta spontaneously assembles into amyloid fibrils and is neurotoxic to cortical cultures. Neurotoxicity has been associated with the degree of peptide aggregation, yet the mechanism of assembly of A beta into amyloid fibrils is poorly understood. In this work, A beta was dissolved in several different solvents commonly used in neurotoxicity assays. In pure dimethylsulfoxide (DMSO), A beta had no detectable beta-sheet content; in 0.1% trifluoroacetate, the peptide contained one-third beta-sheet; and in 35% acetonitrile/0.1% trifluoroacetate, A beta was two-thirds beta-sheet, equivalent to the fibrillar peptide in physiological buffer. Stock solutions of peptide were diluted into phosphate-buffered saline, and fibril growth was followed by static and dynamic light scattering. The growth rate was substantially faster when the peptide was predissolved in 35% acetonitrile/0.1% trifluoroacetate than in 0.1% trifluoroacetate, 10% DMSO, or 100% DMSO. Differences in growth rate were attributed to changes in the secondary structure of the peptide in the stock solvent. These results suggest that formation of an intermediate with a high beta-sheet content is a controlling step in A beta self-assembly.
Collapse
Affiliation(s)
- C L Shen
- Department of Chemical Engineering, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
211
|
Arispe N, Pollard HB, Rojas E. The ability of amyloid beta-protein [A beta P (1-40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer's disease. Ann N Y Acad Sci 1994; 747:256-66. [PMID: 7847675 DOI: 10.1111/j.1749-6632.1994.tb44414.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- N Arispe
- Laboratory of Cell Biology and Genetics, NIDDK National Institutes of Health, Bethesda, Maryland 20892-0840
| | | | | |
Collapse
|
212
|
Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB. Theoretical models of the ion channel structure of amyloid beta-protein. Biophys J 1994; 67:2137-45. [PMID: 7535109 PMCID: PMC1225600 DOI: 10.1016/s0006-3495(94)80717-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Theoretical methods are used to develop models for the ion channel structure of the membrane-bound amyloid beta-protein. This follows recent observations that the beta-protein forms cation-selective channels in lipid bilayers in vitro. Amyloid beta-protein is the main component of the extracellular plaques in the brain that are characteristic of Alzheimer's disease. Based on the amino acid sequence and the unique environment of the membrane, the secondary structure of the 40-residue beta-protein is predicted to form a beta-hairpin followed by a helix-turn-helix motif. The channel structures were-designed as aggregates of peptide subunits in identical conformations. Three types of models were developed that are distinguished by whether the pore is formed by the beta-hairpins, the middle helices, or by the more hydrophobic C-terminal helices. The latter two types can be converted back and forth by a simple conformational change, which would explain the variable conduction states observed for a single channel. It is also demonstrated how lipid headgroups could be incorporated into the pore lining, and thus affect the ion selectivity. The atomic-scale detail of the models make them useful for designing experiments to determine the real structure of the channel, and thus further the understanding of peptide channels in general. In addition, if beta-protein-induced channel activity is found to be the cause of cell death in Alzheimer's disease, then the models may be helpful in designing counteracting drugs.
Collapse
Affiliation(s)
- S R Durell
- Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
213
|
Arispe N, Pollard HB, Rojas E. beta-Amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 1994; 140:119-25. [PMID: 7898484 DOI: 10.1007/bf00926750] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Alzheimer's Disease (AD) amyloid protein (A beta P[1-40]) forms cation selective channels when incorporated into planar lipid bilayers by fusion with liposomes containing the peptide. Since the peptide has been proposed to occur in vivo in both membrane-bound and soluble forms, we also tested the possibility of direct incorporation of the soluble A beta P[1-40] into the membrane. We found the peptide can also form similar channels in acidic phospholipid bilayers formed at the tip of a patch pipet, as well as in the planar lipid bilayer system. As in the case of liposome mediated incorporation, the A beta P[1-40]-channel in the solvent-free membrane patch exhibits multiple cation selectivity (Cs+ > Li+ > Ca2+ > or = K+), and sensitivity to tromethamine. The fact that equivalent A beta P[1-40] amyloid channels can be detected by two different methods thus provides additional validation of our original observation. Further studies with a beta P-channels incorporated into planar lipid bilayers from the liposome complex have also revealed that the channel activity can express spontaneous transitions to a much higher range of conductances between 400 and 4000 pS. Under these conditions, the amyloid channel continues to be cation selective but loses its tromethamine sensitivity. By contrast, amyloid channels were insensitive to nitrendipine at either conductance range. We calculate that if such channels were expressed in cells, the ensuing ion fluxes down their electrochemical potential gradients would disrupt cellular homeostasis. We therefore interpret these data as providing further support for our beta-amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer's Disease.
Collapse
Affiliation(s)
- N Arispe
- Laboratory of Cell Biology and Genetics, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
214
|
Fasman GD, Moore CD. The solubilization of model Alzheimer tangles: reversing the beta-sheet conformation induced by aluminum with silicates. Proc Natl Acad Sci U S A 1994; 91:11232-5. [PMID: 7972040 PMCID: PMC45201 DOI: 10.1073/pnas.91.23.11232] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurofibrillary tangles are one of two lesions found in the brain of Alzheimer disease victims. With synthetic peptide fragments of human neurofilament NF-M17 (Glu-Glu-Lys-Gly-Lys-Ser-Pro- Val-Pro-Lys-Ser-Pro-Val-Glu-Glu-Lys-Gly, phosphorylated and unphosphorylated), CD studies were done to examine the effect of sodium orthosilicate on the conformational state produced by Al3+ on fragments of neuronal proteins. Previous studies had shown a conformational transition from alpha-helix and random to beta-pleated sheet upon addition of Al3+ to both phosphorylated and unphosphorylated peptides. If sufficient quantities of Al3+ are added, the peptide precipitates from solution. The ability to reverse or slow the progression of aggregation was examined. Al3+ binding was reversed with 1-2 molar equivalents of sodium orthosilicate (with respect to Al3+), altering the conformation from beta-sheet to random coil and resulting in a CD spectrum similar to that of the initial peptide. The tight binding of the SiO4(4-) with the Al3+ provides the mechanism for this transition. These results provide additional information toward understanding the role of aluminum in the Alzheimer diseased brain and suggest the investigation of the possible use of silicates as a therapeutic agent.
Collapse
Affiliation(s)
- G D Fasman
- Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
215
|
Soreghan B, Kosmoski J, Glabe C. Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61939-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
216
|
Schweers O, Schönbrunn-Hanebeck E, Marx A, Mandelkow E. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51080-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
217
|
Snyder SW, Ladror US, Wade WS, Wang GT, Barrett LW, Matayoshi ED, Huffaker HJ, Krafft GA, Holzman TF. Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths. Biophys J 1994; 67:1216-28. [PMID: 7811936 PMCID: PMC1225478 DOI: 10.1016/s0006-3495(94)80591-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and rates of production of different-length A beta and its exposure to radical damage may be factors in the accumulation of A beta in plaques in vivo.
Collapse
Affiliation(s)
- S W Snyder
- Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064-3500
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Pepstatin A, a pentapeptide with the molecular weight of 686, is a naturally occurring inhibitor of aspartyl proteases secreted by Streptomyces species. Above a critical concentration of 0.1 mM at low ionic strength and neutral pH, it can polymerize into filaments which may extend over several micrometers. After negative staining, these filaments show a helical substructure with characteristic diameters ranging from 6 to 12 nm. Selected images at higher magnification suggest the filaments are composed of two intertwined 6 nm strands. This is in agreement with the optical diffraction analysis which additionally established a periodic pitch of 25 nm for the helical intertwining. Rotary shadowing of the pepstatin A filaments clearly demonstrated the right-handedness of the helical twist. In physiological salt solution or at higher concentrations of pepstatin A, a variety of higher order structures were observed, including ribbons, sheets and cylinders with both regular and twisted or irregular geometries. Pepstatin A can interact with intermediate filament subunit proteins. These proteins possess a long, alpha-helical rod domain that forms coiled-coil dimers, which through both hydrophobic and ionic interactions form tetramers which, in turn, in the presence of physiological salt concentrations, polymerize into the 10 nm intermediate filaments. In the absence of salt, pepstatin A and intermediate filament proteins polymerize into long filaments with a rough surface and a diameter of 15-17 nm. This polymerization appears to be primarily driven by nonionic interactions between pepstatin A and polymerization-competent forms of intermediate filament proteins, resulting in a composite filament. Polymerization-incompetent proteolytic fragments of vimentin, lacking portions of the head and/or tail domain, failed to copolymerize with pepstatin A into long filaments under these conditions. These peptides, as well as bovine serum albumin, were found to stick to the surface of pepstatin A filaments, ribbons and sheets. Independent evidence for direct association of pepstatin A with intermediate filament subunit proteins was provided not only by electron microscopy but also by UV difference spectra. Pepstatin A loses its ability to inhibit the aspartyl protease of the human immunodeficiency virus type 1 following polymerization into the higher order structures described here. The amazing fact that pepstatin A can spontaneously self-associate to form very large polymers seems to be a more rare event for such small peptides. The other examples of synthetic or naturally occurring oligopeptides discussed in this review which are able to polymerize into higher order structures possess a common property, their hydrophobicity, often manifested by clusters of valine or isoleucine residues.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Mothes
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | |
Collapse
|
219
|
Shen CL, Scott GL, Merchant F, Murphy RM. Light scattering analysis of fibril growth from the amino-terminal fragment beta(1-28) of beta-amyloid peptide. Biophys J 1993; 65:2383-95. [PMID: 8312477 PMCID: PMC1225979 DOI: 10.1016/s0006-3495(93)81312-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
beta-Amyloid protein (beta-A/4) is the major protein component of Alzheimer disease-related senile plaques and has been postulated to be a significant contributing factor in the onset and/or progression of the disease. In the senile plaque, beta-A/4 appears as bundles of amyloid fibrils. The biological activity of beta-A/4 may be related to its state of aggregation. In this work, self-assembly, fibril formation, and interfibrillary aggregation of beta(1-28), a synthetic peptide homologous with the amino-terminal fragment of beta-A/4, were investigated. The predominant form of beta(1-28) detected by size-exclusion chromatography and polyacrylamide gel electrophoresis was apparently a tetramer which does not bind Congo red. Aggregates containing cross-beta sheet structures which bind Congo red and thioflavin T were observed at concentrations of approximately 0.3 mg/ml or greater. Concentrations of 0.5-1 mg/ml were necessary for aggregation into fibrils to be detectable by classical or quasielastic light scattering. Both fibril elongation and fibril-fibril aggregation occur over the time scale investigated. The kinetics of aggregation were much faster at physiological salt concentrations than at lower ionic strength. Ionic strength also appeared to influence the morphology of the fibril aggregates. The data indicate that sample preparation method and sample history influence fibril size and number density.
Collapse
Affiliation(s)
- C L Shen
- Department of Chemical Engineering, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|