201
|
Chen J, Bang WY, Lee Y, Kim S, Lee KW, Kim SW, Son YS, Kim DW, Akhter S, Bahk JD. AtObgC-AtRSH1 interaction may play a vital role in stress response signal transduction in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:176-84. [PMID: 24308987 DOI: 10.1016/j.plaphy.2013.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/16/2013] [Indexed: 05/24/2023]
Abstract
The interaction of Obg (Spo0B-associated GTP-binding protein) GTPase and SpoT, which is a bifunctional ppGpp (guanosine 3',5'-bispyrophosphate) hydrolase/synthetase, is vital for the modulation of intracellular ppGpp levels during bacterial responses to environmental cues. It has been recently reported that the ppGpp level is also inducible by various stresses in the chloroplasts of plant cells. However, the function of the Obg-SpoT interaction in plants remains elusive. The results from the present and previous studies suggest that AtRSH1 is a putative bacterial SpoT homolog in Arabidopsis and that its transcription levels are responsive to wounding and salt stresses. In this study, we used a yeast two-hybrid analysis to map the regions required for the AtObgC-AtRSH1 interaction. Moreover, protein-protein docking simulations revealed reasonable geometric and electrostatic complementarity in the binding surfaces of the two proteins. The data support our experimental results, which suggest that the conserved domains in AtObgC and the N terminus of AtRSH1 containing the TGS domain contribute to their interaction. In addition, quantitative real-time PCR (qRT-PCR) analyses showed that the expression of AtObgC and AtRSH1 exhibit a similar inhibition pattern under wounding and salt-stress conditions, but the inhibition pattern was not greatly influenced by the presence or absence of light. Based on in vivo analyses, we further confirmed that the AtRSH1 and AtObgC proteins similarly localize in chloroplasts. Based on these results, we propose that the AtObgC-AtRSH1 interaction plays a vital role in ppGpp-mediated stress responses in chloroplasts.
Collapse
Affiliation(s)
- Ji Chen
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, China; Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Woo Young Bang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Yuno Lee
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Se Won Kim
- Green Bio Research Center, Cabbage Genomics Assisted Breeding Supporting Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Young Sim Son
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Won Kim
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Salina Akhter
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
202
|
Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol 2013; 196:894-902. [PMID: 24336937 DOI: 10.1128/jb.01201-13] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was shown to be responsible for the essentiality of the (p)ppGpp hydrolase domain of the RSH protein. The staphylococcal RSH-hydrolase is an efficient enzyme that prevents the toxic accumulation of (p)ppGpp. Expression of (p)ppGpp synthases in a hydrolase-negative background leads not only to growth arrest but also to cell death. Transcriptional analyses showed that relP and relQ are strongly induced upon vancomycin and ampicillin treatments. Accordingly, mutants lacking relP and relQ showed a significantly reduced survival rate upon treatments with cell wall-active antibiotics. Thus, RelP and RelQ are active (p)ppGpp synthases in S. aureus that are induced under cell envelope stress to mediate tolerance against these conditions.
Collapse
|
203
|
Maisonneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 2013; 154:1140-1150. [PMID: 23993101 DOI: 10.1016/j.cell.2013.07.048] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/22/2013] [Accepted: 07/31/2013] [Indexed: 11/17/2022]
Abstract
Persistence refers to the phenomenon in which isogenic populations of antibiotic-sensitive bacteria produce rare cells that transiently become multidrug tolerant. Whether slow growth in a rare subset of cells underlies the persistence phenotype has not be examined in wild-type bacteria. Here, we show that an exponentially growing population of wild-type Escherichia coli cells produces rare cells that stochastically switch into slow growth, that the slow-growing cells are multidrug tolerant, and that they are able to resuscitate. The persistence phenotype depends hierarchically on the signaling nucleotide (p)ppGpp, Lon protease, inorganic polyphosphate, and toxin-antitoxins. We show that the level of (p)ppGpp varies stochastically in a population of exponentially growing cells and that the high (p)ppGpp level in rare cells induces slow growth and persistence. (p)ppGpp triggers slow growth by activating toxin-antitoxin loci through a regulatory cascade depending on inorganic polyphosphate and Lon protease.
Collapse
Affiliation(s)
- Etienne Maisonneuve
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Manuela Castro-Camargo
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Kenn Gerdes
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| |
Collapse
|
204
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
205
|
GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes. J Bacteriol 2013; 196:189-201. [PMID: 24163341 DOI: 10.1128/jb.00918-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide (p)ppGpp inhibits GTP biosynthesis in the Gram-positive bacterium Bacillus subtilis. Here we examined how this regulation allows cells to grow in the absence of amino acids. We showed that B. subtilis cells lacking (p)ppGpp, due to either deletions or point mutations in all three (p)ppGpp synthetase genes, yjbM, ywaC, and relA, strongly require supplementation of leucine, isoleucine, valine, methionine, and threonine and modestly require three additional amino acids. This polyauxotrophy is rescued by reducing GTP levels. Reduction of GTP levels activates transcription of genes responsible for the biosynthesis of the five strongly required amino acids by inactivating the transcription factor CodY, which represses the ybgE, ilvD, ilvBHC-leuABCD, ilvA, ywaA, and hom-thrCB operons, and by a CodY-independent activation of transcription of the ilvA, ywaA, hom-thrCB, and metE operons. Interestingly, providing the eight required amino acids does not allow for colony formation of (p)ppGpp(0) cells when transitioning from amino acid-replete medium to amino acid-limiting medium, and we found that this is due to an additional role that (p)ppGpp plays in protecting cells during nutrient downshifts. We conclude that (p)ppGpp allows adaptation to amino acid limitation by a combined effect of preventing death during metabolic transitions and sustaining growth by activating amino acid biosynthesis. This ability of (p)ppGpp to integrate a general stress response with a targeted reprogramming of gene regulation allows appropriate adaptation and is likely conserved among diverse bacteria.
Collapse
|
206
|
He P, Deng C, Liu B, Zeng L, Zhao W, Zhang Y, Jiang X, Guo X, Qin J. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. FEMS Microbiol Lett 2013; 348:133-42. [PMID: 24111633 DOI: 10.1111/1574-6968.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/05/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.
Collapse
Affiliation(s)
- Ping He
- Department of Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Zhang SR, Lin GM, Chen WL, Wang L, Zhang CC. ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2013; 195:4536-44. [PMID: 23935047 PMCID: PMC3807476 DOI: 10.1128/jb.00724-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
When deprived of a combined-nitrogen source in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) can form heterocysts capable of nitrogen fixation. The process of heterocyst differentiation takes about 20 to 24 h, during which extensive metabolic and morphological changes take place. Guanosine tetraphosphate (ppGpp) is the signal of the stringent response that ensures cell survival by adjusting major cellular activities in response to nutrient starvation in bacteria, and ppGpp accumulates at the early stage of heterocyst differentiation (J. Akinyanju, R. J. Smith, FEBS Lett. 107:173-176, 1979; J Akinyanju, R. J. Smith, New Phytol. 105:117-122, 1987). Here we show that all1549 (here designated relana) in Anabaena, homologous to relA/spoT, is upregulated in response to nitrogen deprivation and predominantly localized in vegetative cells. The disruption of relana strongly affects the synthesis of ppGpp, and the resulting mutant, all1549Ωsp/sm, fails to form heterocysts and to grow in the absence of a combined-nitrogen source. This phenotype can be complemented by a wild-type copy of relana. Although the upregulation of hetR is affected in the mutant, ectopic overexpression of hetR cannot rescue the phenotype. However, we found that the mutant rapidly loses its viability, within a time window of 3 to 6 h, following the deprivation of combined nitrogen. We propose that ppGpp plays a major role in rebalancing the metabolic activities of the cells in the absence of the nitrogen source supply and that this regulation is necessary for filament survival and consequently for the success of heterocyst differentiation.
Collapse
Affiliation(s)
- Shao-Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Gui-Ming Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Li Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Cheng-Cai Zhang
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Marseille, France
| |
Collapse
|
208
|
Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 2013; 4:e00646-13. [PMID: 24065631 PMCID: PMC3781836 DOI: 10.1128/mbio.00646-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for "Rel SpoT homologue"; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the rsh relQ [(p)ppGpp(0)] strain, suggesting that a lack of basal (p)ppGpp places the cell in a "transcriptionally relaxed" state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp(0) strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. IMPORTANCE Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic options available to care providers. The stringent response (SR), mediated by the accumulation of two modified guanine nucleotides collectively known as (p)ppGpp, is a highly conserved stress response that broadly remodels bacterial physiology to a survival state. Given the strong correlation of the SR with the ability of bacteria to survive antibiotic treatment and the direct association of (p)ppGpp production with bacterial infectivity, understanding how bacteria produce and utilize (p)ppGpp may reveal potential targets for the development of new antimicrobial therapies. Using the multidrug-resistant pathogen Enterococcus faecalis as a model, we show that small alterations to (p)ppGpp levels, well below concentrations needed to trigger the SR, severely affected bacterial metabolism and antibiotic survival. Our findings highlight the often-underappreciated contribution of basal (p)ppGpp levels to metabolic balance and stress tolerance in bacteria.
Collapse
|
209
|
ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. J Bacteriol 2013; 195:5007-15. [PMID: 23995636 DOI: 10.1128/jb.00592-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) strains depends on the production of Shiga toxins that are encoded on lambdoid prophages. Effective production of these toxins requires prophage induction and subsequent phage replication. Previous reports indicated that lytic development of Shiga toxin-converting bacteriophages is inhibited in amino acid-starved bacteria. However, those studies demonstrated that inhibition of both phage-derived plasmid replication and production of progeny virions occurred during the stringent as well as the relaxed response to amino acid starvation, i.e., in the presence as well as the absence of high levels of ppGpp, an alarmone of the stringent response. Therefore, we asked whether ppGpp influences DNA replication and lytic development of Shiga toxin-converting bacteriophages. Lytic development of 5 such bacteriophages was tested in an E. coli wild-type strain and an isogenic mutant that does not produce ppGpp (ppGpp(0)). In the absence of ppGpp, production of progeny phages was significantly (in the range of an order of magnitude) more efficient than in wild-type cells. Such effects were observed in infected bacteria as well as after prophage induction. All tested bacteriophages formed considerably larger plaques on lawns formed by ppGpp(0) bacteria than on those formed by wild-type E. coli. The efficiency of synthesis of phage DNA and relative amount of lambdoid plasmid DNA were increased in cells devoid of ppGpp relative to bacteria containing a basal level of this nucleotide. We conclude that ppGpp negatively influences the lytic development of Shiga toxin-converting bacteriophages and that phage DNA replication efficiency is limited by the stringent control alarmone.
Collapse
|
210
|
Vercammen K, Garcia-Armisen T, Goeders N, Van Melderen L, Bodilis J, Cornelis P. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems. Microbiologyopen 2013; 2:674-83. [PMID: 23873667 PMCID: PMC3948609 DOI: 10.1002/mbo3.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/15/2013] [Accepted: 06/06/2013] [Indexed: 11/10/2022] Open
Abstract
Several reports mention the presence of antibiotic resistance genes in natural and polluted environments, but many studies are based on their detection via polymerase chain reaction (PCR amplification of known genes and not on an activity screening. We constructed a metagenomic fosmid bank from DNA isolated from a polluted river in Brussels, Belgium, the Zenne. A total of 120,000 clones were pooled and plated directly on solid media containing different antibiotics. Several clones were isolated which could grow in the presence of ampicillin. The DNA from several clones was extracted and subjected to restriction analysis and, based on their restriction pattern, two different clones were found. One of the clones was selected for further study as it showed a higher level of resistance to different β-lactams antibiotics (ticarcilline and ceftazidime). To find out which gene is responsible for the resistance, an in vitro transposon mutagenesis was performed and clones having lost the resistance phenotype were analyzed via inverse PCR amplification. Several clones had an insert in a gene encoding a new type of β-lactamase. The amplified fosmid DNA was fully sequenced revealing an insert of 41 kb containing 39 open reading frames (ORFs). Transposon insertions inactivating the resistance to β-lactams were also found in the ORF upstream of the blaA gene, encoding an aminotransferase, suggesting a polar effect on the transcription of the gene downstream. In addition, other genes were found such as histidine biosynthesis genes, which were found to be scattered on the insert, a relA/spoT gene, and genes belonging to type II toxin–antitoxin system. This predicted system was experimentally validated in Escherichia coli using an inducible expression system.
Collapse
Affiliation(s)
- Ken Vercammen
- Department of Bioengineering Sciences, Research group Microbiology and VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
211
|
Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics 2013; 14:459. [PMID: 23834488 PMCID: PMC3710219 DOI: 10.1186/1471-2164-14-459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023] Open
Abstract
Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress.
Collapse
|
212
|
Gummesson B, Lovmar M, Nyström T. A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response. J Biol Chem 2013; 288:21055-21064. [PMID: 23749992 DOI: 10.1074/jbc.m113.479998] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alarmone guanosine tetraphosphate (ppGpp) acts as both a positive and a negative regulator of gene expression in the presence of DksA, but the underlying mechanisms of this differential control are unclear. Here, using uspA hybrid promoters, we show that an AT-rich discriminator region is crucial for positive control by ppGpp/DksA. The AT-rich discriminator makes the RNA polymerase-promoter complex extremely stable and therefore easily saturated with RNA polymerase. A more efficient transcription is achieved when the RNA polymerase-promoter complex is destabilized with ppGpp/DksA. We found that exchanging the AT-rich discriminator of uspA with the GC-rich rrnB-P1 discriminator made the uspA promoter negatively regulated by ppGpp/DksA both in vivo and in vitro. In addition, the GC-rich discriminator destabilized the RNA polymerase-promoter complex, and the effect of ppGpp/DksA on the kinetic properties of the promoter was reversed. We propose that the transcription initiation rate from promoters with GC-rich discriminators, in contrast to the uspA-promoter, is not limited by the stability of the open complex. The findings are discussed in view of models for both direct and indirect effects of ppGpp/DksA on transcriptional trade-offs.
Collapse
Affiliation(s)
- Bertil Gummesson
- From the Department of Chemistry and Molecular Biology, Gothenburg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - Martin Lovmar
- From the Department of Chemistry and Molecular Biology, Gothenburg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - Thomas Nyström
- From the Department of Chemistry and Molecular Biology, Gothenburg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden.
| |
Collapse
|
213
|
|
214
|
Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T, Kawakami H, Yamamoto T, Kamiya S. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. MICROBIOLOGY-SGM 2013; 159:1379-1389. [PMID: 23676431 DOI: 10.1099/mic.0.066597-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bordetella pertussis, the causative agent of whooping cough, is highly adapted to cause human infection. The production of virulence factors, such as adhesins and toxins, is just part of an array of mechanisms by which B. pertussis causes infection. The stringent response is a global bacterial response to nutritional limitation that is mediated by the accumulation of cellular ppGpp and pppGpp [termed together as (p)ppGpp]. Here, we demonstrate that production of (p)ppGpp was controlled by RelA and SpoT proteins in B. pertussis, and that mutation-induced loss of both proteins together caused deficiencies in (p)ppGpp production. The (p)ppGpp-deficient mutants also exhibited defects in growth regulation, decreases in viability under nutritionally limited conditions, increases in susceptibility to oxidative stress and defects in biofilm formation. Analysis of the secreted proteins and the respective transcripts showed that lack of (p)ppGpp led to decreased expression of fim3 and bsp22, which encode a fimbrial subunit and the self-polymerizing type III secretion system tip protein, respectively. Moreover, electron microscopic analysis also indicated that (p)ppGpp regulated the formation of filamentous structures. Most virulence genes - including fim3 and bsp22 - were expressed in the Bvg(+) phase during which the BvgAS two-component system was activated. Although fim3 and bsp22 were downregulated in a (p)ppGpp-deficient mutant, normal expression of fhaB, cyaA and ptxA persisted. Lack of coherence between virulence gene expression and (p)ppGpp production indicated that (p)ppGpp did not modulate the Bvg phase. Taken together, our data indicate that (p)ppGpp may govern an as-yet-unrecognized system that influences B. pertussis pathogenicity.
Collapse
Affiliation(s)
- Kentaro Sugisaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
215
|
Jones TH, Vail KM, McMullen LM. Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol 2013; 165:97-110. [PMID: 23727653 DOI: 10.1016/j.ijfoodmicro.2013.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
Abstract
A number of studies have reported that pathogenic and nonpathogenic foodborne bacteria have the ability to form filaments in microbiological growth media and foods after prolonged exposure to sublethal stress or marginal growth conditions. In many cases, nucleoids are evenly spaced throughout the filamentous cells but septa are not visible, indicating that there is a blockage in the early steps of cell division but the mechanism behind filament formation is not clear. The formation of filamentous cells appears to be a reversible stress response. When filamentous cells are exposed to more favorable growth conditions, filaments divide rapidly into a number of individual cells, which may have major health and regulatory implications for the food industry because the potential numbers of viable bacteria will be underestimated and may exceed tolerated levels in foods when filamentous cells that are subjected to sublethal stress conditions are enumerated. Evidence suggests that filament formation under a number of sublethal stresses may be linked to a reduced energy state of bacterial cells. This review focuses on the conditions and extent of filament formation by foodborne bacteria under conditions that are used to control the growth of microorganisms in foods such as suboptimal pH, high pressure, low water activity, low temperature, elevated CO2 and exposure to antimicrobial substances as well as lack a of nutrients in the food environment and explores the impact of the sublethal stresses on the cell's inability to divide.
Collapse
Affiliation(s)
- Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada.
| | | | | |
Collapse
|
216
|
Different effects of ppGpp on Escherichia coli DNA replication in vivo and in vitro. FEBS Open Bio 2013; 3:161-4. [PMID: 23772389 PMCID: PMC3668537 DOI: 10.1016/j.fob.2013.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/23/2022] Open
Abstract
Inhibition of Escherichia coli DNA replication by guanosine tetraphosphate (ppGpp) is demonstrated in vitro. This finding is compatible with impairment of the DnaG primase activity by this nucleotide. However, in agreement to previous reports, we were not able to detect a rapid inhibition of DNA synthesis in E. coli cells under the stringent control conditions, when intracellular ppGpp levels increase dramatically. We suggest that the process of ppGpp-mediated inhibition of DnaG activity may be masked in E. coli cells, which could provide a rationale for explanation of differences between ppGpp effects on DNA replication in E. coli and Bacillus subtilis.
Collapse
|
217
|
Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol 2013; 21:174-80. [PMID: 23419217 DOI: 10.1016/j.tim.2013.01.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/24/2023]
Abstract
Bacteria inhabit enormously diverse niches and have a correspondingly large array of regulatory mechanisms to adapt to often inhospitable and variable environments. The stringent response (SR) allows bacteria to quickly reprogram transcription in response to changes in nutrient availability. Although the proteins controlling this response are conserved in almost all bacterial species, recent work has illuminated considerable diversity in the starvation cues and regulatory mechanisms that activate stringent signaling proteins in bacteria from different environments. In this review, we describe the signals and genetic circuitries that control the stringent signaling systems of a copiotroph, a bacteriovore, an oligotroph, and a mammalian pathogen -Escherichia coli, Myxococcus xanthus, Caulobacter crescentus, and Mycobacterium tuberculosis, respectively - and discuss how control of the SR in these species is adapted to their particular lifestyles.
Collapse
Affiliation(s)
- Cara C Boutte
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
218
|
FtsH-mediated coordination of lipopolysaccharide biosynthesis in Escherichia coli correlates with the growth rate and the alarmone (p)ppGpp. J Bacteriol 2013; 195:1912-9. [PMID: 23417489 DOI: 10.1128/jb.02134-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The outer membrane is the first line of defense for Gram-negative bacteria and serves as a major barrier for antibiotics and other harmful substances. The biosynthesis of lipopolysaccharides (LPS), the essential component of the outer membrane, must be tightly controlled as both too much and too little LPS are toxic. In Escherichia coli, the cellular level of the key enzyme LpxC, which catalyzes the first committed step in LPS biosynthesis, is adjusted by proteolysis carried out by the essential and membrane-bound protease FtsH. Here, we demonstrate that LpxC is degraded in a growth rate-dependent manner with half-lives between 4 min and >2 h. According to the cellular demand for LPS biosynthesis, LpxC is degraded during slow growth but stabilized when cells grow rapidly. Disturbing the balance between LPS and phospholipid biosynthesis in favor of phospholipid production in an E. coli strain encoding a hyperactive FabZ protein abolishes growth rate dependency of LpxC proteolysis. Lack of the alternative sigma factor RpoS or inorganic polyphosphates, which are known to mediate growth rate-dependent gene regulation in E. coli, did not affect proteolysis of LpxC. In contrast, absence of RelA and SpoT, which synthesize the alarmone (p)ppGpp, deregulated LpxC degradation resulting in rapid proteolysis in fast-growing cells and stabilization during slow growth. Our data provide new insights into the essential control of LPS biosynthesis in E. coli.
Collapse
|
219
|
Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée JY, Ghigo JM, Beloin C. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 2013; 9:e1003144. [PMID: 23300476 PMCID: PMC3536669 DOI: 10.1371/journal.pgen.1003144] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/22/2012] [Indexed: 12/14/2022] Open
Abstract
High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. Biofilm surface-attached communities have the capacity to tolerate high concentrations of antibiotics, and bacterial biofilms formed on indwelling medical devices are difficult to eradicate and often lead to the onset of chronic or systemic infections. The physiological heterogeneity of multicellular biofilms has been associated with development of subpopulations highly tolerant to multiple antibiotics. Here we demonstrate that, upon starvation for specific essential growth nutrients, biofilm bacteria become highly tolerant to fluoroquinolone ofloxacin. The SOS response plays a critical role in this phenomenon, while the stringent response plays only a minor role. Taken together, these results support the hypothesis that bacteria localized within nutrient-limited niches of the biofilm structure may temporarily enter a physiological state enabling them to tolerate bactericidal concentrations of antibiotics.
Collapse
Affiliation(s)
- Steve P. Bernier
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | - David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | | | - Amandine Valomon
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | - Guillaume Soubigou
- Institut Pasteur, Génopole, Plate-forme 2–Transcriptome et Epigénome, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Génopole, Plate-forme 2–Transcriptome et Epigénome, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- * E-mail:
| |
Collapse
|
220
|
Ehrenberg M, Bremer H, Dennis PP. Medium-dependent control of the bacterial growth rate. Biochimie 2012; 95:643-58. [PMID: 23228516 DOI: 10.1016/j.biochi.2012.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022]
Abstract
By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp.
Collapse
Affiliation(s)
- Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
221
|
Stec-Dziedzic E, Lyżeń R, Skärfstad E, Shingler V, Szalewska-Pałasz A. Characterization of the transcriptional stimulatory properties of the Pseudomonas putida RapA protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23207688 DOI: 10.1016/j.bbagrm.2012.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA polymerase-associated factors can significantly affect its performance at specific promoters. Here we identified a Pseudomonas putida RNA polymerases-associated protein as a homolog of Escherichia coli RapA. We found that P. putida RapA stimulates the transcription from promoters dependent on a variety of σ-factors (σ(70), σ(S), σ(54), σ(32), σ(E)) in vitro. The level of stimulation varied from 2- to 10-fold, with the maximal effect observed with the σ(E)-dependent PhtrA promoter. Stimulation by RapA was apparent in the multi-round reactions and was modulated by salt concentration in vitro. However, in contrast to findings with E. coli RapA, P. putida RapA-mediated stimulation of transcription was also evident using linear templates. These properties of P. putida RapA were apparent using either E. coli- or P. putida-derived RNA polymerases. Analysis of individual steps of transcription revealed that P. putida RapA enhances the stability of competitor-resistant open-complexes formed by RNA polymerase at promoters. In vivo, P. putida RapA can complement the inhibitory effect of high salt on growth of an E. coli RapA null strain. However, a P. putida RapA null mutant was not sensitive to high salt. The in vivo effects of lack of RapA were only detectable for the σ(E)-PhtrA promoter where the RapA-deficiency resulted in lower activity. The presented characteristics of P. putida RapA indicate that its functions may extend beyond a role in facilitating RNA polymerase recycling to include a role in transcription initiation efficiency.
Collapse
Affiliation(s)
- Ewa Stec-Dziedzic
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
222
|
Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: Role of the relA gene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:95-104. [DOI: 10.1016/j.jphotobiol.2012.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
|
223
|
Carneiro S, Villas-Bôas SG, Ferreira EC, Rocha I. Influence of the RelA Activity on E. coli Metabolism by Metabolite Profiling of Glucose-Limited Chemostat Cultures. Metabolites 2012; 2:717-32. [PMID: 24957759 PMCID: PMC3901239 DOI: 10.3390/metabo2040717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/28/2012] [Indexed: 11/24/2022] Open
Abstract
Metabolite profiling of E. coli W3110 and the isogenic ΔrelA mutant cells was used to characterize the RelA-dependent stringent control of metabolism under different growth conditions. Metabolic profiles were obtained by gas chromatography–mass spectrometry (GC-MS) analysis and revealed significant differences between E. coli strains grown at different conditions. Major differences between the two strains were assessed in the levels of amino acids and fatty acids and their precursor metabolites, especially when growing at the lower dilution rates, demonstrating differences in their metabolic behavior. Despite the fatty acid biosynthesis being the most affected due to the lack of the RelA activity, other metabolic pathways involving succinate, lactate and threonine were also affected. Overall, metabolite profiles indicate that under nutrient-limiting conditions the RelA-dependent stringent response may be elicited and promotes key changes in the E. coli metabolism.
Collapse
Affiliation(s)
- Sónia Carneiro
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Silas G Villas-Bôas
- Centre for Microbial Innovation, School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand.
| | - Eugénio C Ferreira
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Isabel Rocha
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
224
|
Dedhia N, Richins R, Mesina A, Chen W. Improvement in recombinant protein production in ppGpp-deficient Escherichia coli. Biotechnol Bioeng 2012; 53:379-86. [PMID: 18634026 DOI: 10.1002/(sici)1097-0290(19970220)53:4<379::aid-bit4>3.0.co;2-k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maintaining a metabolically productive state for recombinant Escherichia coli remains a central problem for a wide variety of growth-dependent biosynthesis. This problem becomes particularly acute under conditions of minimal cell growth such as fed-batch fermentations. In this, we investigated the possibility of manipulating the protein synthesis machinery of E. coli whereby synthesis of foreign proteins might be decoupled from cell growth. In particular, the effects of eliminating intracellular ppGpp on the synthesis of foreign proteins were studied in both batch and fed-batch operations. A significant increase in CAT production was observed from the ppGpp-deficient strain during both exponential and fed-batch phases. The increase in CAT production during exponential growth was accompanied by a simultaneous increase in CAT mRNA levels. Interestingly, CAT production was increased five-fold, while the level of CAT-specific mRNA increased only three-fold. Thus, eliminating intracellular ppGpp appears to have increase the production of recombinant protein by increasing not only the pool sizes of CAT mRNA but also possible alternations in the post-transcriptional processes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 379-386, 1997.
Collapse
Affiliation(s)
- N Dedhia
- Department of Chemical Engineering, University of California, Riverside, Riverside, CA 92521
| | | | | | | |
Collapse
|
225
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 2012; 48:231-41. [PMID: 22981860 DOI: 10.1016/j.molcel.2012.08.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/12/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
Abstract
Cells constantly adjust their metabolism in response to environmental conditions, yet major mechanisms underlying survival remain poorly understood. We discover a posttranscriptional mechanism that integrates starvation response with GTP homeostasis to allow survival, enacted by the nucleotide (p)ppGpp, a key player in bacterial stress response and persistence. We reveal that (p)ppGpp activates global metabolic changes upon starvation, allowing survival by regulating GTP. Combining metabolomics with biochemical demonstrations, we find that (p)ppGpp directly inhibits the activities of multiple GTP biosynthesis enzymes. This inhibition results in robust and rapid GTP regulation in Bacillus subtilis, which we demonstrate is essential to maintaining GTP levels within a range that supports viability even in the absence of starvation. Correspondingly, without (p)ppGpp, gross GTP dysregulation occurs, revealing a vital housekeeping function of (p)ppGpp; in fact, loss of (p)ppGpp results in death from rising GTP, a severe and previously unknown consequence of GTP dysfunction.
Collapse
Affiliation(s)
- Allison Kriel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Tagami K, Nanamiya H, Kazo Y, Maehashi M, Suzuki S, Namba E, Hoshiya M, Hanai R, Tozawa Y, Morimoto T, Ogasawara N, Kageyama Y, Ara K, Ozaki K, Yoshida M, Kuroiwa H, Kuroiwa T, Ohashi Y, Kawamura F. Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. Microbiologyopen 2012; 1:115-34. [PMID: 22950019 PMCID: PMC3426417 DOI: 10.1002/mbo3.16] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 11/23/2022] Open
Abstract
To elucidate the biological functions of small (p)ppGpp synthetases YjbM and YwaC of Bacillus subtilis, we constructed RIK1059 and RIK1066 strains carrying isopropyl-β-D-thiogalactopyranoside (IPTG) inducible yjbM and ywaC genes, respectively, in the ΔrelA ΔyjbM ΔywaC triple mutant background. While the uninduced and IPTG-induced RIK1059 cells grew similarly in LB medium, the growth of RIK1066 cells was arrested following the addition of IPTG during the early exponential growth phase. Induction of YwaC expression by IPTG also severely decreased the intracellular GTP level and drastically altered the transcriptional profile in RIK1066 cells. Sucrose density gradient centrifugation analysis of the ribosomal fractions prepared from the IPTG-induced RIK1066 cells revealed three peaks corresponding to 30S, 50S, and 70S ribosome particles, and also an extra peak. Electron microscope studies revealed that the extra peak fraction contained dimers of 70S ribosomes, which were similar to the Escherichia coli 100S ribosomes. Proteomic analysis revealed that the 70S dimer contained an extra protein, YvyD, in addition to those found in the 70S ribosome. Accordingly, strain resulting from the disruption of the yvyD gene in the RIK1066 cells was unable to form 70S dimers following IPTG induction, indicating that YvyD is required for the formation of these dimers in B. subtilis.
Collapse
Affiliation(s)
- Kazumi Tagami
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Hideaki Nanamiya
- Cell-Free Science and Technology Research Center, Ehime UniversityBunkyo-cho, Matsuyama 790-8577 Japan
| | - Yuka Kazo
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Marie Maehashi
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Shota Suzuki
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Eri Namba
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Masahiro Hoshiya
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Ryo Hanai
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
- Research Center for Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Yuzuru Tozawa
- Cell-Free Science and Technology Research Center, Ehime UniversityBunkyo-cho, Matsuyama 790-8577 Japan
| | - Takuya Morimoto
- Biological Science Laboratories, Kao Corporation2606 Akabane, Ichikai, Haga, Tochigi 321-3497 Japan
- Graduate School of Information Science, Nara Institute of Science and TechnologyIkoma, Nara 630-0101 Japan
| | - Naotake Ogasawara
- Graduate School of Information Science, Nara Institute of Science and TechnologyIkoma, Nara 630-0101 Japan
| | - Yasushi Kageyama
- Biological Science Laboratories, Kao Corporation2606 Akabane, Ichikai, Haga, Tochigi 321-3497 Japan
| | - Katsutoshi Ara
- Biological Science Laboratories, Kao Corporation2606 Akabane, Ichikai, Haga, Tochigi 321-3497 Japan
| | - Katsuya Ozaki
- Biological Science Laboratories, Kao Corporation2606 Akabane, Ichikai, Haga, Tochigi 321-3497 Japan
| | - Masaki Yoshida
- Research Information Center for Extremophile, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Haruko Kuroiwa
- Research Information Center for Extremophile, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| | - Yoshiaki Ohashi
- Human Metabolome Technologies, Inc.246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| | - Fujio Kawamura
- Department of Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
- Research Center for Life Science, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
- Research Information Center for Extremophile, College of Science, Rikkyo UniversityToshima-ku Nishi-ikebukuro 3-34-1, Tokyo, 171-8501 Japan
| |
Collapse
|
228
|
Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl Environ Microbiol 2012; 78:8033-44. [PMID: 22961894 DOI: 10.1128/aem.01693-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor σ(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.
Collapse
|
229
|
Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:E2561-8. [PMID: 22908292 DOI: 10.1073/pnas.1209742109] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell size varies greatly among different types of cells, but the range in size that a specific cell type can reach is limited. A long-standing question in biology is how cells control their size. Escherichia coli adjusts size and growth rate according to the availability of nutrients so that it grows larger and faster in nutrient-rich media than in nutrient-poor media. Here, we describe how, using classical genetics, we have isolated a remarkably small E. coli mutant that has undergone a 70% reduction in cell volume with respect to wild type. This mutant lacks FabH, an enzyme involved in fatty acid biosynthesis that previously was thought to be essential for the viability of E. coli. We demonstrate that although FabH is not essential in wild-type E. coli, it is essential in cells that are defective in the production of the small-molecule and global regulator ppGpp. Furthermore, we have found that the loss of FabH causes a reduction in the rate of envelope growth and renders cells unable to regulate cell size properly in response to nutrient excess. Therefore we propose a model in which fatty acid biosynthesis plays a central role in regulating the size of E. coli cells in response to nutrient availability.
Collapse
|
230
|
Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes. J Bacteriol 2012; 194:5638-48. [PMID: 22904284 DOI: 10.1128/jb.00518-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, nutrient deprivation evokes the stringent response, which is mediated by the small intracellular signaling molecule ppGpp. In Gram negatives, the RelA enzyme synthesizes and SpoT hydrolyzes ppGpp, although the latter protein also has weak synthetase activity. DksA, a recently identified RNA polymerase binding transcription factor, acts as a coregulator along with ppGpp for controlling the stringent response. Recently, we have shown that three genes, relA, spoT, and relV, govern cellular levels of ppGpp during various starvation stresses in the Gram-negative cholera pathogen Vibrio cholerae. Here we report functional characterization of the dksA gene of V. cholerae (dksA(Vc)), coding for the protein DksA(Vc). Extensive genetic analyses of the ΔdksA(Vc) mutants suggest that DksA(Vc) is an important component involved in the stringent response in V. cholerae. Further analysis of mutants revealed that DksA(Vc) positively regulates various virulence-related processes, namely, motility, expression of the major secretory protease, called hemagglutinin protease (HAP), and production of cholera toxin (CT), under in vitro conditions. We found that DksA(Vc) upregulates expression of the sigma factor FliA (σ(28)), a critical regulator of motility in V. cholerae. Altogether, it appears that apart from stringent-response regulation, DksA(Vc) also has important roles in fine regulation of virulence-related phenotypes of V. cholerae.
Collapse
|
231
|
Kanjee U, Ogata K, Houry WA. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Microbiol 2012; 85:1029-43. [PMID: 22812515 DOI: 10.1111/j.1365-2958.2012.08177.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Escherichia coli stringent response, mediated by the alarmone ppGpp, is responsible for the reorganization of cellular transcription upon nutritional starvation and other stresses. These transcriptional changes occur mainly as a result of the direct effects of ppGpp and its partner transcription factor DksA on RNA polymerase. An often overlooked feature of the stringent response is the direct targeting of other proteins by ppGpp. Here we review the literature on proteins that are known to bind ppGpp and, based on sequence homology, X-ray crystal structures and in silico docking, we propose new potential protein binding targets for ppGpp. These proteins were found to fall into five main categories: (i) cellular GTPases, (ii) proteins involved in nucleotide metabolism, (iii) proteins involved in lipid metabolism, (iv) general metabolic proteins and (v) PLP-dependent basic aliphatic amino acid decarboxylases. Bioinformatic rationale is provided for expanding the role of ppGpp in regulating the activities of the cellular GTPases. Proteins involved in nucleotide and lipid metabolism and general metabolic proteins provide an interesting set of structurally varied stringent response targets. While the inhibition of some PLP-dependent decarboxylases by ppGpp suggests the existence of cross-talk between the acid stress and stringent response systems.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
232
|
Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep 2012; 13:835-9. [PMID: 22814757 DOI: 10.1038/embor.2012.106] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/23/2012] [Accepted: 07/02/2012] [Indexed: 11/08/2022] Open
Abstract
During the stringent response, Escherichia coli enzyme RelA produces the ppGpp alarmone, which in turn regulates transcription, translation and replication. We show that ppGpp dramatically increases the turnover rate of its own ribosome-dependent synthesis by RelA, resulting in direct positive regulation of an enzyme by its product. Positive allosteric regulation therefore constitutes a new mechanism of enzyme activation. By integrating the output of individual RelA molecules and ppGpp degradation pathways, this regulatory circuit contributes to a fast and coordinated transition to stringency.
Collapse
|
233
|
Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet 2012; 8:e1002803. [PMID: 22761596 PMCID: PMC3386227 DOI: 10.1371/journal.pgen.1002803] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/12/2012] [Indexed: 11/19/2022] Open
Abstract
Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.
Collapse
|
234
|
Decreased expression of type 1 fimbriae by a pst mutant of uropathogenic Escherichia coli reduces urinary tract infection. Infect Immun 2012; 80:2802-15. [PMID: 22665376 DOI: 10.1128/iai.00162-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pstSCAB-phoU operon encodes the phosphate-specific transport system (Pst). Loss of Pst constitutively activates the Pho regulon and decreases bacterial virulence. However, specific mechanisms underlying decreased bacterial virulence through inactivation of Pst are poorly understood. In uropathogenic Escherichia coli (UPEC) strain CFT073, inactivation of pst decreased urinary tract colonization in CBA/J mice. The pst mutant was deficient in production of type 1 fimbriae and showed decreased expression of the fimA structural gene which correlated with differential expression of the fimB, fimE, ipuA, and ipbA genes, encoding recombinases, mediating inversion of the fim promoter. The role of fim downregulation in attenuation of the pst mutant was confirmed using a fim phase-locked-on derivative, which demonstrated a significant gain in virulence. In addition, the pst mutant was less able to invade human bladder epithelial cells. Since type 1 fimbriae contribute to UPEC virulence by promoting colonization and invasion of bladder cells, the reduced bladder colonization by the pst mutant is predominantly attributed to downregulation of these fimbriae. Elucidation of mechanisms mediating the control of type 1 fimbriae through activation of the Pho regulon in UPEC may open new avenues for therapeutics or prophylactics against urinary tract infections.
Collapse
|
235
|
Angelini S, My L, Bouveret E. Disrupting the Acyl Carrier Protein/SpoT interaction in vivo: identification of ACP residues involved in the interaction and consequence on growth. PLoS One 2012; 7:e36111. [PMID: 22558350 PMCID: PMC3340395 DOI: 10.1371/journal.pone.0036111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/30/2012] [Indexed: 11/23/2022] Open
Abstract
In bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation.
Collapse
Affiliation(s)
- Sandra Angelini
- Laboratory of Macromolecular System Engineering (LISM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Laetitia My
- Laboratory of Macromolecular System Engineering (LISM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Emmanuelle Bouveret
- Laboratory of Macromolecular System Engineering (LISM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
- * E-mail:
| |
Collapse
|
236
|
Abstract
Biofilm formation is a key factor in Vibrio cholerae environmental survival and host colonization. Production of biofilm enables V. cholerae to survive and persist in aquatic environments and aids in the passage through the gastric acid barrier to allow access to the small intestine. The genes involved in biofilm formation are regulated by the transcriptional activators vpsR and vpsT, which are in turn transcriptionally regulated by a number of environmental signals. In this study, the role of the stringent response in biofilm formation was examined. V. cholerae mutants deficient in stringent response had a reduced ability to form biofilms, although they were not completely deficient in biofilm formation. There are three (p)ppGpp synthases in V. cholerae: RelA, SpoT, and RelV. All three synthases were necessary for vpsR transcription, with RelV showing the strongest effect. RelA was the only synthase that was necessary for vpsT expression. Stringent response regulation of vpsR and vpsT was shown to partially occur through rpoS. Biofilm formation in V. cholerae is controlled by a complex regulatory apparatus, with negative regulators of biofilm gene expression, such as quorum sensing, and positive regulators of biofilm genes, including stringent response, interacting to ensure that biofilm formation is coordinated with the environment.
Collapse
|
237
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
238
|
Gehrig S, Eberle ME, Botschen F, Rimbach K, Eberle F, Eigenbrod T, Kaiser S, Holmes WM, Erdmann VA, Sprinzl M, Bec G, Keith G, Dalpke AH, Helm M. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. ACTA ACUST UNITED AC 2012; 209:225-33. [PMID: 22312113 PMCID: PMC3280868 DOI: 10.1084/jem.20111044] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
2′-O-methylation of guanosine 18 is a naturally occurring tRNA modification that can suppress immune TLR7 responses. Naturally occurring nucleotide modifications within RNA have been proposed to be structural determinants for innate immune recognition. We tested this hypothesis in the context of native nonself-RNAs. Isolated, fully modified native bacterial transfer RNAs (tRNAs) induced significant secretion of IFN-α from human peripheral blood mononuclear cells in a manner dependent on TLR7 and plasmacytoid dendritic cells. As a notable exception, tRNATyr from Escherichia coli was not immunostimulatory, as were all tested eukaryotic tRNAs. However, the unmodified, 5′-unphosphorylated in vitro transcript of tRNATyr induced IFN-α, thus revealing posttranscriptional modifications as a factor suppressing immunostimulation. Using a molecular surgery approach based on catalytic DNA, a panel of tRNATyr variants featuring differential modification patterns was examined. Out of seven modifications present in this tRNA, 2′-O-methylated Gm18 was identified as necessary and sufficient to suppress immunostimulation. Transplantation of this modification into the scaffold of yeast tRNAPhe also resulted in blocked immunostimulation. Moreover, an RNA preparation of an E. colitrmH mutant that lacks Gm18 2′-O-methyltransferase activity was significantly more stimulatory than the wild-type sample. The experiments identify the single methyl group on the 2′-oxygen of Gm18 as a natural modification in native tRNA that, beyond its primary structural role, has acquired a secondary function as an antagonist of TLR7.
Collapse
Affiliation(s)
- Stefanie Gehrig
- Department of Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Stringent response of Escherichia coli: revisiting the bibliome using literature mining. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:14. [PMID: 22587779 PMCID: PMC3372295 DOI: 10.1186/2042-5783-1-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022]
Abstract
Background Understanding the mechanisms responsible for cellular responses depends on the systematic collection and analysis of information on the main biological concepts involved. Indeed, the identification of biologically relevant concepts in free text, namely genes, tRNAs, mRNAs, gene products and small molecules, is crucial to capture the structure and functioning of different responses. Results In this work, we review literature reports on the study of the stringent response in Escherichia coli. Rather than undertaking the development of a highly specialised literature mining approach, we investigate the suitability of concept recognition and statistical analysis of concept occurrence as means to highlight the concepts that are most likely to be biologically engaged during this response. The co-occurrence analysis of core concepts in this stringent response, i.e. the (p)ppGpp nucleotides with gene products was also inspected and suggest that besides the enzymes RelA and SpoT that control the basal levels of (p)ppGpp nucleotides, many other proteins have a key role in this response. Functional enrichment analysis revealed that basic cellular processes such as metabolism, transcriptional and translational regulation are central, but other stress-associated responses might be elicited during the stringent response. In addition, the identification of less annotated concepts revealed that some (p)ppGpp-induced functional activities are still overlooked in most reviews. Conclusions In this paper we applied a literature mining approach that offers a more comprehensive analysis of the stringent response in E. coli. The compilation of relevant biological entities to this stress response and the assessment of their functional roles provided a more systematic understanding of this cellular response. Overlooked regulatory entities, such as transcriptional regulators, were found to play a role in this stress response. Moreover, the involvement of other stress-associated concepts demonstrates the complexity of this cellular response.
Collapse
|
240
|
Fröhlich KS, Papenfort K, Berger AA, Vogel J. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 2011; 40:3623-40. [PMID: 22180532 PMCID: PMC3333887 DOI: 10.1093/nar/gkr1156] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A remarkable feature of many small non-coding RNAs (sRNAs) of Escherichia coli and Salmonella is their accumulation in the stationary phase of bacterial growth. Several stress response regulators and sigma factors have been reported to direct the transcription of stationary phase-specific sRNAs, but a widely conserved sRNA gene that is controlled by the major stationary phase and stress sigma factor, σ(S) (RpoS), has remained elusive. We have studied in Salmonella the conserved SdsR sRNA, previously known as RyeB, one of the most abundant stationary phase-specific sRNAs in E. coli. Alignments of the sdsR promoter region and genetic analysis strongly suggest that this sRNA gene is selectively transcribed by σ(S). We show that SdsR down-regulates the synthesis of the major Salmonella porin OmpD by Hfq-dependent base pairing; SdsR thus represents the fourth sRNA to regulate this major outer membrane porin. Similar to the InvR, MicC and RybB sRNAs, SdsR recognizes the ompD mRNA in the coding sequence, suggesting that this mRNA may be primarily targeted downstream of the start codon. The SdsR-binding site in ompD was localized by 3'-RACE, an experimental approach that promises to be of use in predicting other sRNA-target interactions in bacteria.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
241
|
Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011; 334:982-6. [PMID: 22096200 DOI: 10.1126/science.1211037] [Citation(s) in RCA: 695] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteria become highly tolerant to antibiotics when nutrients are limited. The inactivity of antibiotic targets caused by starvation-induced growth arrest is thought to be a key mechanism producing tolerance. Here we show that the antibiotic tolerance of nutrient-limited and biofilm Pseudomonas aeruginosa is mediated by active responses to starvation, rather than by the passive effects of growth arrest. The protective mechanism is controlled by the starvation-signaling stringent response (SR), and our experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells. Furthermore, inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.
Collapse
Affiliation(s)
- Dao Nguyen
- Departments of Medicine, Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Terui Y, Akiyama M, Sakamoto A, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and ω protein of RNA polymerase in Escherichia coli. Int J Biochem Cell Biol 2011; 44:412-22. [PMID: 22138225 DOI: 10.1016/j.biocel.2011.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
It is known that polyamines increase cell growth through stimulation of the synthesis of several kinds of proteins encoded by the so-called "polyamine modulon". We recently reported that polyamines also increase cell viability at the stationary phase of cell growth through stimulation of the synthesis of ribosome modulation factor, a component of the polyamine modulon. Accordingly, we looked for other proteins involved in cell viability whose synthesis is stimulated by polyamines. It was found that the synthesis of ppGpp regulatory protein (SpoT) and ω protein of RNA polymerase (RpoZ) was stimulated by polyamines at the level of translation. Stimulation of the synthesis of SpoT and RpoZ by polyamines was due to an inefficient initiation codon UUG in spoT mRNA and an unusual location of a Shine-Dalgarno (SD) sequence in rpoZ mRNA. Accordingly, the spoT and rpoZ genes are components of the polyamine modulon involved in cell viability. Reduced cell viability caused by polyamine deficiency was prevented by modified spoT and rpoZ genes whose synthesis was not influenced by polyamines. Under these conditions, the level of ppGpp increased in parallel with increase of SpoT protein. The results indicate that polyamine stimulation of synthesis of SpoT and RpoZ plays important roles for cell viability through stimulation of ppGpp synthesis by SpoT and modulation of RNA synthesis by ppGpp-RpoZ complex.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli. J Bacteriol 2011; 194:261-73. [PMID: 22056927 DOI: 10.1128/jb.06238-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that ppGpp and DksA interact with bacterial RNA polymerase (RNAP) to alter promoter activity. This study suggests that GreA plays a major role and GreB plays a minor role in the ppGpp-DksA regulatory network. We present evidence that DksA and GreA/GreB are redundant and/or share similar functions: (i) on minimal medium GreA overproduction suppresses the growth defects of a dksA mutant; (ii) GreA and DksA overexpression partially suppresses the auxotrophy of a ppGpp-deficient strain; (iii) microarrays show that many genes are regulated similarly by GreA and DksA. We also find instances where GreA and DksA seem to act in opposition: (i) complete suppression of auxotrophy occurs by overexpression of GreA or DksA only in the absence of the other protein; (ii) PgadA and PgadE promoter fusions, along with many other genes, are dramatically affected in vivo by GreA overproduction only when DksA is absent; (iii) GreA and DksA show opposite regulation of a subset of genes. Mutations in key acidic residues of GreA and DksA suggest that properties seen here probably are not explained by known biochemical activities of these proteins. Our results indicate that the general pattern of gene expression and, in turn, the ability of Escherichia coli to grow under a defined condition are the result of a complex interplay between GreA, GreB, and DksA that also involves mutual control of their gene expression, competition for RNA polymerase binding, and similar or opposite action on RNA polymerase activity.
Collapse
|
244
|
Nejman-Faleńczyk B, Golec P, Maciąg M, Wegrzyn A, Węgrzyn G. Inhibition of development of Shiga toxin-converting bacteriophages by either treatment with citrate or amino acid starvation. Foodborne Pathog Dis 2011; 9:13-9. [PMID: 22047055 DOI: 10.1089/fpd.2011.0980] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains, whose virulence depends on induction of Shiga toxin-converting prophages and their subsequent lytic development. We explored which factors or conditions could inhibit development of these phages, potentially decreasing virulence of STEC. MATERIALS AND METHODS Lytic development of Shiga toxin-converting bacteriophages was monitored after mitomycin C-provoked prophage induction under various conditions. Phage DNA replication efficiency was assessed by measurement of DNA amount in cells using quantitative polymerase chain reaction. RESULTS We demonstrated that the use of citrate delayed Shiga toxin-converting phage development after prophage induction. This effect was independent on efficiency of prophage induction and phage DNA replication. However, an excess of glucose reversed the effect of citrate. Amino acid starvation prevented the phage development in bacteria both able and unable to induce the stringent response. CONCLUSIONS Lytic development of Shiga toxin-converting bacteriophages can be inhibited by either the presence of citrate or amino acid starvation. We suggest that the inhibition caused by the latter condition may be due to a block in prophage induction or phage DNA replication or both. APPLICATIONS Our findings may facilitate development of procedures for treatment of STEC-infected patients.
Collapse
|
245
|
ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 2011; 194:28-35. [PMID: 22020649 DOI: 10.1128/jb.05932-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators.
Collapse
|
246
|
A truncated form of SpoT, including the ACT domain, inhibits the production of cyclic lipopeptide arthrofactin, and is associated with moderate elevation of guanosine 3',5'-bispyrophosphate level in Pseudomonas sp. MIS38. Biosci Biotechnol Biochem 2011; 75:1880-8. [PMID: 21979063 DOI: 10.1271/bbb.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arthrofactin is a biosurfactant produced by Pseudomonas sp. MIS38. We have reported that transposon insertion into spoT (spoT::Tn5) causes moderate accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) and abrogates arthrofactin production. To analyze the linkage of SpoT function and ablation of arthrofactin production, we examined the spoT::Tn5 mutation. The results showed that spoT::Tn5 is not a null mutation, but encodes separate segments of SpoT. Deletion of the 3' region of spoT increased the level of arthrofactin production, suggesting that the C-terminal region of SpoT plays a suppressive role. We evaluated the expression of a distinct segment of SpoT. Forced expression of the C-terminal region that contains the ACT domain resulted in the accumulation of ppGpp and abrogated arthrofactin production. Expression of the C-terminal segment also reduced MIS38 swarming and resulted in extensive biofilm formation, which constitutes the phenocopy of the spoT::Tn5 mutant.
Collapse
|
247
|
Kanjee U, Gutsche I, Ramachandran S, Houry WA. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Biochemistry 2011; 50:9388-98. [PMID: 21957966 DOI: 10.1021/bi201161k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
248
|
Tozawa Y, Nomura Y. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:699-709. [PMID: 21815973 DOI: 10.1111/j.1438-8677.2011.00484.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hyperphosphorylated guanine ribonucleotide ppGpp mediates the stringent response in bacteria. Biochemical and genetic studies of this response in Escherichia coli have shown that the biosynthesis of ppGpp is catalysed by two homologous enzymes, RelA and SpoT. RelA is activated in response to amino acid starvation, and SpoT responds to abiotic physical stress beside nutritional stress. All free-living bacteria, including Gram-positive firmicutes, contain RelA-SpoT homologues (RSH). Further, novel ppGpp biosynthetic enzymes, designated small alarmone synthetases (SASs), were recently identified in a subset of bacteria, including the Gram-positive organism Bacillus subtilis, and were shown to consist only of a ppGpp synthetase domain. Studies suggest that these SAS proteins contribute to ppGpp signalling in response to stressful conditions in a manner distinct from that of RelA-SpoT enzymes. SAS proteins currently appear to always occur in addition to RSH enzymes in various combinations but never alone. RSHs have also been identified in chloroplasts, organelles of photosynthetic eukaryotes that originated from endosymbiotic photosynthetic bacteria. These chloroplast RSHs are exclusively encoded in nuclear DNA and targeted into chloroplasts. The findings suggest that ppGpp may regulate chloroplast functions similar to those regulated in bacteria, including transcription and translation. In addition, a novel ppGpp synthetase that is regulated by Ca²⁺ as a result of the presence of two EF-hand motifs at its COOH terminus was recently identified in chloroplasts of land plants. This finding indicates the existence of a direct connection between eukaryotic Ca²⁺ signalling and prokaryotic ppGpp signalling in chloroplasts. The new observations with regard to ppGpp signalling in land plants suggest that such signalling contributes to the regulation of a wider range of cellular functions than previously anticipated.
Collapse
Affiliation(s)
- Y Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan.
| | | |
Collapse
|
249
|
Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 2011; 6:e23479. [PMID: 21858139 PMCID: PMC3153485 DOI: 10.1371/journal.pone.0023479] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 12/01/2022] Open
Abstract
RelA/SpoT Homologue (RSH) proteins, named for their sequence similarity to the RelA and SpoT enzymes of Escherichia coli, comprise a superfamily of enzymes that synthesize and/or hydrolyze the alarmone ppGpp, activator of the “stringent” response and regulator of cellular metabolism. The classical “long” RSHs Rel, RelA and SpoT with the ppGpp hydrolase, synthetase, TGS and ACT domain architecture have been found across diverse bacteria and plant chloroplasts, while dedicated single domain ppGpp-synthesizing and -hydrolyzing RSHs have also been discovered in disparate bacteria and animals respectively. However, there is considerable confusion in terms of nomenclature and no comprehensive phylogenetic and sequence analyses have previously been carried out to classify RSHs on a genomic scale. We have performed high-throughput sensitive sequence searching of over 1000 genomes from across the tree of life, in combination with phylogenetic analyses to consolidate previous ad hoc identification of diverse RSHs in different organisms and provide a much-needed unifying terminology for the field. We classify RSHs into 30 subgroups comprising three groups: long RSHs, small alarmone synthetases (SASs), and small alarmone hydrolases (SAHs). Members of nineteen previously unidentified RSH subgroups can now be studied experimentally, including previously unknown RSHs in archaea, expanding the “stringent response” to this domain of life. We have analyzed possible combinations of RSH proteins and their domains in bacterial genomes and compared RSH content with available RSH knock-out data for various organisms to determine the rules of combining RSHs. Through comparative sequence analysis of long and small RSHs, we find exposed sites limited in conservation to the long RSHs that we propose are involved in transmitting regulatory signals. Such signals may be transmitted via NTD to CTD intra-molecular interactions, or inter-molecular interactions either among individual RSH molecules or among long RSHs and other binding partners such as the ribosome.
Collapse
|
250
|
Krol E, Becker A. ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Mol Microbiol 2011; 81:1233-54. [PMID: 21696469 DOI: 10.1111/j.1365-2958.2011.07752.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti Rm2011 responds to sudden shifts to nitrogen or carbon starvation conditions by an accumulation of the stringent response alarmone ppGpp and remodelling of the transcriptome. The gene product of relA, Rel(Sm) , responsible for synthesis of ppGpp, shows functional similarities to E. coli SpoT. Using promoter-egfp gene fusions, we showed that in Rm2011 relA is expressed at a low rate, as a readthrough from the rpoZ promoter and from its own weak promoter. The low level of relA expression is physiologically relevant, since overexpression of Rel(Sm) inhibits ppGpp accumulation. The N-terminal portion of Rel(Sm) is required for ppGpp degradation in nutrient-sufficient cells and might be involved in regulation of the ppGpp synthase and hydrolase activities of the protein. Expression profiling of S. meliloti subjected to sudden nitrogen or carbon downshifts revealed that repression of 'house-keeping' genes is largely dependent on relA whereas activation of gene targets of the stress sigma factor RpoE2 occurred independently of relA. The regulatory genes nifA, ntrB, aniA and sinR, as well as genes related to modulation of protein biosynthesis and nucleotide catabolism, were induced in a relA-dependent manner. dksA was required for the majority of the relA-dependent regulations.
Collapse
Affiliation(s)
- Elizaveta Krol
- Faculty of Biology and Center for Systems Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | |
Collapse
|