201
|
Bhargava A, Khan S, Panwar H, Pathak N, Punde RP, Varshney S, Mishra PK. Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus Res 2010; 153:143-150. [PMID: 20667493 DOI: 10.1016/j.virusres.2010.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/17/2010] [Accepted: 07/19/2010] [Indexed: 12/23/2022]
Abstract
Occult HBV infections (OHBI) are often associated with poor therapeutic response and increased risk of developing hepatocellular carcinoma. Despite a decade of research, OHBI still remains an intricate issue and much is yet to be defined about their possible immune implications. As HBV is known to infect peripheral blood lymphocytes, the present study aimed to explore the molecular mechanisms underlying DNA damage response triggered due to OHBI in host cells. The study was divided into three groups i.e. group A (OHBI patients n=30, viral load
Collapse
Affiliation(s)
- Arpit Bhargava
- Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | | | | | | | | | | | | |
Collapse
|
202
|
Ling H, Kulasiri D, Samarasinghe S. Robustness of G1/S checkpoint pathways in cell cycle regulation based on probability of DNA-damaged cells passing as healthy cells. Biosystems 2010; 101:213-21. [DOI: 10.1016/j.biosystems.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
203
|
Svobodová A, Vostálová J. Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 2010; 86:999-1030. [PMID: 20807180 DOI: 10.3109/09553002.2010.501842] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Solar energy has a number of short- and long-term detrimental effects on skin that can result in several skin disorders. The aim of this review is to summarise current knowledge on endogenous systems within the skin for protection from solar radiation and present research findings to date, on the exogenous options for such skin photoprotection. RESULTS Endogenous systems for protection from solar radiation include melanin synthesis, epidermal thickening and an antioxidant network. Existing lesions are eliminated via repair mechanisms. Cells with irreparable damage undergo apoptosis. Excessive and chronic sun exposure however can overwhelm these mechanisms leading to photoaging and the development of cutaneous malignancies. Therefore exogenous means are a necessity. Exogenous protection includes sun avoidance, use of photoprotective clothing and sufficient application of broad-spectrum sunscreens as presently the best way to protect the skin. However other strategies that may enhance currently used means of protection are being investigated. These are often based on the endogenous protective response to solar light such as compounds that stimulate pigmentation, antioxidant enzymes, DNA repair enzymes, non-enzymatic antioxidants. CONCLUSION More research is needed to confirm the effectiveness of new alternatives to photoprotection such as use of DNA repair and antioxidant enzymes and plant polyphenols and to find an efficient way for their delivery to the skin. New approaches to the prevention of skin damage are important especially for specific groups of people such as (young) children, photosensitive people and patients on immunosuppressive therapy. Changes in public awareness on the subject too must be made.
Collapse
Affiliation(s)
- Alena Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc, Czech Republic.
| | | |
Collapse
|
204
|
Jayachandran G, Ueda K, Wang B, Roth JA, Ji L. NPRL2 sensitizes human non-small cell lung cancer (NSCLC) cells to cisplatin treatment by regulating key components in the DNA repair pathway. PLoS One 2010; 5:e11994. [PMID: 20700484 PMCID: PMC2916838 DOI: 10.1371/journal.pone.0011994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/09/2010] [Indexed: 12/11/2022] Open
Abstract
NPRL2, one of the tumor suppressor genes residing in a 120-kb homozygous deletion region of human chromosome band 3p21.3, has a high degree of amino acid sequence homology with the nitrogen permease regulator 2 (NPR2) yeast gene, and mutations of NPRL2 in yeast cells are associated with resistance to cisplatin-mediated cell killing. Previously, we showed that restoration of NPRL2 in NPRL2-negative and cisplatin-resistant cells resensitize lung cancer cells to cisplatin treatment in vitro and in vivo. In this study, we show that sensitization of non-small cell lung cancer (NSCLC) cells to cisplatin by NPRL2 is accomplished through the regulation of key components in the DNA-damage checkpoint pathway. NPRL2 can phosphorylate ataxia telangiectasia mutated (ATM) kinase activated by cisplatin and promote downstream γ-H2AX formation in vitro and in vivo, which occurs during apoptosis concurrently with the initial appearance of high-molecular-weight DNA fragments. Moreover, this combination treatment results in higher Chk1 and Chk2 kinase activity than does treatment with cisplatin alone and can activate Chk2 in pleural metastases tumor xenograft in mice. Activated Chk1 and Chk2 increase the expression of cell cycle checkpoint proteins, including Cdc25A and Cdc25C, leading to higher levels of G2/M arrest in tumor cells treated with NPRL2 and cisplatin than in tumor cells treated with cisplatin only. Our results therefore suggest that ectopic expression of NPRL2 activates the DNA damage checkpoint pathway in cisplatin-resistant and NPRL2-negative cells; hence, the combination of NPRL2 and cisplatin can resensitize cisplatin nonresponders to cisplatin treatment through the activation of the DNA damage checkpoint pathway, leading to cell arrest in the G2/M phase and induction of apoptosis. The direct implication of this study is that combination treatment with NPRL2 and cisplatin may overcome cisplatin resistance and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Gitanjali Jayachandran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kentaro Ueda
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Bingbing Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
205
|
Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 2010; 206:591-601. [PMID: 20674189 DOI: 10.1016/j.prp.2010.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All forms of life on earth must cope with constant exposure to DNA-damaging agents that may promote cancer development. As a biological barrier, known as DNA damage response (DDR), cells are provided with both DNA repair mechanisms and highly conserved cell cycle checkpoints. The latter are responsible for the control of cell cycle phase progression with ATM, ATR, Chk1, and Chk2 as the main signaling molecules, thus dealing with both endogenous and exogenous sources of DNA damage. As cell cycle checkpoint and also DNA repair genes, such as BRCA1 and BRCA2, are frequently mutated, we here discuss their fundamental roles in the pathogenesis of human cancers. Importantly, as current evidence also suggests a role of MAPK's (mitogen activated protein kinases) in cell cycle checkpoint control, we describe in this review both the ATR/ATM-Chk1/Chk2 signaling pathways as well as the regulation of cell cycle checkpoints by MAPK's as molecular mechanisms in DDR, and how their dysfunction is related to cancer development. Moreover, since damage to DNA might be the common underlying mechanism for the positive outcome of chemotherapy, we also discuss targeting anticancer treatments on cell cycle checkpoints as an important issue emerging in drug discovery.
Collapse
Affiliation(s)
- Angela Poehlmann
- Department of Pathology, Otto-von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | |
Collapse
|
206
|
Mukherjee S, Manna S, Pal D, Mukherjee P, Panda CK. Sequential loss of cell cycle checkpoint control contributes to malignant transformation of murine embryonic fibroblasts induced by 20-methylcholanthrene. J Cell Physiol 2010; 224:49-58. [PMID: 20232303 DOI: 10.1002/jcp.22089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Definitive information about the number and nature of discrete steps of tumorigenesis is enigmatic. To understand the multistep nature of carcinogenesis, an in vitro model of 20-Methylcholanthrene-treated primary fibroblast cells CNCI-PM-20, from 20-day old Swiss mouse embryo was used. Visible neoplastic changes with distinct morphological variations along with specific chromosomal aberrations like Robertsonian metacentrics, double and single-minute chromosomes and aneuploidy were observed from Passage-20 onwards. The cell cycle profile showed gradual increase in G(2)/M population till P-32, followed by evasion of block from P-36 onwards. Gradual increase in expression of C-myc, CyclinD1 and a decrease in expression of P21 was observed from P-20 onwards. CDC25A expression was significantly increased at P-27 and remained more or less constant in subsequent passages. Additionally, an increased P16 and P53 expression were seen at P-20 followed by their significant down-regulation at P-32. An increased level of phosphorylated retinoblastoma (ppRb) was observed from P-27, probably responsible for a compromised G(1)/S checkpoint. The inactivation of p21 and p16 might be due to their promoter hyper-methylation as suggested through de-methylation experiment by 5-aza-deoxycytidine at P-42. G(2)/M checkpoint abrogation was marked by gradual increase in expression of CyclinB1 and Cdc20, and a significant increase of Mad2 at P-20. Interestingly, increased expression of phospho-ATM, ATR and phospho-Chk1 were also seen at P-20 followed by their down-regulation at subsequent passages, indicating a perturbation of DNA damage response pathway at early passages. Our findings therefore dramatize the multiple genetic events that can cooperate to promote tumorigenesis.
Collapse
Affiliation(s)
- Sudeshna Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | |
Collapse
|
207
|
Abstract
Granulocyte colony-stimulating factor (G-CSF) mediates "emergency" granulopoiesis during infection, a process that is mimicked by clinical G-CSF use, yet we understand little about the intracellular signaling cascades that control demand-driven neutrophil production. Using a murine model with conditional deletion of signal transducer and activator of transcription 3 (STAT3) in bone marrow, we investigated the cellular and molecular mechanisms of STAT3 function in the emergency granulopoiesis response to G-CSF administration or infection with Listeria monocytogenes, a pathogen that is restrained by G-CSF signaling in vivo. Our results show that STAT3 deficiency renders hematopoietic progenitor cells and myeloid precursors refractory to the growth-promoting functions of G-CSF or L monocytogenes infection. STAT3 is necessary for accelerating granulocyte cell-cycle progression and maturation in response to G-CSF. STAT3 directly controls G-CSF-dependent expression of CCAAT-enhancer-binding protein β (C/EBPβ), a crucial factor in the emergency granulopoiesis response. Moreover, STAT3 and C/EBPβ coregulate c-Myc through interactions with the c-myc promoter that control the duration of C/EBPα occupancy during demand-driven granulopoiesis. These results place STAT3 as an essential mediator of emergency granulopoiesis by its regulation of transcription factors that direct G-CSF-responsive myeloid progenitor expansion.
Collapse
|
208
|
Abstract
It has been proposed that the G(1)-S checkpoint is the critical regulator of genomic stability, preventing the cell cycle progression of cells with a single DNA double-strand break. Using fluorescence-activated cell sorting analysis of asynchronous cells and microscopic analysis of asynchronous and synchronized cells, we show that full blockage of S-phase entry is only observed >4 hours after irradiation. The process is ataxia-telangiectasia mutated (ATM) dependent and Chk1/2 independent and can be activated throughout G(1) phase. By monitoring S-phase entry of irradiated synchronized cells, we show that the duration of arrest is dose dependent, with S-phase entry recommencing after arrest with kinetics similar to that observed in unirradiated cells. Thus, G(1)-S checkpoint arrest is not always permanent. Following exposure to higher doses (> or =2 Gy), G(1)-S arrest is inefficiently maintained, allowing progression of G(1)-phase cells into G(2) with elevated gammaH2AX foci and chromosome breaks. At early times after irradiation (< or =4 h), G(1)-S checkpoint arrest is not established but cells enter S phase at a reduced rate. This early slowing in S-phase entry is ATM and Chk2 dependent and detectable after 100 mGy, showing a novel and sensitive damage response. However, the time needed to establish G(1)-S checkpoint arrest provides a window when cells can progress to G(2) and form chromosome breaks. Our findings detail the efficacy of the G(1)-S checkpoint and define two significant limitations: At early times after IR, the activated checkpoint fails to efficiently prevent S-phase entry, and at later times, the checkpoint is inefficiently maintained.
Collapse
Affiliation(s)
- Dorothee Deckbar
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
209
|
RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci U S A 2010; 107:4579-84. [PMID: 20173098 DOI: 10.1073/pnas.0912094107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In unstressed cells, the tumor suppressor p53 is maintained at low levels by ubiquitin-mediated proteolysis mainly through Mdm2. In response to DNA damage, p53 is stabilized and becomes activated to turn on transcriptional programs that are essential for cell cycle arrest and apoptosis. Activation of p53 leads to accumulation of Mdm2 protein, a direct transcriptional target of p53. It is not understood how p53 is protected from degradation when Mdm2 is up-regulated. Here we report that p53 stabilization in the late phase after ionizing radiation correlates with active ubiquitination. We found that an E3 ubiquitin ligase RFWD3 (RNF201/FLJ10520) forms a complex with Mdm2 and p53 to synergistically ubiquitinate p53 and is required to stabilize p53 in the late response to DNA damage. This process is regulated by the DNA damage checkpoint, because RFWD3 is phosphorylated by ATM/ATR kinases and the phosphorylation mutant fails to stimulate p53 ubiquitination. In vitro experiments suggest that RFWD3 is a p53 E3 ubiquitin ligase and that RFWD3-Mdm2 complex restricts the polyubiquitination of p53 by Mdm2. Our study identifies RFWD3 as a positive regulator of p53 stability when the G(1) cell cycle checkpoint is activated and provides an explanation for how p53 is protected from degradation in the presence of high levels of Mdm2.
Collapse
|
210
|
Abdel-Malek ZA, Kadekaro AL, Swope VB. Stepping up melanocytes to the challenge of UV exposure. Pigment Cell Melanoma Res 2010; 23:171-86. [PMID: 20128873 DOI: 10.1111/j.1755-148x.2010.00679.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exposure to solar ultraviolet radiation (UV) is the main etiological factor for skin cancer, including melanoma. Cutaneous pigmentation, particularly eumelanin, afforded by melanocytes is the main photoprotective mechanism, as it prevents UV-induced DNA damage in the epidermis. Therefore, maintaining genomic stability of melanocytes is crucial for prevention of melanoma, as well as keratinocyte-derived basal and squamous cell carcinoma. A critical independent factor for preventing melanoma is DNA repair capacity. The response of melanocytes to UV is mediated mainly by a network of paracrine factors that not only activate melanogenesis, but also DNA repair, anti-oxidant, and survival pathways that are pivotal for maintenance of genomic stability and prevention of malignant transformation or apoptosis. However, little is known about the stress response of melanocytes to UV and the regulation of DNA repair pathways in melanocytes. Unraveling these mechanisms might lead to strategies to prevent melanoma, as well as non-melanoma skin cancer.
Collapse
Affiliation(s)
- Zalfa A Abdel-Malek
- Department of Dermatology, University of Cincinnati Collage of Medicine, Cincinnati, OH, USA.
| | | | | |
Collapse
|
211
|
Senescence or Tumor: The Dual Role of Activated-oncogene Induction*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
212
|
Abstract
Maintenance of genomic stability is needed for cells to survive many rounds of division throughout their lifetime. Key to the proper inheritance of intact genome is the tight temporal and spatial coordination of cell cycle events. Moreover, checkpoints are present that function to monitor the proper execution of cell cycle processes. For instance, the DNA damage and spindle assembly checkpoints ensure genomic integrity by delaying cell cycle progression in the presence of DNA or spindle damage, respectively. A checkpoint that has recently been gaining attention is the antephase checkpoint that acts to prevent cells from entering mitosis in response to a range of stress agents. We review here what is known about the pathway that monitors the status of the cells at the brink of entry into mitosis when cells are exposed to insults that threaten the proper inheritance of chromosomes. We highlight issues which are unresolved in terms of our understanding of the antephase checkpoint and provide some perspectives on what lies ahead in the understanding of how the checkpoint functions.
Collapse
|
213
|
Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther 2009; 9:1369-82. [PMID: 19732026 DOI: 10.1517/14712590903257781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse transcriptase, viral protease or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host's proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be used to better design therapeutics against HIV-1.
Collapse
Affiliation(s)
- William Coley
- George Washington University, School of Medicine, Department of Microbiology, Immunology and Tropical Medicine, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
214
|
Skjølberg HC, Fensgård O, Nilsen H, Grallert B, Boye E. Global transcriptional response after exposure of fission yeast cells to ultraviolet light. BMC Cell Biol 2009; 10:87. [PMID: 20015352 PMCID: PMC2806298 DOI: 10.1186/1471-2121-10-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 12/16/2009] [Indexed: 12/04/2022] Open
Abstract
Background In many cell types, including the fission yeast Schizosaccharomyces pombe, a set of checkpoints are induced by perturbations of the cell cycle or by DNA damage. Many of the checkpoint responses include a substantial change of the transcriptional pattern. As part of characterising a novel G1/S checkpoint in fission yeast we have investigated whether a transcriptional response is induced after irradiation with ultraviolet light. Results Microarray analyses were used to measure the global transcription levels of all open reading frames of fission yeast after 254 nm ultraviolet irradiation, which is known to induce a G1/S checkpoint. We discovered a surprisingly weak transcriptional response, which is quite unlike the marked changes detected after some other types of treatment and in several other checkpoints. Interestingly, the alterations in gene expression after ultraviolet irradiation were not similar to those observed after ionising radiation or oxidative stress. Pathway analysis suggests that there is little systematic transcriptional response to the irradiation by ultraviolet light, but a marked, coordinated transcriptional response was noted on progression of the cells from G1 to S phase. Conclusion There is little response in fission yeast to ultraviolet light at the transcriptional level. Amongst the genes induced or repressed after ultraviolet irradiation we found none that are likely to be involved in the G1/S checkpoint mechanism, suggesting that the checkpoint is not dependent upon transcriptional regulation.
Collapse
Affiliation(s)
- Henriette C Skjølberg
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Montebello, 0310 Oslo, Norway.
| | | | | | | | | |
Collapse
|
215
|
Li Y, Li LJ, Zhang ST, Wang LJ, Zhang Z, Gao N, Zhang YY, Chen QM. In vitro and clinical studies of gene therapy with recombinant human adenovirus-p53 injection for oral leukoplakia. Clin Cancer Res 2009; 15:6724-31. [PMID: 19861457 DOI: 10.1158/1078-0432.ccr-09-1296] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oral leukoplakia is a well-recognized precancerous lesion of squamous cell carcinoma. When accompanied with abnormal p53 expression, it suffered a higher risk of canceration. The present study was carried out to test whether the recombinant human adenovirus-p53 could introduce wild-type p53 gene to oral leukoplakia cells and induce cell cycle arrest and apoptosis. EXPERIMENTAL DESIGN We select p53(-) oral dysplastic keratinocyte POE-9n, to observe the growth inhibition, cell cycle change, apoptosis-induced effects, and elaborate the corresponding molecular mechanism of recombinant adenovirus-p53 on POE-9n cells. Meanwhile, we evaluate the feasibility, safety, and biological activity of multipoints intraepithelial injections of recombinant adenovirus-p53 in 22 patients with dysplastic oral leukoplakia. RESULTS Exogenous p53 could be successfully transduced into POE-9n cells by recombinant adenovirus-p53. The optimal infecting titer in this study was multiplicity of infection (MOI) = 100. Recombinant adenovirus-p53 could strongly inhibit cell proliferation, induce apoptosis, and arrest cell cycle in stage G(1) in POE-9n cells by inducing p21(CIP/WAF) and downregulating bcl-2 expression. In the posttreatment patients, p53 protein and p21(CIP/WAF) protein expression were significantly enhanced, yet bcl-2 protein presented low expression. Sixteen patients showed clinical response to the treatment, and 14 patients showed obvious histopathologic improvement. CONCLUSION Intraepithelial injections of recombinant human adenovirus-p53 were safe, feasible, and biologically active for patients with dysplastic oral leukoplakia.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, West China College of Stomatology, and West China Health Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H, Kim WJ, Park WY, Oh BC, Stein GS, Ito Y, van Wijnen AJ, Bae SC. Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res 2009; 69:8111-9. [PMID: 19808967 DOI: 10.1158/0008-5472.can-09-1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p14(ARF)-MDM2-p53 pathway constitutes an effective mechanism for protecting cells from oncogenic stimuli such as activated Ras and Myc. Importantly, Ras activation induces p14(ARF) and often occurs earlier than p53 inactivation during cancer development. Here, we show that RUNX3, a tumor suppressor in various tumors including stomach, bladder, colon, and lung, is stabilized by Ras activation through the p14(ARF)-MDM2 signaling pathway. RUNX3 directly binds MDM2 through its Runt-related DNA-binding domain. MDM2 blocks RUNX3 transcriptional activity by interacting with RUNX3 through an acidic domain adjacent to the p53-binding domain of MDM2 and ubiquitinates RUNX3 on key lysine residues to mediate nuclear export and proteasomal degradation. Our data indicate that the lineage-specific tumor suppressor RUNX3 and the ubiquitous p53 protein are both principal responders of the p14(ARF)-MDM2 cell surveillance pathway that prevents pathologic consequences of abnormal oncogene activation.
Collapse
Affiliation(s)
- Xin-Zi Chi
- Departments of Biochemistry, College of Medicine, Institute of Tumor Research, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
Citicoline (cytidine-5'-diphosphocholine or CDP-choline) is a precursor essential for the synthesis of phosphatidylcholine, one of the cell membrane components that is degraded during cerebral ischemia to free fatty acids and free radicals. Animal studies suggest that citicoline may protect cell membranes by accelerating resynthesis of phospholipids and suppressing the release of free fatty acids, stabilizing cell membranes, and reducing free radical generation. Numerous experimental stroke studies with citicoline have shown improved outcome and reduced infarct size in both ischemic and hemorrhagic stroke models. Citicoline has been studied worldwide in both ischemic and hemorrhagic clinical stroke with excellent safety and possibly efficacy found in several trials. A meta-analysis of four randomized US clinical citicoline trials concluded that treatment with oral citicoline within the first 24 h after a moderate to severe stroke is safe and increases the probability of complete recovery at 3 months. Citicoline clinical efficacy trials are now continuing outside of the US in both ischemic and hemorrhagic stroke. A citicoline supplement is now available from several sources on the internet.
Collapse
Affiliation(s)
- Wayne M Clark
- Department of Neurology CR131, Oregon Health Sciences University, Oregon Stroke Center, Portland, OR97201, USA.
| |
Collapse
|
218
|
Skladanowski A, Bozko P, Sabisz M. DNA structure and integrity checkpoints during the cell cycle and their role in drug targeting and sensitivity of tumor cells to anticancer treatment. Chem Rev 2009; 109:2951-73. [PMID: 19522503 DOI: 10.1021/cr900026u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrzej Skladanowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | | | | |
Collapse
|
219
|
NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 2009; 11:1247-53. [PMID: 19734889 DOI: 10.1038/ncb1969] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/09/2009] [Indexed: 12/13/2022]
Abstract
DNA damage-induced cell-cycle checkpoints have a critical role in maintaining genomic stability. A key target of the checkpoints is the CDC25A (cell division cycle 25 homologue A) phosphatase, which is essential for the activation of cyclin-dependent kinases and cell-cycle progression. To identify new genes involved in the G2/M checkpoint we performed a large-scale short hairpin RNA (shRNA) library screen. We show that NIMA (never in mitosis gene A)-related kinase 11 (NEK11) is required for DNA damage-induced G2/M arrest. Depletion of NEK11 prevents proteasome-dependent degradation of CDC25A, both in unperturbed and DNA-damaged cells. We show that NEK11 directly phosphorylates CDC25A on residues whose phosphorylation is required for beta-TrCP (beta-transducin repeat-containing protein)-mediated polyubiquitylation and degradation of CDC25A. Furthermore, we demonstrate that CHK1 (checkpoint kinase 1) directly activates NEK11 by phosphorylating it on Ser 273, indicating that CHK1 and NEK11 operate in a single pathway that controls proteolysis of CDC25A. Taken together, these results demonstrate that NEK11 is an important component of the pathway enforcing the G2/M checkpoint, suggesting that genetic mutations in NEK11 may contribute to the development of human cancer.
Collapse
|
220
|
Kottemann MC, Bale AE. Characterization of DNA damage-dependent cell cycle checkpoints in a menin-deficient model. DNA Repair (Amst) 2009; 8:944-52. [PMID: 19608464 PMCID: PMC2745199 DOI: 10.1016/j.dnarep.2009.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/04/2009] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
Abstract
MEN1, the gene responsible for the cancer predisposition syndrome multiple endocrine neoplasia type I, has been implicated in DNA repair, cell cycle control, and transcriptional regulation. It is unclear to what degree these processes are integrated into a single encompassing function in normal cellular physiology and how deficiency of the MEN1-encoded protein, "menin", contributes to cancer pathogenesis. In this study, we found that loss of Men1 in mouse embryonic fibroblasts caused abrogation of the G1/S and intra-S checkpoints following ionizing radiation. The cyclin-dependent kinase inhibitor, p21, failed to be upregulated in the mutant although upstream checkpoint signaling remained intact. Menin localized to the p21 promoter in a DNA damage-dependent manner. The MLL histone methyltransferase, a positive transcriptional regulator, bound to the same region in the presence of menin but not in Men1(-/-) cells. Finally, p53 retained damage-responsive binding to the p21 promoter in the Men1 mutant. These data indicate that menin participates in the checkpoint response in a transcriptional capacity, upregulating the DNA damage-responsive target p21.
Collapse
Affiliation(s)
- Molly C. Kottemann
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| | - Allen E. Bale
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
221
|
Uchida S, Yoshioka K, Kizu R, Nakagama H, Matsunaga T, Ishizaka Y, Poon RY, Yamashita K. Stress-Activated Mitogen-Activated Protein Kinases c-Jun NH2-Terminal Kinase and p38 Target Cdc25B for Degradation. Cancer Res 2009; 69:6438-44. [DOI: 10.1158/0008-5472.can-09-0869] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
222
|
Guendel I, Carpio L, Easley R, Van Duyne R, Coley W, Agbottah E, Dowd C, Kashanchi F, Kehn-Hall K. 9-Aminoacridine inhibition of HIV-1 Tat dependent transcription. Virol J 2009; 6:114. [PMID: 19630958 PMCID: PMC2723079 DOI: 10.1186/1743-422x-6-114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/24/2009] [Indexed: 11/30/2022] Open
Abstract
As part of a continued search for more efficient anti-HIV-1 drugs, we are focusing on the possibility that small molecules could efficiently inhibit HIV-1 replication through the restoration of p53 and p21WAF1 functions, which are inactivated by HIV-1 infection. Here we describe the molecular mechanism of 9-aminoacridine (9AA) mediated HIV-1 inhibition. 9AA treatment resulted in inhibition of HIV LTR transcription in a specific manner that was highly dependent on the presence and location of the amino moiety. Importantly, virus replication was found to be inhibited in HIV-1 infected cell lines by 9AA in a dose-dependent manner without inhibiting cellular proliferation or inducing cell death. 9AA inhibited viral replication in both p53 wildtype and p53 mutant cells, indicating that there is another p53 independent factor that was critical for HIV inhibition. p21WAF1 is an ideal candidate as p21WAF1 levels were increased in both p53 wildtype and p53 mutant cells, and p21WAF1 was found to be phosphorylated at S146, an event previously shown to increase its stability. Furthermore, we observed p21WAF1 in complex with cyclin T1 and cdk9 in vitro, suggesting a direct role of p21WAF1 in HIV transcription inhibition. Finally, 9AA treatment resulted in loss of cdk9 from the viral promoter, providing one possible mechanism of transcriptional inhibition. Thus, 9AA treatment was highly efficient at reactivating the p53 – p21WAF1 pathway and consequently inhibiting HIV replication and transcription.
Collapse
Affiliation(s)
- Irene Guendel
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037,
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Becher UM, Breitbach M, Sasse P, Garbe S, van der Ven PFM, Fürst DO, Fleischmann BK. Enrichment and terminal differentiation of striated muscle progenitors in vitro. Exp Cell Res 2009; 315:2741-51. [PMID: 19615359 DOI: 10.1016/j.yexcr.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Enrichment and terminal differentiation of mammalian striated muscle cells is severely hampered by fibroblast overgrowth, de-differentiation and/or lack of functional differentiation. Herein we report a new, reproducible and simple method to enrich and terminally differentiate muscle stem cells and progenitors from mice and humans. We show that a single gamma irradiation of muscle cells induces their massive differentiation into structurally and functionally intact myotubes and cardiomyocytes and that these cells can be kept in culture for many weeks. Similar results are also obtained when treating skeletal muscle-derived stem cells and progenitors with Mitomycin C.
Collapse
Affiliation(s)
- Ulrich M Becher
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Origins of DNA replication are licensed through the assembly of a chromatin-bound prereplication complex. Multiple regulatory mechanisms block new prereplication complex assembly after the G(1)/S transition to prevent rereplication. The strict inhibition of licensing after the G(1)/S transition means that all origins used in S phase must have been licensed in the preceding G(1). Nevertheless mechanisms that coordinate S phase entry with the completion of origin licensing are still poorly understood. We demonstrate that depletion of either of two essential licensing factors, Cdc6 or Cdt1, in normal human fibroblasts induces a G(1) arrest accompanied by inhibition of cyclin E/Cdk2 activity and hypophosphorylation of Rb. The Cdk2 inhibition is attributed to a reduction in the essential activating phosphorylation of T160 and an associated delay in Cdk2 nuclear accumulation. In contrast, licensing inhibition in the HeLa or U2OS cancer cell lines failed to regulate Cdk2 or Rb phosphorylation, and these cells died by apoptosis. Co-depletion of Cdc6 and p53 in normal cells restored Cdk2 activation and Rb phosphorylation, permitting them to enter S phase with a reduced rate of replication and also to accumulate markers of DNA damage. These results demonstrate dependence on origin licensing for multiple events required for G(1) progression, and suggest a mechanism to prevent premature S phase entry that functions in normal cells but not in p53-deficient cells.
Collapse
Affiliation(s)
- Kathleen R. Nevis
- Department of Pathology and Laboratory Medicine; University of North Carolina; Chapel Hill, NC USA
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine; University of North Carolina; Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
- Center for Environmental Health and Susceptibility; University of North Carolina; Chapel Hill, NC USA
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
225
|
Abstract
Genomic DNA is under constant attack from both endogenous and exogenous sources of DNA damaging agents. Without proper care, the ensuing DNA damages would lead to alteration of genomic structure thus affecting the faithful transmission of genetic information. During the process of evolution, organisms have acquired a series of mechanisms responding to and repairing DNA damage, thus assuring the maintenance of genome stability and faithful transmission of genetic information. DNA damage checkpoint is one such important mechanism by which, in the face of DNA damage, a cell can respond to amplified damage signals, either by actively halting the cell cycle until it ensures that critical processes such as DNA replication or mitosis are complete or by initiating apoptosis as a last resort. Over the last decade, complex hierarchical interactions between the key components like ATM/ATR in the checkpoint pathway and various other mediators, effectors including DNA damage repair proteins have begun to emerge. In the meantime, an intimate relationship between mechanisms of damage checkpoint pathway, DNA damage repair, and genome stability was also uncovered. Reviewed herein are the recent findings on both the mechanisms of activation of checkpoint pathways and their coordination with DNA damage repair machinery as well as their effect on genomic integrity.
Collapse
Affiliation(s)
- Wei-Feng Liu
- School of Life Sciences, Shandong University, Ji'nan, China.
| | | | | | | |
Collapse
|
226
|
Kumamoto-Yonezawa Y, Sasaki R, Ota Y, Suzuki Y, Fukushima S, Hada T, Uryu K, Sugimura K, Yoshida H, Mizushina Y. Cell cycle arrest triggered by conjugated eicosapentaenoic acid occurs through several mechanisms including G1 checkpoint activation by induced RPA and ATR expression. Biochim Biophys Acta Gen Subj 2009; 1790:339-46. [DOI: 10.1016/j.bbagen.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 01/03/2023]
|
227
|
Fan H, Zhao ZJ, Cheng J, Su XW, Wu QX, Shan YF. Overexpression of DNA methyltransferase 1 and its biological significance in primary hepatocellular carcinoma. World J Gastroenterol 2009; 15:2020-6. [PMID: 19399937 PMCID: PMC2675095 DOI: 10.3748/wjg.15.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between DNA methyltransferase 1 (DNMT1) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) and its biological significance in primary HCC.
METHODS: We carried out an immunohistochemical examination of DNMT1 in both HCC and paired non-neoplastic liver tissues from Chinese subjects. DNMT1 mRNA was further examined in HCC cell lines by real-time PCR. We inhibited DNMT1 using siRNA and detected the effect of depletion of DNMT1 on cell proliferation ability and cell apoptosis in the HCC cell line SMMC-7721.
RESULTS: DNMT1 protein expression was increased in HCCs compared to histologically normal non-neoplastic liver tissues and the incidence of DNMT1 immunoreactivity in HCCs correlated significantly with poor tumor differentiation (P = 0.014). There were more cases with DNMT1 overexpression in HCC with HBV (42.85%) than in HCC without HBV (28.57%). However, no significant difference in DNMT1 expression was found in HBV-positive and HBV-negative cases in the Chinese HCC group. There was a trend that DNMT1 RNA expression increased more in HCC cell lines than in pericarcinoma cell lines and normal liver cell lines. In addition, we inhibited DNMT1 using siRNA in the SMMC-7721 HCC cell line and found depletion of DNMT1 suppressed cells growth independent of expression of proliferating cell nuclear antigen (PCNA), even in HCC cell lines where DNMT1 was stably decreased.
CONCLUSION: The findings implied that DNMT1 plays a key role in HBV-related hepatocellular tumorigenesis. Depletion of DNMT1 mediates growth suppression in SMMC-7721 cells.
Collapse
|
228
|
Abstract
Eukaryotic cells repair ultraviolet light (UV)- and chemical carcinogen-induced DNA strand-distorting damage through the nucleotide excision repair (NER) pathway. Concurrent activation of the DNA damage checkpoints is also required to arrest the cell cycle and allow time for NER action. Recent studies uncovered critical roles for ubiquitin-mediated post-translational modifications in controlling both NER and checkpoint functions. In this review, we will discuss recent progress in delineating the roles of cullin-RING E3 ubiquitin ligases in orchestrating the cellular DNA damage response through ubiquitination of NER factors, histones, and checkpoint effectors.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
229
|
Abstract
Phosphorylation of H2AX (gammaH2AX) is an early sign of DNA damage induced by replication stalling. However, the role of H2AX in the repair of this type of DNA damage is still unclear. In this study, we used an inactivated adeno-associated virus (AAV) to induce a stalled replication fork signal and investigate the function of gammaH2AX. The cellular response to AAV provides a unique model to study gammaH2AX function, because the infection causes pannuclear H2AX phosphorylation without any signs of damage to the host genome. We found that pannuclear gammaH2AX formation is a result of ATR overactivation and diffusion but is independent of ATM. The inhibition of H2AX with RNA interference or the use of H2AX-deficient cells showed that gammaH2AX is dispensable for the formation and maintenance of DNA repair foci induced by stalled replication. However, in the absence of H2AX, the AAV-containing cells showed proteosome-dependent degradation of p21, followed by caspase-dependent mitotic catastrophe. In contrast, H2AX-proficient cells as well as H2AX-complemented H2AX(-/-) cells reacted by increasing p21 levels and arresting the cell cycle. The results establish a new role for H2AX in the p53/p21 pathway and indicate that H2AX is required for p21-induced cell cycle arrest after replication stalling.
Collapse
|
230
|
DNA-damage response in the basidiomycete fungus Ustilago maydis relies in a sole Chk1-like kinase. DNA Repair (Amst) 2009; 8:720-31. [PMID: 19269260 DOI: 10.1016/j.dnarep.2009.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/31/2009] [Indexed: 11/23/2022]
Abstract
Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at least one copy of each kind of checkpoint kinase. Since the relative contribution to the DNA-damage response of each type of kinase varies from one organism to other, the current view about the roles of Chk1 and Chk2/Rad53 during DNA-damage response is one of mutual complementation and intimate cooperation. However, in this work it is reported that Ustilago maydis - a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation - have a single kinase belonging to the Chk1 family but strikingly no kinases related to Chk2/Rad53 family are apparent. The U. maydis Chk1 kinase is able to respond to different classes of DNA damages and its activity is required for the cellular adaptation to such damages. As other described components of the Chk1 family of kinases, U. maydis Chk1 is phosphorylated and translocated to nucleus in response to DNA-damage signals. Interestingly subtle differences in this response depending on the kind of DNA damage are apparent, suggesting that in U. maydis the sole Chk1 kinase recapitulates the roles that in other organisms are shared by Chk1 and the Chk2/Rad53 family of protein kinases.
Collapse
|
231
|
Lee J, Kim JA, Barbier V, Fotedar A, Fotedar R. DNA damage triggers p21WAF1-dependent Emi1 down-regulation that maintains G2 arrest. Mol Biol Cell 2009; 20:1891-902. [PMID: 19211842 DOI: 10.1091/mbc.e08-08-0818] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Several regulatory proteins control cell cycle progression. These include Emi1, an anaphase-promoting complex (APC) inhibitor whose destruction controls progression through mitosis to G1, and p21(WAF1), a cyclin-dependent kinase (CDK) inhibitor activated by DNA damage. We have analyzed the role of p21(WAF1) in G2-M phase checkpoint control and in prevention of polyploidy after DNA damage. After DNA damage, p21(+/+) cells stably arrest in G2, whereas p21(-/-) cells ultimately progress into mitosis. We report that p21 down-regulates Emi1 in cells arrested in G2 by DNA damage. This down-regulation contributes to APC activation and results in the degradation of key mitotic proteins including cyclins A2 and B1 in p21(+/+) cells. Inactivation of APC in irradiated p21(+/+) cells can overcome the G2 arrest. siRNA-mediated Emi1 down-regulation prevents irradiated p21(-/-) cells from entering mitosis, whereas concomitant down-regulation of APC activity counteracts this effect. Our results demonstrate that Emi1 down-regulation and APC activation leads to stable p21-dependent G2 arrest after DNA damage. This is the first demonstration that Emi1 regulation plays a role in the G2 DNA damage checkpoint. Further, our work identifies a new p21-dependent mechanism to maintain G2 arrest after DNA damage.
Collapse
Affiliation(s)
- Jinho Lee
- Institut de Biologie Structurale J-P Ebel, F38027 Grenoble, France
| | | | | | | | | |
Collapse
|
232
|
Toyoshima M. Analysis of p53 dependent damage response in sperm-irradiated mouse embryos. JOURNAL OF RADIATION RESEARCH 2009; 50:11-17. [PMID: 19218778 DOI: 10.1269/jrr.08099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ionizing radiation activates a series of DNA damage response, cell cycle checkpoints to arrest cells at G1/S, S and G2/M, DNA repair, and apoptosis. The DNA damage response is thought to be the major determinant of cellular radiosensitivity and thought to operate in all higher eukaryotic cells. However, the radiosensitivity is known to differ considerably during ontogeny of mammals and early embryos of mouse for example are much more sensitive to radiation than adults. We have focused on the radiation-induced damage response during pre-implantation stage of mouse embryo. Our study demonstrates a hierarchy of damage responses to assure the genomic integrity in early embryonic development. In the sperm-irradiated zygotes, p53 dependent S-phase checkpoint functions to suppress erroneous replication of damaged DNA. The transcription-dependent function is not required and the DNA-binging domain of the protein is essential for this p53 dependent S-phase checkpoint. p21 mediated cleavage arrest comes next during early embryogenesis to prevent delayed chromosome damage at morula/ blastocyst stages. Apoptosis operates even later only in the cells of ICM at the blastocyst stage to eliminate deleterious cells. Thus, early development of sperm-irradiated embryos is protected at least by three mechanisms regulated by p53 and by p21.
Collapse
Affiliation(s)
- Megumi Toyoshima
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
233
|
Abstract
We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
234
|
Kumar P, Murakami M, Kaul R, Saha A, Cai Q, Robertson ES. Deregulation of the cell cycle machinery by Epstein-Barr virus nuclear antigen 3C. Future Virol 2009; 4:79-91. [PMID: 25635182 DOI: 10.2217/17460794.4.1.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with a large number of lymphoid and epithelial malignancies. As a successful pathogen it has co-evolved with its human host for millions of years. EBV has the unique ability to establish life-long latent infection in primary human B lymphocytes. During latent infection, a small subset of viral proteins is expressed. These proteins are essential for maintenance of the EBV genome as well as the deregulation of various signaling pathways that facilitate the proliferation and survival of the infected cells. Epstein-Barr nuclear antigen (EBNA)3C is one of the latent proteins shown to be essential for transformation of primary human B lymphocytes in vitro. EBNA3C primarily functions as a transcriptional regulator by interacting with a number of well known cellular and viral transcriptional factors. We have recently identified several binding partners for EBNA3C including proteins that regulate cell cycle and chromatin remodeling. We are actively engaged in discerning the biological significance of these interactions. This review summarizes our current understanding of how EBNA3C usurps cellular pathways that promote B-cell transformation.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Microbiology & The Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, PA, USA
| | - Masanao Murakami
- Department of Microbiology & The Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, PA, USA
| | - Rajeev Kaul
- Department of Microbiology & The Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, PA, USA
| | - Abhik Saha
- Department of Microbiology & The Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, PA, USA
| | - Qiliang Cai
- Department of Microbiology & The Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, PA, USA
| | - Erle S Robertson
- Department of Microbiology & The Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA, Tel.: +1 215 746 0114
| |
Collapse
|
235
|
Varmeh S, Manfredi JJ. Overexpression of the dual specificity phosphatase, Cdc25C, confers sensitivity on tumor cells to doxorubicin-induced cell death. Mol Cancer Ther 2008; 7:3789-99. [DOI: 10.1158/1535-7163.mct-08-0838] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
236
|
Stawinska M, Cygankiewicz A, Trzcinski R, Mik M, Dziki A, Krajewska WM. Alterations of Chk1 and Chk2 expression in colon cancer. Int J Colorectal Dis 2008; 23:1243-9. [PMID: 18679694 DOI: 10.1007/s00384-008-0551-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Checkpoint kinases 1 and 2 (Chk1 and Chk2) are emerging as key mediators in diverse cellular responses to genotoxic stress, guarding the integrity of the genome. Recent studies suggest the fundamental role of Chk1 and Chk2 in the network of genome surveillance pathways which coordinate cell cycle progression with DNA repair and cell survival or death. Defects in these two serine/threonine kinases are suggested contributors to the development of both hereditary and sporadic human cancer. Little is known about physiologic activities of Chk1 and Chk2 in the colorectal cancer or their role in tumorigenesis. PATIENT/METHODS Expression of Chk1 and Chk2 and their phosphorylated, i.e., active forms (pChk1, pChk2) was examined by Western blot and ELISA analysis in colorectal carcinomas and normal colonic mucosa. RESULTS/FINDINGS Expression of Chk2 and pChk2 was noted to be decreased in around 50% of studied cancer cases. Quantitative studies of phosphorylated Chk2 revealed significant decrease of pChk2 in early stages of colorectal carcinomas. Furthermore, tumor invasion to local lymph nodes was found to correlate with the increase of pChk2 pool in the studied cases. INTERPRETATION/CONCLUSION Reduced expression of Chk2 and activated Chk2 may be an important inactivating mechanism, contributing to the development of colorectal neoplasm. However, during progression of neoplasia, activated Chk2 may contribute to the invasiveness of tumor.
Collapse
Affiliation(s)
- Magdalena Stawinska
- Department of Cytobiochemistry, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
237
|
Zhang Y, Rohde LH, Emami K, Hammond D, Casey R, Mehta SK, Jeevarajan AS, Pierson DL, Wu H. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest. DNA Repair (Amst) 2008; 7:1835-45. [DOI: 10.1016/j.dnarep.2008.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
|
238
|
Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M. Cancer stem cells and chemoradiation resistance. Cancer Sci 2008; 99:1871-7. [PMID: 19016744 PMCID: PMC11159283 DOI: 10.1111/j.1349-7006.2008.00914.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/03/2008] [Accepted: 06/03/2008] [Indexed: 12/30/2022] Open
Abstract
Cancer is a disease of genetic and epigenetic alterations, which are emphasized as the central mechanisms of tumor progression in the multistepwise model. Discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. The heterogeneity of tumors can be explained with the help of CSCs supported by antiapoptotic signaling. CSCs mimic normal adult stem cells by demonstrating resistance to toxic injuries and chemoradiation therapy. Moreover, they might be responsible for tumor relapse following apparent beneficial treatments. Compared with hematopoietic malignancies, conventional therapy regimes in solid tumors have improved the overall survival marginally, illustrating the profound impact of treatment resistance. This implies that the present therapies, which follow total elimination of rapidly dividing and differentiated tumor cells, need to be modified to target CSCs that repopulate the tumor. In this review article, we report on recent findings regarding the involvement of CSCs in chemoradiation resistance and provide new insights into their therapeutic implications in cancer.
Collapse
Affiliation(s)
- Hideshi Ishii
- Department of Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
239
|
Kalia S, Bansal M. p53 is involved in inducing testicular apoptosis in mice by the altered redox status following tertiary butyl hydroperoxide treatment. Chem Biol Interact 2008; 174:193-200. [DOI: 10.1016/j.cbi.2008.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/27/2022]
|
240
|
Kilkenny ML, Doré AS, Roe SM, Nestoras K, Ho JC, Watts FZ, Pearl LH. Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Genes Dev 2008; 22:2034-47. [PMID: 18676809 PMCID: PMC2492745 DOI: 10.1101/gad.472808] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 06/04/2008] [Indexed: 12/25/2022]
Abstract
Schizosaccharomyces pombe Crb2 is a checkpoint mediator required for the cellular response to DNA damage. Like human 53BP1 and Saccharomyces cerevisiae Rad9 it contains Tudor(2) and BRCT(2) domains. Crb2-Tudor(2) domain interacts with methylated H4K20 and is required for recruitment to DNA dsDNA breaks. The BRCT(2) domain is required for dimerization, but its precise role in DNA damage repair and checkpoint signaling is unclear. The crystal structure of the Crb2-BRCT(2) domain, alone and in complex with a phosphorylated H2A.1 peptide, reveals the structural basis for dimerization and direct interaction with gamma-H2A.1 in ionizing radiation-induced foci (IRIF). Mutational analysis in vitro confirms the functional role of key residues and allows the generation of mutants in which dimerization and phosphopeptide binding are separately disrupted. Phenotypic analysis of these in vivo reveals distinct roles in the DNA damage response. Dimerization mutants are genotoxin sensitive and defective in checkpoint signaling, Chk1 phosphorylation, and Crb2 IRIF formation, while phosphopeptide-binding mutants are only slightly sensitive to IR, have extended checkpoint delays, phosphorylate Chk1, and form Crb2 IRIF. However, disrupting phosphopeptide binding slows formation of ssDNA-binding protein (Rpa1/Rad11) foci and reduces levels of Rad22(Rad52) recombination foci, indicating a DNA repair defect.
Collapse
Affiliation(s)
- Mairi L. Kilkenny
- CR-UK DNA Repair Enzymes Group, Section of Structural Biology, The Institute of Cancer Research, Chelsea, London SW3 6JB, United Kingdon
| | - Andrew S. Doré
- CR-UK DNA Repair Enzymes Group, Section of Structural Biology, The Institute of Cancer Research, Chelsea, London SW3 6JB, United Kingdon
| | - S. Mark Roe
- CR-UK DNA Repair Enzymes Group, Section of Structural Biology, The Institute of Cancer Research, Chelsea, London SW3 6JB, United Kingdon
| | - Konstantinos Nestoras
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Jenny C.Y. Ho
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Felicity Z. Watts
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Laurence H. Pearl
- CR-UK DNA Repair Enzymes Group, Section of Structural Biology, The Institute of Cancer Research, Chelsea, London SW3 6JB, United Kingdon
| |
Collapse
|
241
|
Ashwell S, Zabludoff S. DNA damage detection and repair pathways--recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 2008; 14:4032-7. [PMID: 18593978 DOI: 10.1158/1078-0432.ccr-07-5138] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insights from cell cycle research have led to the hypothesis that tumors may be selectivity sensitized to DNA-damaging agents, resulting in improved antitumor activity and a wider therapeutic margin. The theory relies primarily on the observation that the majority of tumors are deficient in the G(1)-DNA damage checkpoint pathway, resulting in reliance on S and G(2) phase checkpoints for DNA repair and cell survival. The S and G(2) phase checkpoints are predominantly regulated by checkpoint kinase 1; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G(1) checkpoint signaling pathway that allows for DNA repair and cell survival. There is now a large body of preclinical evidence showing that checkpoint kinase inhibitors do indeed enhance the efficacy of both conventional chemotherapy and radiotherapy, and several agents have recently entered clinical trials. Excitingly, additional therapeutic opportunities for checkpoint kinase inhibitors continue to emerge as biology outside their pivotal role in cell cycle arrest is further elucidated.
Collapse
Affiliation(s)
- Susan Ashwell
- AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham MA 02451, USA.
| | | |
Collapse
|
242
|
Im JS, Lee JK. ATR-dependent activation of p38 MAP kinase is responsible for apoptotic cell death in cells depleted of Cdc7. J Biol Chem 2008; 283:25171-25177. [PMID: 18625709 DOI: 10.1074/jbc.m802851200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cdc7 is a serine/threonine kinase that plays essential roles in the initiation of eukaryotic DNA replication and checkpoint response. In previous studies, depletion of Cdc7 by small interfering RNA was shown to induce an abortive S phase that led to the cell cycle arrest in normal human fibroblasts and apoptotic cell death in various cancer cells. Here we report that stress-activated p38 MAP kinase was activated and responsible for apoptotic cell death in Cdc7-depleted HeLa cells. The activation of p38 MAP kinase in the Cdc7-depleted cells was shown to depend on ATR, a major sensor kinase for checkpoint or DNA damage responses. Only the p38 MAP kinase, and not the other stress-activated kinases such as JNK or ERK, was activated, and both caspase 8 and caspase 9 were activated for the induction of apoptosis. Activation of apoptosis in Cdc7-depleted cells was completely abolished in cells treated with small interfering RNA or an inhibitor of the p38 MAP kinase, suggesting that p38 MAP kinase activation was responsible for apoptotic cell death. Taken together, we suggest that the ATR-dependent activation of the p38 MAP kinase is a major signaling pathway that induces apoptotic cell death after depletion of Cdc7 in cancer cells.
Collapse
Affiliation(s)
- Jun-Sub Im
- Department of Biology Education, Seoul National University, Seoul 151-748, Korea
| | - Joon-Kyu Lee
- Department of Biology Education, Seoul National University, Seoul 151-748, Korea.
| |
Collapse
|
243
|
Dayaram T, Marriott SJ. Effect of transforming viruses on molecular mechanisms associated with cancer. J Cell Physiol 2008; 216:309-14. [PMID: 18366075 DOI: 10.1002/jcp.21439] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Viruses have been linked to approximately 20% of all human tumors worldwide. These transforming viruses encode viral oncoproteins that interact with cellular proteins to enhance viral replication. The transcriptional and post-transcriptional effects of these viral oncoproteins ultimately result in cellular transformation. Historically, viral research has been vital to the discovery of oncogenes and tumor suppressors with more current research aiding in unraveling some mechanisms of carcinogenesis. Interestingly, since transforming viruses affect some of the same pathways that are dysregulated in human cancers, their study enhances our understanding of the multistep process of tumorigenesis. This review will examine the cellular mechanisms targeted by oncogenic human viruses and the processes by which these effects contribute to transformation. In particular, we will focus on three transforming viruses, human T-cell leukemia virus type-I, hepatitis B virus and human papillomavirus. These viruses all encode specific oncogenes that promote cell cycle progression, inhibit DNA damage checkpoint responses and prevent programmed cell death in an effort to promote viral propagation. While the transforming properties of these viruses are probably unintended consequences of replication strategies, they provide excellent systems in which to study cancer development.
Collapse
Affiliation(s)
- Tajhal Dayaram
- Interdepartmental Program in Cell and Molecular Biology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
244
|
Iwamoto K, Tashima Y, Hamada H, Eguchi Y, Okamoto M. Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway. Biosystems 2008; 94:109-17. [PMID: 18606207 DOI: 10.1016/j.biosystems.2008.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/29/2007] [Accepted: 05/23/2008] [Indexed: 11/17/2022]
Abstract
The cell cycle has checkpoint systems, which control G1/S, G2/M and G0/G1 phase transitions. When a normal cell suffers from DNA-damage, the signal transduction of DNA-damage causes the cell cycle arrest by using the checkpoint systems. Therefore, the elucidation of interaction between the signal transduction of DNA-damage and the checkpoint systems is an important problem. In this study, we constructed a novel mathematical model (proposed model) which integrated G1/S-checkpoint model with a signal transduction of DNA damage model and performed some numerical simulations. The proposed model realized some biological findings of G1/S phase with or without DNA-damage, which suggested that proposed model is biologically appropriate. Moreover, the results of sensitivity analysis of the proposed model indicated the predominant factors of G1/S phase and some factors concerned with the transformation of cells.
Collapse
Affiliation(s)
- Kazunari Iwamoto
- Laboratory for Bioinformatics, Graduate School of Systems Life Sciences, Kyushu University, Higashiku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
245
|
Kan Q, Jinno S, Kobayashi K, Yamamoto H, Okayama H. Cdc6 Determines Utilization of p21WAF1/CIP1-dependent Damage Checkpoint in S Phase Cells. J Biol Chem 2008; 283:17864-72. [DOI: 10.1074/jbc.m802055200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
246
|
Different cell cycle kinetic effects of N 1,N 11-diethylnorspermine-induced polyamine depletion in four human breast cancer cell lines. Anticancer Drugs 2008; 19:359-68. [DOI: 10.1097/cad.0b013e3282f7f518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
247
|
Cann KL, Hicks GG. Regulation of the cellular DNA double-strand break response. Biochem Cell Biol 2008; 85:663-74. [PMID: 18059525 DOI: 10.1139/o07-135] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1-S, intra-S phase, and G2-M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.
Collapse
Affiliation(s)
- Kendra L Cann
- MB Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
248
|
Liu W, Li W, Fujita T, Yang Q, Wan Y. Proteolysis of CDH1 enhances susceptibility to UV radiation-induced apoptosis. Carcinogenesis 2008; 29:263-72. [PMID: 18174259 DOI: 10.1093/carcin/bgm251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a critical ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) governs cell cycle progression, signaling modulation and the pathogenesis of some human diseases. Recent studies implicate APC in maintaining genomic integrity, but the mechanism by which it plays such a role remains largely unknown. We report here that acute UV radiation triggers proteolysis of CDH1, an activator of APC, which is involved in regulation of apoptosis induced by UV radiation. Depletion of CDH1 by RNA interference enhances the cellular susceptibility to apoptosis in response to UV radiation, whereas overexpression of non-degradable CDH1 delays UV radiation-induced apoptosis. In addition, UV-induced degradation of CDH1 results in the accumulation of cyclin B1 and therefore to increased CDK1 activity, which is believed to enhance UV-induced apoptosis. The present results unveil a novel role for the APC in UV-induced cell death and demonstrate a new regulatory mechanism for APC/CDH1 through proteolysis.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | | | | | | | | |
Collapse
|
249
|
Watanabe Y, Shibata K, Sugimura H, Maekawa M. p53-dependent change in replication timing of the human genome. Biochem Biophys Res Commun 2007; 364:289-293. [PMID: 17949684 DOI: 10.1016/j.bbrc.2007.09.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
Abstract
The tumor suppressor gene p53 has roles in multiple cell-cycle checkpoints, including the G1/S transition, to prevent replication of cells with DNA damage. p53 is thought to be associated with regulation of replication timing during S-phase in the human genome. In the present study, we used p53-wild-type and p53-null HCT116 colon carcinoma cells to analyze p53-dependent changes in replication timing of the human genome. The percentage of HCT116 p53(-/-) cells in S-phase was higher than that of HCT116 p53(+/+) cells. We compared replication timing of human genes between the two cell lines using 25,000 human cDNA microarray. We identified genes that replicated earlier in HCT116 p53(-/-) cells than in HCT116 p53(+/+) cells. These genes included cell-cycle- and apoptosis-related genes. We propose that p53 plays a role in regulation of replication timing of the human genome through the control of cell-cycle checkpoints.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | | | | | | |
Collapse
|
250
|
Zhang HY, Zhang X, Hormi-Carver K, Feagins LA, Spechler SJ, Souza RF. In non-neoplastic Barrett's epithelial cells, acid exerts early antiproliferative effects through activation of the Chk2 pathway. Cancer Res 2007; 67:8580-7. [PMID: 17875697 DOI: 10.1158/0008-5472.can-07-2023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acid exerts pro-proliferative effects in Barrett's-associated esophageal adenocarcinoma cells. In non-neoplastic Barrett's epithelial (BAR-T) cells, in contrast, we have shown that acid exposure has antiproliferative effects. To explore our hypothesis that the acid-induced, antiproliferative effects are mediated by alterations in the proteins that regulate the G(1)-S cell cycle checkpoint, we exposed non-neoplastic Barrett's cells to acidic media (pH 4.0) and analyzed G(1)-S checkpoint proteins' expression, phosphorylation, and activity levels by Western blot. We studied acid effects on growth (by cell counts), proliferation (by flow cytometry and bromodeoxyuridine incorporation), cell viability (by trypan blue staining), and apoptosis (by annexin V staining), and we used caffeine and small interfering RNA to assess the effects of checkpoint kinase 2 (Chk2) inhibition on G(1)-S progression. Acid exposure significantly decreased cell numbers without affecting cell viability and with only a slight increase in apoptosis. Within 2 h of acid exposure, there was a delay in progression through the G(1)-S checkpoint that was associated with increased phosphorylation of Chk2, decreased levels of Cdc25A, and decreased activity of cyclin E-cyclin-dependent kinase 2; by 4 h, a continued delay at G(1)-S was associated with increased expression of p53 and p21. Caffeine and Chk2 siRNA abolished the acid-induced G(1)-S delay at 2 but not at 4 h. We conclude that acid exposure in non-neoplastic BAR-T cells causes early antiproliferative effects that are mediated by the activation of Chk2. Thus, we have elucidated a mechanism whereby acid can exert disparate effects on proliferation in neoplastic and non-neoplastic BAR-T cells.
Collapse
Affiliation(s)
- Hui-Ying Zhang
- Department of Medicine, Dallas Veterans Affairs Medical Center, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|