201
|
Mateus JC, Weaver S, van Swaay D, Renz AF, Hengsteler J, Aguiar P, Vörös J. Nanoscale Patterning of In Vitro Neuronal Circuits. ACS NANO 2022; 16:5731-5742. [PMID: 35404570 DOI: 10.1021/acsnano.1c10750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methods for patterning neurons in vitro have gradually improved and are used to investigate questions that are difficult to address in or ex vivo. Though these techniques guide axons between groups of neurons, multiscale control of neuronal connectivity, from circuits to synapses, is yet to be achieved in vitro. As studying neuronal circuits with synaptic resolution in vivo poses significant challenges, we present an in vitro alternative to validate biophysical and computational models. In this work we use a combination of electron beam lithography and photolithography to create polydimethylsiloxane (PDMS) structures with features ranging from 150 nm to a few millimeters. Leveraging the difference between average axon and dendritic spine diameters, we restrict axon growth while allowing spines to pass through nanochannels to guide synapse formation between small groups of neurons (i.e., nodes). We show this technique can be used to generate large numbers of isolated feed-forward circuits where connections between nodes are restricted to regions connected by nanochannels. Using a genetically encoded calcium indicator in combination with fluorescently tagged postsynaptic protein, PSD-95, we demonstrate functional synapses can form in this region.
Collapse
Affiliation(s)
- José C Mateus
- Neuroengineering and Computational Neuroscience Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sean Weaver
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Aline F Renz
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland
| | - Paulo Aguiar
- Neuroengineering and Computational Neuroscience Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - János Vörös
- Laboratory for Biosensors and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
202
|
Goralczyk A, Mayoussi F, Sanjaya M, Corredor SF, Bhagwat S, Song Q, Schwenteck S, Warmbold A, Pezeshkpour P, Rapp BE. On‐Chip Chemical Synthesis Using One‐Step 3D Printed Polyperfluoropolyether. CHEM-ING-TECH 2022; 94:975-982. [PMID: 35915768 PMCID: PMC9322562 DOI: 10.1002/cite.202200013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
Three‐dimensional (3D) printing has already shown its high relevance for the fabrication of microfluidic devices in terms of precision manufacturing cycles and a wider range of materials. 3D‐printable transparent fluoropolymers are highly sought after due to their high chemical and thermal resistance. Here, we present a simple one‐step fabrication process via stereolithography of perfluoropolyether dimethacrylate. We demonstrate successfully printed microfluidic mixers with 800 µm circular channels for chemistry‐on‐chip applications. The printed chips show chemical, mechanical, and thermal resistance up to 200 °C, as well as high optical transparency. Aqueous and organic reactions are presented to demonstrate the wide potential of perfluoropolyether dimethacrylate for chemical synthesis.
Collapse
Affiliation(s)
- Andreas Goralczyk
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Fadoua Mayoussi
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Mario Sanjaya
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Santiago Franco Corredor
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Sagar Bhagwat
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Qingchuan Song
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Sarah Schwenteck
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Andreas Warmbold
- University of Freiburg Freiburg Materials Research Center (FMF) Stefan-Meier-Straße 21 79104 Freiburg im Breisgau Germany
| | - Pegah Pezeshkpour
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
| | - Bastian E. Rapp
- University of Freiburg Laboratory of Process Technology, NeptunLab Department of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 79110 Freiburg im Breisgau Germany
- University of Freiburg Freiburg Materials Research Center (FMF) Stefan-Meier-Straße 21 79104 Freiburg im Breisgau Germany
- University of Freiburg FIT Freiburg Center of Interactive Materials and Bioinspired Technologies Georges-Köhler-Allee 105 79110 Freiburg im Breisgau Germany
| |
Collapse
|
203
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
204
|
Novel Reproducible Manufacturing and Reversible Sealing Method for Microfluidic Devices. MICROMACHINES 2022; 13:mi13050650. [PMID: 35630117 PMCID: PMC9147245 DOI: 10.3390/mi13050650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/05/2023]
Abstract
Conventional manufacturing methods for polydimethylsiloxane (PDMS)-based microdevices require multiple steps and elements that increase cost and production time. Also, these PDMS microdevices are mostly limited to single use, and it is difficult to recover the contents inside the microchannels or perform advanced microscopy visualization due to their irreversible sealing method. Herein, we developed a novel manufacturing method based on polymethylmethacrylate (PMMA) plates adjusted using a mechanical pressure-based system. One conformation of the PMMA plate assembly system allows the reproducible manufacture of PDMS replicas, reducing the cost since a precise amount of PDMS is used, and the PDMS replicas show uniform dimensions. A second form of assembling the PMMA plates permits pressure-based sealing of the PDMS layer with a glass base. By reversibly sealing the microdevice without using plasma for bonding, we achieve chip on/off configurations, which allow the user to open and close the device and reuse it in an easy-to-use way. No deformation was observed on the structures of the PDMS microchannels when a range of 10 to 18 kPa pressure was applied using the technique. Furthermore, the functionality of the proposed system was successfully validated by the generation of microdroplets with reused microdevices via three repetitions.
Collapse
|
205
|
Selemani M, Castiaux AD, Martin RS. PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip Electrophoresis. ACS OMEGA 2022; 7:13362-13370. [PMID: 35474767 PMCID: PMC9026087 DOI: 10.1021/acsomega.2c01265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this work, we demonstrate the ability to use micromolds along with a stacked three-dimensional (3D) printing process on a commercially available PolyJet printer to fabricate microchip electrophoresis devices that have a T-intersection, with channel cross sections as small as 48 × 12 μm2 being possible. The fabrication process involves embedding removable materials or molds during the printing process, with various molds being possible (wires, brass molds, PDMS molds, or sacrificial materials). When the molds are delaminated/removed, recessed features complementary to the molds are left in the 3D prints. A thermal lab press is used to bond the microchannel layer that also contains printed reservoirs against another solid 3D-printed part to completely seal the microchannels. The devices exhibited cathodic electroosmotic flow (EOF), and mixtures of fluorescein isothiocyanate isomer I (FITC)-labeled amino acids were successfully separated on these 3D-printed devices using both gated and pinched electrokinetic injections. While this application is focused on microchip electrophoresis, the ability to 3D-print against molds that can subsequently be removed is a general methodology to decrease the channel size for other applications as well as to possibly integrate 3D printing with other production processes.
Collapse
Affiliation(s)
- Major
A. Selemani
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Andre D. Castiaux
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| | - R. Scott Martin
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| |
Collapse
|
206
|
Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022; 43:465-483. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidics is revolutionizing the way research on cellular biology has been traditionally conducted. The ability to control the cell physicochemical environment by adjusting flow conditions, while performing cellular analysis at single-cell resolution and high-throughput, has made microfluidics the ideal choice to replace traditional in vitro models. However, such a revolution only truly started with the advent of polydimethylsiloxane (PDMS) as a microfluidic structural material and soft-lithography as a rapid manufacturing technology. Indeed, before the "PDMS age," microfluidic technologies were: costly, time-consuming and, more importantly, accessible only to specialized laboratories and users. The simplicity of molding PDMS in various shapes along with its inherent properties (transparency, biocompatibility, and gas permeability) has spread the applications of innovative microfluidic devices to diverse and important biological fields and clinical studies. This review highlights how PDMS-based microfluidic systems are innovating pre-clinical biological research on cells and organs. These devices were able to cultivate different cell lines, enhance the sensitivity and diagnostic effectiveness of numerous cell-based assays by maintaining consistent chemical gradients, utilizing and detecting the smallest number of analytes while being high-throughput. This review will also assist in identifying the pitfalls in current PDMS-based microfluidic systems to facilitate breakthroughs and advancements in healthcare research.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ashwini Uchil
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Kalsang
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Salvatore Surdo
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
207
|
Hawkins J, Miao X, Cui W, Sun Y. Surface functionalization of poly(dimethylsiloxane) substrates facilitates culture of pre-implantation mouse embryos by blocking non-selective adsorption. J R Soc Interface 2022; 19:20210929. [PMID: 35382579 PMCID: PMC8984368 DOI: 10.1098/rsif.2021.0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(dimethylsiloxane) (PDMS) is widely used in biomedical settings such as microfluidics for its optical transparency, castability, gas permeability and relative biocompatibility. While PDMS devices with certain modifications or treatments have been used for mammalian pre-implantation embryo culture, it is unclear why native PDMS leads to significant embryo death. In this study, we employ Nile Red as a model hydrophobic small molecule to demonstrate that significant hydrophobic sequestration occurs on native PDMS substrates even with a bovine serum albumin-containing KSOM pre-equilibration. Our results suggest that this small molecule sequestration has detrimental effects on mouse embryo development in PDMS static culture wells, with 0% blastocyst development rates from embryos cultured on native PDMS. We found that prior saturation of the PDMS culture well with water vapour only rescues about 10% of blastocyst development rates, indicating osmolality alone is not responsible for the high rates of embryo arrest. We also present a safe and simple Pluronic F127 pretreatment for PDMS substrates that successfully circumvented the harmful effects of native PDMS, achieving a blastocyst and implantation rate akin to that of our polystyrene controls. Our results call into question how researchers and clinicians can account for the alterations in medium composition and embryo secretions when using hydrophobic substrates, especially in the mammalian embryo culture setting where minimum effective concentrations of peptides and amino acids are commonplace.
Collapse
Affiliation(s)
- Jamar Hawkins
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.,Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.,Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
208
|
Luni C, Gagliano O, Elvassore N. Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annu Rev Biomed Eng 2022; 24:231-248. [PMID: 35378044 DOI: 10.1146/annurev-bioeng-092021-042744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Camilla Luni
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy;
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, Padova, Italy; , .,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; , .,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.,Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
209
|
Wanselius M, Searle S, Rodler A, Tenje M, Abrahmsén-Alami S, Hansson P. Microfluidics Platform for Studies of Peptide – Polyelectrolyte Interaction. Int J Pharm 2022; 621:121785. [DOI: 10.1016/j.ijpharm.2022.121785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
|
210
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
211
|
Coskun UC, Kus F, Rehman AU, Morova B, Gulle M, Baser H, Kul D, Kiraz A, Baysal K, Erten A. An Easy-to-Fabricate Microfluidic Shallow Trench Induced Three-Dimensional Cell Culturing and Imaging (STICI3D) Platform. ACS OMEGA 2022; 7:8281-8293. [PMID: 35309421 PMCID: PMC8928507 DOI: 10.1021/acsomega.1c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Compared to the established monolayer approach of two-dimensional cell cultures, three-dimensional (3D) cultures more closely resemble in vivo models; that is, the cells interact and form clusters mimicking their organization in native tissue. Therefore, the cellular microenvironment of these 3D cultures proves to be more clinically relevant. In this study, we present a novel easy-to-fabricate microfluidic shallow trench induced 3D cell culturing and imaging (STICI3D) platform, suitable for rapid fabrication as well as mass manufacturing. Our design consists of a shallow trench, within which various hydrogels can be formed in situ via capillary action, between and fully in contact with two side channels that allow cell seeding and media replenishment, as well as forming concentration gradients of various molecules. Compared to a micropillar-based burst valve design, which requires sophisticated microfabrication facilities, our capillary-based STICI3D can be fabricated using molds prepared with simple adhesive tapes and razors alone. The simple design supports the easy applicability of mass-production methods such as hot embossing and injection molding as well. To optimize the STICI3D design, we investigated the effect of individual design parameters such as corner radii, trench height, and surface wettability under various inlet pressures on the confinement of a hydrogel solution within the shallow trench using Computational Fluid Dynamics simulations supported with experimental validation. We identified ideal design values that improved the robustness of hydrogel confinement and reduced the effect of end-user dependent factors such as hydrogel solution loading pressure. Finally, we demonstrated cultures of human mesenchymal stem cells and human umbilical cord endothelial cells in the STICI3D to show that it supports 3D cell cultures and enables precise control of cellular microenvironment and real-time microscopic imaging. The easy-to-fabricate and highly adaptable nature of the STICI3D platform makes it suitable for researchers interested in fabricating custom polydimethylsiloxane devices as well as those who are in need of ready-to-use plastic platforms. As such, STICI3Ds can be used in imaging cell-cell interactions, angiogenesis, semiquantitative analysis of drug response in cells, and measurement of transport through cell sheet barriers.
Collapse
Affiliation(s)
- Umut Can Coskun
- Faculty
of Aeronautics and Astronautics, Istanbul
Technical University, Istanbul 34469, Turkey
| | - Funda Kus
- Department
of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Ateeq Ur Rehman
- Biomedical
Eng. Technology Program, Foundation University
Islamabad, Islamabad Phase-I, DHA, Pakistan
| | - Berna Morova
- Department
of Physics, Koç University, Istanbul 34450, Turkey
| | - Merve Gulle
- Department
of Electronics and Communication Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Hatice Baser
- Department
of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Demet Kul
- School of
Medicine, Department of Biochemistry, Koç
University, Istanbul 34450, Turkey
| | - Alper Kiraz
- Department
of Physics, Koç University, Istanbul 34450, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Kemal Baysal
- School of
Medicine, Department of Biochemistry, Koç
University, Istanbul 34450, Turkey
- KUTTAM,
Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Ahmet Erten
- Department
of Electronics and Communication Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
212
|
Hu Z, Cao Y, Galan EA, Hao L, Zhao H, Tang J, Sang G, Wang H, Xu B, Ma S. Vascularized Tumor Spheroid-on-a-Chip Model Verifies Synergistic Vasoprotective and Chemotherapeutic Effects. ACS Biomater Sci Eng 2022; 8:1215-1225. [PMID: 35167260 DOI: 10.1021/acsbiomaterials.1c01099] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prolyl hydroxylases (PHD) inhibitors have been observed to improve drug distribution in mice tumors via blood vessel normalization, increasing the effectiveness of chemotherapy. These effects are yet to be demonstrated in human cell models. Tumor spheroids are three-dimensional cell clusters that have demonstrated great potential in drug evaluation for personalized medicine. Here, we used a perfusable vascularized tumor spheroid-on-a-chip to simulate the tumor microenvironment in vivo and demonstrated that the PHD inhibitor dimethylallyl glycine prevents the degradation of normal blood vessels while enhancing the efficacy of the anticancer drugs paclitaxel and cisplatin in human esophageal carcinoma (Eca-109) spheroids. Our results point to the potential of this model to evaluate anticancer drugs under more physiologically relevant conditions.
Collapse
Affiliation(s)
- Zhiwei Hu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Yuanxiong Cao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Edgar A Galan
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Liang Hao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Zhao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Jiyuan Tang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Gan Sang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Hanqi Wang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Bing Xu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
213
|
Fredrikson JP, Brahmachary PP, Erdoğan AE, Archambault ZK, Wilking JN, June RK, Chang CB. Metabolomic Profiling and Mechanotransduction of Single Chondrocytes Encapsulated in Alginate Microgels. Cells 2022; 11:900. [PMID: 35269522 PMCID: PMC8909502 DOI: 10.3390/cells11050900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA; (J.P.F.); (A.E.E.); (J.N.W.)
| | - Priyanka P. Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, MT 59717, USA; (P.P.B.); (Z.K.A.)
| | - Ayten E. Erdoğan
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA; (J.P.F.); (A.E.E.); (J.N.W.)
| | - Zachary K. Archambault
- Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, MT 59717, USA; (P.P.B.); (Z.K.A.)
| | - James N. Wilking
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA; (J.P.F.); (A.E.E.); (J.N.W.)
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, MT 59717, USA; (P.P.B.); (Z.K.A.)
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA; (J.P.F.); (A.E.E.); (J.N.W.)
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA
| |
Collapse
|
214
|
Microfabrication of sealable microcells array with ultrathin metal-graphene membrane. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
215
|
Abe T, Oh-hara S, Ukita Y. Integration of reinforcement learning to realize functional variability of microfluidic systems. BIOMICROFLUIDICS 2022; 16:024106. [PMID: 35356131 PMCID: PMC8934189 DOI: 10.1063/5.0087079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 05/12/2023]
Abstract
In this article, we present a proof-of-concept for microfluidic systems with high functional variability using reinforcement learning. By mathematically defining the objective of tasks, we demonstrate that the system can autonomously learn to behave according to its objectives. We applied Q-learning to a peristaltic micropump and showed that two different tasks can be performed on the same platform: adjusting the flow rate of the pump and manipulating the position of the particles. First, we performed typical micropumping with flow rate control. In this task, the system is rewarded according to the deviation between the average flow rate generated by the micropump and the target value. Therefore, the objective of the system is to maintain the target flow rate via an operation of the pump. Next, we demonstrate the micromanipulation of a small object (microbead) on the same platform. The objective was to manipulate the microbead position to the target area, and the system was rewarded for the success of the task. These results confirmed that the system learned to control the flow rate and manipulate the microbead to any randomly chosen target position. In particular, the manipulation technique is a new technology that does not require the use of structures such as wells or weirs. Therefore, this concept not only adds flexibility to the system but also contributes to the development of novel control methods to realize highly versatile microfluidic systems.
Collapse
Affiliation(s)
- Takaaki Abe
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
| | - Shinsuke Oh-hara
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
| | - Yoshiaki Ukita
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
- Author to whom correspondence should be addressed:
| |
Collapse
|
216
|
Habib T, Brämer C, Heuer C, Ebbecke J, Beutel S, Bahnemann J. 3D-Printed microfluidic device for protein purification in batch chromatography. LAB ON A CHIP 2022; 22:986-993. [PMID: 35107475 DOI: 10.1039/d1lc01127h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern 3D printers enable not only rapid prototyping, but also high-precision printing-microfluidic devices with channel diameters of just a few micrometres can now be readily assembled using this technology. Such devices offer a myriad of benefits (including miniaturization) that significantly reduce sample and buffer volumes and lead to lower process costs. Although such microfluidic devices are already widely used in the field of biotechnology, there is a lack of research regarding the potential of miniaturization by 3D-printed devices in lab-scale chromatography. In this study, the efficacy of a 3D-printed microfluidic device which provides a substantially lower dead-volume compared to established chromatography systems is demonstrated for batch purification applications. Furthermore, this device enables straightforward integration of various components (such as microfluidic valves and chromatographic units) in an unprecedentedly flexible fashion. Initial proof-of-concept experiments demonstrate successful gradient elution with bovine serum albumin (BSA), and the purification of a pharmaceutically relevant IgG monoclonal antibody (mAb).
Collapse
Affiliation(s)
- Taieb Habib
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Chantal Brämer
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Jan Ebbecke
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33625 Bielefeld, Germany
| |
Collapse
|
217
|
Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification. MICROMACHINES 2022; 13:mi13030365. [PMID: 35334657 PMCID: PMC8951003 DOI: 10.3390/mi13030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022]
Abstract
Deterministic lateral displacement (DLD) is a well-known microfluidic technique for particle separation with high potential for integration into bioreactors for therapeutic applications. Separation is based on the interaction of suspended particles in a liquid flowing through an array of microposts under low Reynolds conditions. This technique has been used previously to separate living cells of different sizes but similar shapes. Here, we present a DLD microchip to separate rod-shaped bacterial cells up to 10 µm from submicron spherical minicells. We designed two microchips with 50 and 25 µm cylindrical posts and spacing of 15 and 2.5 µm, respectively. Soft lithography was used to fabricate polydimethylsiloxane (PDMS) chips, which were assessed at different flow rates for their separation potential. The results showed negligible shear effect on the separation efficiency for both designs. However, the higher flow rates resulted in faster separation. We optimized the geometrical parameters including the shape, size, angle and critical radii of the posts and the width and depth of the channel as well as the number of arrays to achieve separation efficiency as high as 75.5% on a single-stage separation. These results pave the way for high-throughput separation and purification modules with the potential of direct integration into bioreactors.
Collapse
|
218
|
Moon J, Kang C, Kang H. Vertical Alignment of Liquid Crystals on Phenylphenoxymethyl-Substituted Polystyrene-PS Derivatives Structurally Similar to LC Molecules. Polymers (Basel) 2022; 14:934. [PMID: 35267756 PMCID: PMC8912853 DOI: 10.3390/polym14050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
A series of polystyrene derivatives containing precursors of liquid crystal (LC) molecules, phenylphenoxymethyl-substituted polystyrene (PPHE#; # = 5, 15, 25, 50, 75, and 100)-where # is the molar content of 4-phenylphenol using polymer modification reactions-were prepared in order to examine the effect of the polymer film, which possess similar LC molecular structure on the LC alignment properties. It was found that the Tg values of the PPHE# were higher than 100 °C due to their aromatic structure in the biphenyl-based PHE moiety. The LC cells fabricated with PPHE5 and PPHE15 films exhibited planar LC alignment. Conversely, LC molecules showed a vertical alignment in LC cells made using the polymer films with phenylphenoxymethyl side groups in the range of 25-100 mol %. The polar surface energies on the PPHE# films can be associated with the vertical LC alignment on the PPHE# films. For example, vertical LC alignment was exhibited when the polar surface energy of the polymer films was less than approximately 4.2 mJ/m2. Aligning stability was observed at 200 °C and UV irradiation of 20 J/cm2 for LC cells made using the PPHE100 film. Therefore, it was found that biphenyl, one of the LC precursors, modified polystyrene derivatives and can produce a next-generation vertical LC alignment system.
Collapse
Affiliation(s)
| | | | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero, 550 Beon-gil, Saha–gu, Busan 49315, Korea; (J.M.); (C.K.)
| |
Collapse
|
219
|
Ajay AK. Functional Drug Screening using Kidney Cells On-A-Chip: Advances in Disease Modeling and Development of Biomarkers. KIDNEY360 2022; 3:194-198. [PMID: 35373124 PMCID: PMC8967633 DOI: 10.34067/kid.0007172021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Amrendra K. Ajay
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
220
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
221
|
Zeng W, Chen P, Li S, Sha Q, Li P, Zeng X, Feng X, Du W, Liu BF. Hand-powered vacuum-driven microfluidic gradient generator for high-throughput antimicrobial susceptibility testing. Biosens Bioelectron 2022; 205:114100. [PMID: 35219023 DOI: 10.1016/j.bios.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
The growth of bacterial resistance to antimicrobials is a serious problem attracting much attention nowadays. To prevent the misuse and abuse of antimicrobials, it is important to carry out antibiotic susceptibility testing (AST) before clinical use. However, conventional AST methods are relatively laborious and time-consuming (18-24 h). Here, we present a hand-powered vacuum-driven microfluidic (HVM) device, in which a syringe is used as the only vacuum source for rapid generating concentration gradient of antibiotics in different chambers. The HVM device can be preassembled with various amounts of antibiotics, lyophilized, and stored for ready-to-use. Bacterial samples can be loaded into the HVM device through a simple suction step. With the assistance of Alamar Blue, the AST assay and the minimum inhibitory concentration (MIC) of different antibiotics can be investigated by comparing the growth results of bacteria in different culture chambers. In addition, a parallel HVM device was proposed, in which eight AST assays can be performed simultaneously. The results of MIC of three commonly used antibiotics against E. coli K-12 in our HVM device were consistent with those obtained by traditional method while the detection time was shortened to less than 8 h. We believe that our platform is high-throughput, cost-efficient, easy to use, and suitable for POCT applications.
Collapse
Affiliation(s)
- Wenyi Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyue Sha
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
222
|
Dai Y, Cha H, Simmonds MJ, Fallahi H, An H, Ta HT, Nguyen NT, Zhang J, McNamee AP. Enhanced Blood Plasma Extraction Utilising Viscoelastic Effects in a Serpentine Microchannel. BIOSENSORS 2022; 12:bios12020120. [PMID: 35200380 PMCID: PMC8869685 DOI: 10.3390/bios12020120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
Plasma extraction from blood is essential for diagnosis of many diseases. The critical process of plasma extraction requires removal of blood cells from whole blood. Fluid viscoelasticity promotes cell migration towards the central axis of flow due to differences in normal stress and physical properties of cells. We investigated the effects of altering fluid viscoelasticity on blood plasma extraction in a serpentine microchannel. Poly (ethylene oxide) (PEO) was dissolved into blood to increase its viscoelasticity. The influences of PEO concentration, blood dilution, and flow rate on the performance of cell focusing were examined. We found that focusing performance can be significantly enhanced by adding PEO into blood. The optimal PEO concentration ranged from 100 to 200 ppm with respect to effective blood cell focusing. An optimal flow rate from 1 to 15 µL/min was determined, at least for our experimental setup. Given less than 1% haemolysis was detected at the outlets in all experimental combinations, the proposed microfluidic methodology appears suitable for applications sensitive to haemocompatibility.
Collapse
Affiliation(s)
- Yuchen Dai
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.D.); (H.C.); (H.F.); (H.A.); (N.-T.N.)
| | - Haotian Cha
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.D.); (H.C.); (H.F.); (H.A.); (N.-T.N.)
| | - Michael J. Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Hedieh Fallahi
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.D.); (H.C.); (H.F.); (H.A.); (N.-T.N.)
| | - Hongjie An
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.D.); (H.C.); (H.F.); (H.A.); (N.-T.N.)
| | - Hang T. Ta
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.D.); (H.C.); (H.F.); (H.A.); (N.-T.N.)
| | - Jun Zhang
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.D.); (H.C.); (H.F.); (H.A.); (N.-T.N.)
- Correspondence: (J.Z.); (A.P.M.)
| | - Antony P. McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Correspondence: (J.Z.); (A.P.M.)
| |
Collapse
|
223
|
Bonner MG, Gudapati H, Mou X, Musah S. Microfluidic systems for modeling human development. Development 2022; 149:274363. [PMID: 35156682 PMCID: PMC8918817 DOI: 10.1242/dev.199463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.
Collapse
Affiliation(s)
- Makenzie G. Bonner
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
| | - Hemanth Gudapati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,MEDx Investigator and Faculty Member at the Duke Regeneration Center, Duke University, Durham, NC 27710, USA,Author for correspondence ()
| |
Collapse
|
224
|
Li P, Qin Z, Zhong Y, Kang H, Zhang Z, Hu Y, Wen L, Wang L. Selective Single-Cell Expansion on a Microfluidic Chip for Studying Heterogeneity of Glioma Stem Cells. Anal Chem 2022; 94:3245-3253. [PMID: 35148070 DOI: 10.1021/acs.analchem.1c04959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that a subpopulation of stem-cell-like tumor cells in glioma (GSCs) is the major factor accounting for intratumoral heterogeneity and acquired chemotherapeutic resistance. Therefore, understanding intratumoral heterogeneity of GSCs may help develop more effective treatments against this malignancy. However, the study of GSCs' heterogeneity is highly challenging because tumor stem cells are rare. To overcome the limitation, we employed a microfluidic single-cell culture approach to expand GSCs by taking advantage of the self-renewal property of stem cells. Stemness of the recovered cells was confirmed by immunofluorescence, RT-PCR, RNA-sequencing, and cell function assays. The recovered cells were classified into three groups based on their morphological characteristics, namely, the tight-format (TF), the loose-format (LF), and the limited-size group (LS). The serial passage assay showed that the LS group has a lower sphere-forming rate than the LF and TF group, and the invasion assay showed that the LF and TF cells migrated longer distances in Matrigel. The transcriptomic analysis also revealed differences in gene expression profiling among these GSC subtypes. The abovementioned results suggest that GSCs have transcriptional and functional heterogeneities that correlate with morphological differences. The presented microfluidic single-cell approach links morphology with function and thus can provide an enabling tool for studying tumor heterogeneity.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zixuan Zhang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Hu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lintao Wen
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
225
|
Mehta SK, Pati S. Enhanced Electroosmotic Mixing in a Wavy Micromixer Using Surface Charge Heterogeneity. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sumit Kumar Mehta
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, India
| | - Sukumar Pati
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, India
| |
Collapse
|
226
|
Volk AA, Campbell ZS, Ibrahim MYS, Bennett JA, Abolhasani M. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annu Rev Chem Biomol Eng 2022; 13:45-72. [PMID: 35259931 DOI: 10.1146/annurev-chembioeng-092120-024449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Zachary S Campbell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Malek Y S Ibrahim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| |
Collapse
|
227
|
Gross E, Lowry E, Schaffer L, Henry C. Electrogenerated Chemiluminescent Detection of Polyamines on a Microfluidic Device Using Micromolded Carbon Paste Microelectrodes. ELECTROANAL 2022. [DOI: 10.1002/elan.202100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
228
|
Photolithography-free fabrication of photoresist-mold for rapid prototyping of microfluidic PDMS devices. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
229
|
Teoh BY, Lim YM, Chong WY, Subramaniam M, Tan ZZ, Misran M, Suk VRE, Lo KW, Lee PF. Isolation of exosome from the culture medium of Nasopharyngeal cancer (NPC) C666-1 cells using inertial based Microfluidic channel. Biomed Microdevices 2022; 24:12. [PMID: 35080702 DOI: 10.1007/s10544-022-00609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Isolation of exosome from culture medium in an effective way is desired for a less time consuming, cost saving technology in running the diagnostic test on cancer. In this study, we aim to develop an inertial microfluidic channel to separate the nano-size exosome from C666-1 cell culture medium as a selective sample. Simulation was carried out to obtain the optimum flow rate for determining the dimension of the channels for the exosome separation from the medium. The optimal dimension was then brought forward for the actual microfluidic channel fabrication, which consisted of the stages of mask printing, SU8 mould fabrication and ended with PDMS microchannel curing process. The prototype was then used to verify the optimum flow rate with polystyrene particles for its capabilities in actual task on particle separation as a control outcome. Next, the microchip was employed to separate the selected samples, exosome from the culture medium and compared the outcome from the conventional exosome extraction kit to study the level of effectiveness of the prototype. The exosome outcome from both the prototype and extraction kits were characterized through zetasizer, western blot and Transmission electron microscopy (TEM). The microfluidic chip designed in this study obtained a successful separation of exosome from the culture medium. Besides, the extra benefit from this microfluidic channels in particle separation brought an evenly distributed exosome upon collection while the exosomes separated through extraction kit was found clustered together. Therefore, this work has shown the microfluidic channel is suitable for continuous separation of exosome from the culture medium for a clinical study in the future.
Collapse
Affiliation(s)
- Boon Yew Teoh
- Department of Biomedical and Mechatronics Engineering, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia.,Centre for Cancer Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Wu Yi Chong
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Zi Zhang Tan
- Department of Biomedical and Mechatronics Engineering, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vicit Rizal Eh Suk
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwok-Wai Lo
- Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Poh Foong Lee
- Department of Mechanical Engineering, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Kajang 43000, Cheras, Selangor, Malaysia.
| |
Collapse
|
230
|
Ching T, Toh YC, Hashimoto M. Design and fabrication of micro/nanofluidics devices and systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:15-58. [PMID: 35033282 DOI: 10.1016/bs.pmbts.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter provides an overview of the science, engineering, and design methods required in the development of micro/nanofluidic devices. Section 2 provides the scientific background of fluid mechanics and physical phenomena in micro/nanoscale. Section 3 gives a brief overview of the existing fabrication techniques employed in micro/nanofluidics. The techniques are grouped into three categories: (1) subtractive manufacturing, (2) formative manufacturing, and (3) additive manufacturing. The advantages and disadvantages of each manufacturing technique are also discussed. Implementation of the fluidic devices beyond laboratory demonstrations is not trivial, which requires a good understanding of the problems of interest and the end-users. To that end, Section 4 introduces the design thinking approach and its application to develop micro/nanofluidic devices. Finally, Section 5 concludes the chapter with future outlooks.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
231
|
Lee S, Chang J, Kang SM, Parigoris E, Lee JH, Huh YS, Takayama S. High-throughput formation and image-based analysis of basal-in mammary organoids in 384-well plates. Sci Rep 2022; 12:317. [PMID: 35013350 PMCID: PMC8748891 DOI: 10.1038/s41598-021-03739-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
This manuscript describes a new method for forming basal-in MCF10A organoids using commercial 384-well ultra-low attachment (ULA) microplates and the development of associated live-cell imaging and automated analysis protocols. The use of a commercial 384-well ULA platform makes this method more broadly accessible than previously reported hanging drop systems and enables in-incubator automated imaging. Therefore, time points can be captured on a more frequent basis to improve tracking of early organoid formation and growth. However, one major challenge of live-cell imaging in multi-well plates is the rapid accumulation of large numbers of images. In this paper, an automated MATLAB script to handle the increased image load is developed. This analysis protocol utilizes morphological image processing to identify cellular structures within each image and quantify their circularity and size. Using this script, time-lapse images of aggregating and non-aggregating culture conditions are analyzed to profile early changes in size and circularity. Moreover, this high-throughput platform is applied to widely screen concentration combinations of Matrigel and epidermal growth factor (EGF) or heparin-binding EGF-like growth factor (HB-EGF) for their impact on organoid formation. These results can serve as a practical resource, guiding future research with basal-in MCF10A organoids.
Collapse
Affiliation(s)
- Soojung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Chungnam, 31066, Republic of Korea
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
232
|
Othman W, Lai ZHA, Abril C, Barajas-Gamboa JS, Corcelles R, Kroh M, Qasaimeh MA. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies. Front Robot AI 2022; 8:705662. [PMID: 35071332 PMCID: PMC8777132 DOI: 10.3389/frobt.2021.705662] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
As opposed to open surgery procedures, minimally invasive surgery (MIS) utilizes small skin incisions to insert a camera and surgical instruments. MIS has numerous advantages such as reduced postoperative pain, shorter hospital stay, faster recovery time, and reduced learning curve for surgical trainees. MIS comprises surgical approaches, including laparoscopic surgery, endoscopic surgery, and robotic-assisted surgery. Despite the advantages that MIS provides to patients and surgeons, it remains limited by the lost sense of touch due to the indirect contact with tissues under operation, especially in robotic-assisted surgery. Surgeons, without haptic feedback, could unintentionally apply excessive forces that may cause tissue damage. Therefore, incorporating tactile sensation into MIS tools has become an interesting research topic. Designing, fabricating, and integrating force sensors onto different locations on the surgical tools are currently under development by several companies and research groups. In this context, electrical force sensing modality, including piezoelectric, resistive, and capacitive sensors, is the most conventionally considered approach to measure the grasping force, manipulation force, torque, and tissue compliance. For instance, piezoelectric sensors exhibit high sensitivity and accuracy, but the drawbacks of thermal sensitivity and the inability to detect static loads constrain their adoption in MIS tools. Optical-based tactile sensing is another conventional approach that facilitates electrically passive force sensing compatible with magnetic resonance imaging. Estimations of applied loadings are calculated from the induced changes in the intensity, wavelength, or phase of light transmitted through optical fibers. Nonetheless, new emerging technologies are also evoking a high potential of contributions to the field of smart surgical tools. The recent development of flexible, highly sensitive tactile microfluidic-based sensors has become an emerging field in tactile sensing, which contributed to wearable electronics and smart-skin applications. Another emerging technology is imaging-based tactile sensing that achieved superior multi-axial force measurements by implementing image sensors with high pixel densities and frame rates to track visual changes on a sensing surface. This article aims to review the literature on MIS tactile sensing technologies in terms of working principles, design requirements, and specifications. Moreover, this work highlights and discusses the promising potential of a few emerging technologies towards establishing low-cost, high-performance MIS force sensing.
Collapse
Affiliation(s)
- Wael Othman
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mechanical and Aerospace Engineering, New York University, New York, NY, United States
| | - Zhi-Han A. Lai
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Carlos Abril
- Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Juan S. Barajas-Gamboa
- Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ricard Corcelles
- Digestive Disease and Surgery Institute, Cleveland Clinic Main Campus, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Matthew Kroh
- Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Qasaimeh
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mechanical and Aerospace Engineering, New York University, New York, NY, United States
| |
Collapse
|
233
|
Oliveira AF, Bastos RG, de la Torre LG. Double T-junction microfluidic and conventional dripping systems for Bacillus subtilis immobilization in calcium alginate microparticles for lipase production. Enzyme Microb Technol 2022; 154:109976. [PMID: 34974340 DOI: 10.1016/j.enzmictec.2021.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis immobilization in calcium alginate microparticles was investigated using two techniques: droplet microfluidics-based in T-junction geometry composed with a double droplet generation system and conventional dripping system. Alginate microparticles produced by microfluidic technology presented an average size of 68.35 µm with low polydispersity and immobilization efficiency around 86%. The cell response was evaluated in batch cultivation for 24 h, viewing lipase production compared to free cells. In this study, the batch cultivation with immobilized cells in alginate microparticles presented lipase production about 2.4 and 1.7 times higher than cultivation with cells immobilized cells by conventional technique and free cells cultivations. According to the results, this main novelty of the double T junction technique is an innovative contribution as a tool for cell immobilization on a laboratory scale, since the cultivation of immobilized cells in microparticles of small size and low polydispersity favors cell growth and increases the productivity of important metabolites of industrial biotechnology.
Collapse
Affiliation(s)
- Aline F Oliveira
- University of Campinas, School of Chemical Engineering, Campinas, SP, Brazil; Institute for Technological Research of State of São Paulo - IPT, São Paulo, SP, Brazil
| | - Reinaldo G Bastos
- Federal University of São Carlos, Center of Agricultural Sciences, Araras, SP, Brazil.
| | | |
Collapse
|
234
|
Pellejero I, Clemente A, Reinoso S, Cornejo A, Navajas A, Vesperinas JJ, Urbiztondo MA, Gandía LM. Innovative catalyst integration on transparent silicone microreactors for photocatalytic applications. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
235
|
Abstract
The human blood-brain-barrier (BBB) is a vital structure for brain health. Conversely it represents a challenge in drug development programmes that require breaching of the barrier in order to access the central nervous system. Very often brain disorders have early dysfunction of the BBB implicating an important role in pathogenesis and disease progression. The development of human in vitro models is a major advance to allow experimental studies and screening assays, although there remain outstanding questions for the field. In this chapter, the current state of the art will be reviewed, with the complementary innovative approaches to in vitro modelling described, from simple 2D-cultures to more complex multi-cell type micro-physiological systems.
Collapse
Affiliation(s)
- Zameel Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK.
| |
Collapse
|
236
|
Bahnemann J, Grünberger A. Microfluidics in Biotechnology: Overview and Status Quo. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 179:1-16. [DOI: 10.1007/10_2022_206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
237
|
Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Cells Tissues Organs 2022; 211:269-281. [PMID: 34380142 PMCID: PMC8831652 DOI: 10.1159/000517422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Microphysiological systems (MPS) or tissue chips/organs-on-chips are novel in vitro models that emulate human physiology at the most basic functional level. In this review, we discuss various hurdles to widespread adoption of MPS technology focusing on issues from multiple stakeholder sectors, e.g., academic MPS developers, commercial suppliers of platforms, the pharmaceutical and biotechnology industries, and regulatory organizations. Broad adoption of MPS technology has thus far been limited by a gap in translation between platform developers, end-users, regulatory agencies, and the pharmaceutical industry. In this brief review, we offer a perspective on the existing barriers and how end-users may help surmount these obstacles to achieve broader adoption of MPS technology.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Lucie A. Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
238
|
How to Get Away with Gradients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:31-54. [DOI: 10.1007/978-3-031-04039-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
239
|
Zhu Y, Chen Q, Tsoi CC, Huang X, El Abed A, Ren K, Leu SY, Zhang X. Biomimetic reusable microfluidic reactors with physically immobilized RuBisCO for glucose precursor production. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02038b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reusable RuBisCO-immobilized microfluidic reactors are used to synthesize the glucose precursor from CO2 and restore >95% of activity after refreshing.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
| | - Qingming Chen
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai, 519082, P. R. China
| | - Chi Chung Tsoi
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Abdel El Abed
- Laboratoire Lumière Matière et Interfaces (LuMIn), Institut d'Alembert, ENS Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 4 avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Kangning Ren
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| |
Collapse
|
240
|
Ma Q, Xu J. Green microfluidics in microchemical engineering for carbon neutrality. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
241
|
Zou Z, Luo X, Chen Z, Zhang YS, Wen C. Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics 2022; 12:891-909. [PMID: 34976219 PMCID: PMC8692897 DOI: 10.7150/thno.62685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent debilitating age-related joint degenerative disease. It is a leading cause of pain and functional disability in older adults. Unfortunately, there is no cure for OA once the damage is established. Therefore, it promotes an urgent need for early detection and intervention of OA. Theranostics, combining therapy and diagnosis, emerges as a promising approach for OA management. However, OA theranostics is still in its infancy. Three fundamental needs have to be firstly fulfilled: i) a reliable OA model for disease pathogenesis investigation and drug screening, ii) an effective and precise diagnostic platform, and iii) an advanced fabrication approach for drug delivery and therapy. Meanwhile, microfluidics emerges as a versatile technology to address each of the needs and eventually boost the development of OA theranostics. Therefore, this review focuses on the applications of microfluidics, from benchtop to bedside, for OA modelling and drug screening, early diagnosis, and clinical therapy. We first introduce the basic pathophysiology of OA and point out the major unfilled research gaps in current OA management including lack of disease modelling and drug screening platforms, early diagnostic modalities and disease-modifying drugs and delivery approaches. Accordingly, we then summarize the state-of-the-art microfluidics technology for OA management from in vitro modelling and diagnosis to therapy. Given the existing promising results, we further discuss the future development of microfluidic platforms towards clinical translation at the crossroad of engineering and biomedicine.
Collapse
Affiliation(s)
- Zhou Zou
- Department of Biomedical Engineering, Faculty of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaohe Luo
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengkun Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Currently at Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
242
|
Sznitman J. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics. Chem Rev 2021; 122:7182-7204. [PMID: 34964615 DOI: 10.1021/acs.chemrev.1c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dynamics of respiratory airflows and the associated transport mechanisms of inhaled aerosols characteristic of the deep regions of the lungs are of broad interest in assessing both respiratory health risks and inhalation therapy outcomes. In the present review, we present a comprehensive discussion of our current understanding of airflow and aerosol transport phenomena that take place within the unique and complex anatomical environment of the deep lungs, characterized by submillimeter 3D alveolated airspaces and nominally slow resident airflows, known as low-Reynolds-number flows. We exemplify the advances brought forward by experimental efforts, in conjunction with numerical simulations, to revisit past mechanistic theories of respiratory airflow and particle transport in the distal acinar regions. Most significantly, we highlight how microfluidic-based platforms spanning the past decade have accelerated opportunities to deliver anatomically inspired in vitro solutions that capture with sufficient realism and accuracy the leading mechanisms governing both respiratory airflow and aerosol transport at true scale. Despite ongoing challenges and limitations with microfabrication techniques, the efforts witnessed in recent years have provided previously unattainable in vitro quantifications on the local transport properties in the deep pulmonary acinar airways. These may ultimately provide new opportunities to explore improved strategies of inhaled drug delivery to the deep acinar regions by investigating further the mechanistic interactions between airborne particulate carriers and respiratory airflows at the pulmonary microscales.
Collapse
Affiliation(s)
- Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
243
|
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. MICROMACHINES 2021; 13:mi13010049. [PMID: 35056214 PMCID: PMC8778126 DOI: 10.3390/mi13010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023]
Abstract
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
Collapse
|
244
|
Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res 2021; 117:2742-2754. [PMID: 33729461 PMCID: PMC8683705 DOI: 10.1093/cvr/cvab088] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide an important asset for future approaches to personalized cardiovascular medicine and improved patient care. However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Maria Sabater-Lleal
- Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Genomics of Complex Diseases Group, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aisen Vivas
- BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Sofia Johansson
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
- Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
245
|
Abstract
Lab-on-a-chip devices leverage microfluidic technologies to enable chemical and biological processes at small scales. However, existing microfluidic channel networks are typically designed for the implementation of a single function or a well-defined protocol and do not allow the flexibility and real-time experimental decision-making essential to many scientific applications. In this Perspective, we highlight that reconfigurability and programmability of microfluidic platforms can support new functionalities that are beyond the reach of current lab-on-a-chip systems. We describe the ideal fully reconfigurable microfluidic device that can change its shape and function dynamically, which would allow researchers to tune a microscale experiment with the capacity to make real-time decisions. We review existing technologies that can dynamically control microscale flows, suggest additional physical mechanisms that could be leveraged towards the goal of reconfigurable microfluidics and highlight the importance of these efforts for the broad scientific community.
Collapse
|
246
|
Sun W, Liu J, Hao Q, Lu K, Wu Z, Chen H. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. J Mater Chem B 2021; 10:262-270. [PMID: 34889346 DOI: 10.1039/d1tb01968f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and antifouling properties were conveniently developed via a novel Y-shaped asymmetric dual-functional photoiniferter (Y-iniferter). The Y-iniferter was initially immobilized onto the PDMS surface by radical coupling under visible light irradiation. Afterwards, poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and antibacterial ionic liquid (IL) fragments were simultaneously immobilized on the Y-iniferter-modified PDMS surfaces by combining the sulfur(VI)-fluoride exchange (SuFEx) click reaction and UV-photoinitiated polymerization. Experiments using E. coli as a model bacterium demonstrated that the modified PDMS surfaces had both the expected antibacterial properties of the IL fragments and the excellent antifouling properties of PHEMA brushes. Furthermore, the cytotoxicity of the modified PDMS surfaces to L929 cells was examined in vitro with a CCK-8 assay, which showed that the modified surfaces maintained excellent cytocompatibility. Briefly, this strategy of constructing an antibacterial and antifouling PDMS surface has the advantages of simplicity and convenience and might inspire the construction of diverse dual-functional surfaces by utilizing PDMS more effectively.
Collapse
Affiliation(s)
- Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
247
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
248
|
Neckel IT, de Castro LF, Callefo F, Teixeira VC, Gobbi AL, Piazzetta MH, de Oliveira RAG, Lima RS, Vicente RA, Galante D, Tolentino HCN. Development of a sticker sealed microfluidic device for in situ analytical measurements using synchrotron radiation. Sci Rep 2021; 11:23671. [PMID: 34880305 PMCID: PMC8654830 DOI: 10.1038/s41598-021-02928-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.
Collapse
Affiliation(s)
- Itamar T Neckel
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil.
| | - Lucas F de Castro
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, 74690-900, Brazil
| | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Maria H Piazzetta
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Ricardo A G de Oliveira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Rafael A Vicente
- Institute of Chemistry, University of Campinas, Campinas, SãoPaulo, 13083-970, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Helio C N Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil.
| |
Collapse
|
249
|
Hyakutake T, Abe H, Miyoshi Y, Yasui M, Suzuki R, Tsurumaki S, Tsutsumi Y. In vitro study on the partitioning of red blood cells using a microchannel network. Microvasc Res 2021; 140:104281. [PMID: 34871649 DOI: 10.1016/j.mvr.2021.104281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
To investigate the partitioning properties of red blood cells (RBCs) in the bifurcating capillary vessels, an in vitro experiment was performed to perfuse human RBC suspensions into the microfluidic channels with a width of <10 μm. Two types of microchannel geometries were established. One is a single model comprising one parent and two daughter channels with different widths, and the other is a network model that had a symmetric geometry with four consecutive divergences and convergences. In addition to the fractional RBC flux at each bifurcation, changes in hematocrit levels and flow velocity before and after the bifurcation were investigated. In the single model, non-uniform partitioning of RBCs was observed, and this result was in good agreement with that of the empirical model. Furthermore, in the network model, the RBC distribution in the cross-section before the bifurcation significantly affected RBC partitioning in the two channels after the bifurcation. Hence, there was a large RBC heterogeneity in the capillary network. The hematocrit levels between the channels differed for more than one order of magnitude. Therefore, the findings of the current research could facilitate a better understanding of RBC partitioning properties in the microcirculatory system.
Collapse
Affiliation(s)
- Toru Hyakutake
- Faculty of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan.
| | - Hiroki Abe
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Yohei Miyoshi
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Manabu Yasui
- Kanagawa Institute of Industrial Science and Technology, 705-1, Shimoimaizumi, Ebina 243-0435, Japan
| | - Rina Suzuki
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Shunto Tsurumaki
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Yuya Tsutsumi
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
250
|
Vomero M, Schiavone G. Biomedical Microtechnologies Beyond Scholarly Impact. MICROMACHINES 2021; 12:mi12121471. [PMID: 34945320 PMCID: PMC8709221 DOI: 10.3390/mi12121471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The recent tremendous advances in medical technology at the level of academic research have set high expectations for the clinical outcomes they promise to deliver. To the demise of patient hopes, however, the more disruptive and invasive a new technology is, the bigger the gap is separating the conceptualization of a medical device and its adoption into healthcare systems. When technology breakthroughs are reported in the biomedical scientific literature, news focus typically lies on medical implications rather than engineering progress, as the former are of higher appeal to a general readership. While successful therapy and diagnostics are indeed the ultimate goals, it is of equal importance to expose the engineering thinking needed to achieve such results and, critically, identify the challenges that still lie ahead. Here, we would like to provoke thoughts on the following questions, with particular focus on microfabricated medical devices: should research advancing the maturity and reliability of medical technology benefit from higher accessibility and visibility? How can the scientific community encourage and reward academic work on the overshadowed engineering aspects that will facilitate the evolution of laboratory samples into clinical devices?
Collapse
Affiliation(s)
- Maria Vomero
- BioEE Laboratory, Electrical Engineering Department, Columbia University, New York, NY 10027, USA;
| | - Giuseppe Schiavone
- Research Management & Innovation Directorate, King’s College London, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
- Correspondence:
| |
Collapse
|