201
|
Liu D, Peng J, Chen L, Zhang Y, Han X, Yang P, He H. Solid phase extraction-based magnetic carbon nitride/metal organic framework composite with high performance liquid chromatography for the determination of tyrosine kinase inhibitors in urine samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4798-4805. [PMID: 32955051 DOI: 10.1039/d0ay01243b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a novel solid phase extraction method was constructed to detect three tyrosine kinase inhibitors (TKIs) in urine with a high-performance liquid chromatography-diode array detector. The sorbent MCN/BIF-20 was constructed by magnetic g-C3N4 (MCN) and boron imidazole framework-20 (BIF-20) and was characterized by multiple techniques. The experimental results of the adsorption isotherm and adsorption kinetics indicated that the composites had good adsorption of TKIs (148.33 mg g-1, 283.25 mg g-1, 188.17 mg g-1). The reason for the good adsorption property of the complex material was revealed by comparison with each single material. The analytical method was built by a single factor experiment, and was evaluated as a suitable method to detect TKIs in urine by its good accuracy (90.35-98.69%), precision (<3.9%), appropriate detection limits (2.2-3.4 ng mL-1), and linear ranges (12.5-500 ng mL-1) with convenient determination coefficients (>0.9997). The performance of the MCN/BIF-20 composite did not decrease dramatically in 3 cycles. These analytical results demonstrated that g-C3N4 and BIFs had a bright prospect in sample pretreatment, and the proposed approach based on MCN/BIF-20 was applicable for analysis of TKIs in urine.
Collapse
Affiliation(s)
- Donghao Liu
- Department of Analytical Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu Province, China.
| | | | | | | | | | | | | |
Collapse
|
202
|
Sikdar N, Hazra A, Samanta D, Haldar R, Maji TK. Guest‐Responsive Reversible Electron Transfer in a Crystalline Porous Framework Supported by a Dynamic Building Node. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nivedita Sikdar
- Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Debabrata Samanta
- Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Ritesh Haldar
- New Chemistry Unit School of Advanced Materials (SAMat) Bangalore 560064 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
- New Chemistry Unit School of Advanced Materials (SAMat) Bangalore 560064 India
| |
Collapse
|
203
|
Sun K, Liu M, Pei J, Li D, Ding C, Wu K, Jiang H. Incorporating Transition‐Metal Phosphides Into Metal‐Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Junzhe Pei
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dandan Li
- Institutes of Physics Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Hai‐Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
204
|
Sun K, Liu M, Pei J, Li D, Ding C, Wu K, Jiang HL. Incorporating Transition-Metal Phosphides Into Metal-Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2020; 59:22749-22755. [PMID: 32896969 DOI: 10.1002/anie.202011614] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Metal-organic frameworks (MOFs) have been shown to be an excellent platform in photocatalysis. However, to suppress electron-hole recombination, a Pt cocatalyst is usually inevitable, especially in photocatalytic H2 production, which greatly limits practical application. Herein, for the first time, monodisperse, small-size, and noble-metal-free transitional-metal phosphides (TMPs; for example, Ni2 P, Ni12 P5 ), are incorporated into a representative MOF, UiO-66-NH2 , for photocatalytic H2 production. Compared with the parent MOF and their physical mixture, both TMPs@MOF composites display significantly improved H2 production rates. Thermodynamic and kinetic studies reveal that TMPs, behaving similar ability to Pt, greatly accelerate the linker-to-cluster charge transfer, promote charge separation, and reduce the activation energy of H2 production. Significantly, the results indicate that Pt is thermodynamically favorable, yet Ni2 P is kinetically preferred for H2 production, accounting for the higher activity of Ni2 P@UiO-66-NH2 than Pt@UiO-66-NH2 .
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Junzhe Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
205
|
Metavarayuth K, Ejegbavwo O, McCarver G, Myrick ML, Makris TM, Vogiatzis KD, Senanayake SD, Manley OM, Ebrahim AM, Frenkel AI, Hwang S, Rajeshkumar T, Jimenez JD, Chen K, Shustova NB, Chen DA. Direct Identification of Mixed-Metal Centers in Metal-Organic Frameworks: Cu 3(BTC) 2 Transmetalated with Rh 2+ Ions. J Phys Chem Lett 2020; 11:8138-8144. [PMID: 32894952 DOI: 10.1021/acs.jpclett.0c02539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Raman spectroscopy was used to establish direct evidence of heterometallic metal centers in a metal-organic framework (MOF). The Cu3(BTC)2 MOF HKUST-1 (BTC3- = benzenetricarboxylate) was transmetalated by heating it in a solution of RhCl3 to substitute Rh2+ ions for Cu2+ ions in the dinuclear paddlewheel nodes of the framework. In addition to the Cu-Cu and Rh-Rh stretching modes, Raman spectra of (CuxRh1-x)3(BTC)2 show the Cu-Rh stretching mode, indicating that mixed-metal Cu-Rh nodes are formed after transmetalation. Density functional theory studies confirmed the assignment of a Raman peak at 285 cm-1 to the Cu-Rh stretching vibration. Electron paramagnetic resonance spectroscopy experiments further supported the conclusion that Rh2+ ions are substituted into the paddlewheel nodes of Cu3(BTC)2 to form an isostructural heterometallic MOF, and electron microscopy studies showed that Rh and Cu are homogeneously distributed in (CuxRh1-x)3(BTC)2 on the nanoscale.
Collapse
Affiliation(s)
- Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Otega Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gavin McCarver
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Michael L Myrick
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Konstantinos D Vogiatzis
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Olivia M Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Amani M Ebrahim
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I Frenkel
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Thayalan Rajeshkumar
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Juan D Jimenez
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kexun Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Donna A Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
206
|
Atilgan A, Cetin MM, Yu J, Beldjoudi Y, Liu J, Stern CL, Cetin FM, Islamoglu T, Farha OK, Deria P, Stoddart JF, Hupp JT. Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. J Am Chem Soc 2020; 142:18554-18564. [PMID: 32981316 DOI: 10.1021/jacs.0c07784] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ahmet Atilgan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - M. Mustafa Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, 34083 Cibali Campus Fatih, Istanbul, Turkey
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Furkan M. Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute of Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
207
|
Yang D, Babucci M, Casey WH, Gates BC. The Surface Chemistry of Metal Oxide Clusters: From Metal-Organic Frameworks to Minerals. ACS CENTRAL SCIENCE 2020; 6:1523-1533. [PMID: 32999927 PMCID: PMC7517122 DOI: 10.1021/acscentsci.0c00803] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 06/01/2023]
Abstract
Many metal-organic frameworks (MOFs) incorporate nodes that are small metal oxide clusters. Some of these MOFs are stable at high temperatures, offering good prospects as catalysts-prospects that focus attention on their defect sites and reactivities-all part of a broader subject: the surface chemistry of metal oxide clusters, illustrated here for MOF nodes and for polyoxocations and polyoxoanions. Ligands on MOF defect sites form during synthesis and are central to the understanding and control of MOF reactivity. Reactions of alcohols are illustrative probes of Zr6O8 node defects in UiO-66, characterized by the interconversions of formate, methoxy, hydroxy, and linker carboxylate ligands and by catalysis of alcohol dehydration reactions. We posit that new reactivities of MOF nodes will emerge from incorporation of a wide range of groups on their surfaces and from targeted substitutions of metals within them.
Collapse
Affiliation(s)
- Dong Yang
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
- College
of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Melike Babucci
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - William H. Casey
- Department
of Earth and Planetary Sciences, University
of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Bruce C. Gates
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
208
|
Wang L, Ling Y, Han L, Zhou J, Sun Z, Li NB, Luo HQ. Catalase active metal-organic framework synthesized by ligand regulation for the dual detection of glucose and cysteine. Anal Chim Acta 2020; 1131:118-125. [PMID: 32928472 DOI: 10.1016/j.aca.2020.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Mimic enzymes greatly improve the inherent insufficiencies of natural enzymes. Therefore, mimic enzyme sensors attract increasing research interest. Metal-organic framework (MOF) is emerging in the field of mimic enzyme catalysis due to its remarkable structural properties. In this paper, a colorimetric method is designed for rapid and sensitive detection of glucose and cysteine levels. The MOF Eu-pydc (pydc-2,5-pyridinedicarboxylic acid) is synthesized by a new strategy which is regulated by ligands at room temperature and found to have peroxidase activity. Then, the MOF is used as a mimic enzyme to catalyze chromogenic substrate (3,3',5,5'-tetramethylbenzidine, TMB) for colorimetric sensing of glucose. The developed method can accurately detect glucose in the range of 10 μM-1 mM (R2 = 0.9958) with a relatively low detection limit about 6.9 μM. Moreover, a cysteine sensor with a detection limit of 0.28 μM is also established based on the disappearance of the color of oxTMB. Additionally, the proposed glucose sensor exhibits excellent selectivity and is successfully applied to blood glucose detection. At the same time, the detection of cysteine is also highly sensitive. In short, the dual sensor is fast, low cost, and convenient, and has great application potential in the diagnosis of disease.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu Ling
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiao Zhou
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
209
|
Yu C, Liang M, Yue X, Tian K, Liu D, Qiao X. Superhydrophobic conjugated microporous polymers grafted silica microspheres for liquid chromatographic separation. J Chromatogr A 2020; 1631:461539. [PMID: 32977224 DOI: 10.1016/j.chroma.2020.461539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/29/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
Vigorously developing new high performance liquid chromatography (HPLC) stationary phases to meet the versatile separation requirements is still an important issue in the field of analytical chemistry. Conjugated microporous polymers (CMPs) are a new type of three-dimensional network porous material with high specific surface area, good chemical stability and superhydrophobicity. Herein, we firstly report the synthesis and applications of CMPs@SiO2 material for HPLC stationary phase. The CMPs@SiO2 material can be in situ fabricated via Sonogashira coupling of 1,3,5-triethynylbenzene and 1,4-diiodobenzene on the surface of spherical silica. The morphology and physicochemical properties of the synthesized stationary phase material were investigated by a series of characterization methods. Due to the superhydrophobic nature of the CMPs@SiO2 material, the packed CMPs@SiO2 HPLC column displays ultrastrong chromatographic retention and can be used for separation of both hydrophobic and hydrophilic compounds with good selectivity. Significantly, CMPs@SiO2 column can be performed for separation with pure acetonitrile as the eluent. Thus, the new column was successfully exploited for monitor and analysis of the hydrolysis of silane coupling agents. Furthermore, based on its oleophilicity, this report firstly utilized the CMPs@SiO2 material to identify and analyze the quality of cooking oils through one-step enrichment and subsequent HPLC separation. We will further exploit to fabricate versatile CMPs-based stationary phases, highlighting their potential applications in different separation scopes.
Collapse
Affiliation(s)
- Chengcheng Yu
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Mengying Liang
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Xuyang Yue
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Kailu Tian
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Delu Liu
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
210
|
Gong X, Gnanasekaran K, Chen Z, Robison L, Wasson MC, Bentz KC, Cohen SM, Farha OK, Gianneschi NC. Insights into the Structure and Dynamics of Metal–Organic Frameworks via Transmission Electron Microscopy. J Am Chem Soc 2020; 142:17224-17235. [DOI: 10.1021/jacs.0c08773] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyi Gong
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lee Robison
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kyle C. Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
- Department of Biomedical Engineering, Materials Science & Engineering, Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
211
|
McLeod SM, Robison L, Parigi G, Olszewski A, Drout RJ, Gong X, Islamoglu T, Luchinat C, Farha OK, Meade TJ. Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41157-41166. [PMID: 32852198 DOI: 10.1021/acsami.0c13571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gadolinium(III) nanoconjugate contrast agents (CAs) provide significant advantages over small-molecule complexes for magnetic resonance imaging (MRI), namely increased Gd(III) payload and enhanced proton relaxation efficiency (relaxivity, r1). Previous research has demonstrated that both the structure and surface chemistry of the nanomaterial substantially influence contrast. We hypothesized that inserting Gd(III) complexes in the pores of a metal-organic framework (MOF) might offer a unique strategy to further explore the parameters of nanomaterial structure and composition, which influence relaxivity. Herein, we postsynthetically incorporate Gd(III) complexes into Zr-MOFs using solvent-assisted ligand incorporation (SALI). Through the study of Zr-based MOFs, NU-1000 (nano and micronsize particles) and NU-901, we investigated the impact of particle size and pore shape on proton relaxivity. The SALI-functionalized Gd nano NU-1000 hybrid material displayed the highest loading of the Gd(III) complex (1.9 ± 0.1 complexes per node) and exhibited the most enhanced proton relaxivity (r1 of 26 ± 1 mM-1 s-1 at 1.4 T). Based on nuclear magnetic relaxation dispersion (NMRD) analysis, we can attribute the performance of Gd nano NU-1000 to the nanoscale size of the MOF particles and larger pore size that allows for rapid water exchange. We have demonstrated that SALI is a promising method for incorporating Gd(III) complexes into MOF materials and identified crucial design parameters for the preparation of next generation Gd(III)-functionalized MOF MRI contrast agents.
Collapse
Affiliation(s)
- Shaunna M McLeod
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Lee Robison
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alyssa Olszewski
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Riki J Drout
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Gong
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Omar K Farha
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
212
|
Pan Y, Qian Y, Zheng X, Chu SQ, Yang Y, Ding C, Wang X, Yu SH, Jiang HL. Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl Sci Rev 2020; 8:nwaa224. [PMID: 34691561 PMCID: PMC8288370 DOI: 10.1093/nsr/nwaa224] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
While the surface charge state of co-catalysts plays a critical role for boosting photocatalysis, studies on surface charge regulation via their precise structure control remain extremely rare. Herein, metal-organic framework (MOF) stabilized bimetallic Pd@Pt nanoparticles, which feature adjustable Pt coordination environment and a controlled structure from core-shell to single-atom alloy (SAA), have been fabricated. Significantly, apart from the formation of a Mott-Schottky junction in a conventional way, we elucidate that Pt surface charge regulation can be alternatively achieved by changing its coordination environment and the structure of the Pd@Pt co-catalyst, where the charge between Pd and Pt is redistributed. As a result, the optimized Pd10@Pt1/MOF composite, which involves an unprecedented SAA co-catalyst, exhibits exceptionally high photocatalytic hydrogen production activity, far surpassing its corresponding counterparts.
Collapse
Affiliation(s)
- Yating Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yunyang Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Sheng-Qi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yijun Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
213
|
Sikdar N, Hazra A, Samanta D, Haldar R, Maji TK. Guest-Responsive Reversible Electron Transfer in a Crystalline Porous Framework Supported by a Dynamic Building Node. Angew Chem Int Ed Engl 2020; 59:18479-18484. [PMID: 32652809 DOI: 10.1002/anie.202008189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Indexed: 10/23/2022]
Abstract
We demonstrate a redox-active, crystalline donor-acceptor (D-A) assembly in which the electron transfer (ET) process can be reversibly switched. This ET process, induced by a guest-responsive structural transformation at room temperature, is realized in a porous, metal-organic framework (MOF), having anthracene (D)-naphthalenediimide (A) as struts. A control MOF structure obtained by a solvent-assisted linker exchange (SALE) method, replacing an acceptor strut with a neutral one, supported the switchable electronic states in the D-A MOF. Combined investigations with X-ray diffraction, spectroscopy, and theoretical analyses revealed the dynamic metal paddle-wheel node as a critical unit for controlling structural flexibility and the corresponding unprecedented ET process.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ritesh Haldar
- New Chemistry Unit, School of Advanced Materials (SAMat), Bangalore, 560064, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,New Chemistry Unit, School of Advanced Materials (SAMat), Bangalore, 560064, India
| |
Collapse
|
214
|
Qian X, Deng S, Chen X, Gao Q, Hou YL, Wang A, Chen L. A highly stable, luminescent and layered zinc(II)-MOF: Iron(III)/copper(II) dual sensing and guest-assisted exfoliation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
215
|
Brandt AJ, Shakya DM, Metavarayuth K, Dolgopolova E, Hensley L, Duke AS, Farzandh S, Stefik M, Shustova NB, Chen DA. Growth of Crystalline Bimetallic Metal-Organic Framework Films via Transmetalation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9900-9908. [PMID: 32667804 DOI: 10.1021/acs.langmuir.0c01535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline films of the Cu3(BTC)2 (BTC3- = 1,3,5-benzenetricarboxylate) metal-organic framework (MOF) have been grown by dip-coating an alumina/Si(111) substrate in solutions of Cu(II) acetate and the organic linker H3BTC. Atomic force microscopy (AFM) experiments demonstrate that the substrate is completely covered by the MOF film, while grazing incidence wide-angle X-ray scattering (GIWAXS) establishes the crystallinity of the films. Forty cycles of dip-coating results in a film that is ∼70 nm thick with a root mean squared roughness of 25 nm and crystallites ranging from 50-160 nm in height. Co2+ ions were exchanged into the MOF framework by immersing the Cu3(BTC)2 films in solutions of CoCl2. By varying the temperature and exchange times, different concentrations of Co were incorporated into the films, as determined by X-ray photoelectron spectroscopy experiments. AFM studies showed that morphologies of the bimetallic films were largely unchanged after transmetalation, and GIWAXS indicated that the bimetallic films retained their crystallinity.
Collapse
Affiliation(s)
- Amy J Brandt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Deependra M Shakya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ekaterina Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lauren Hensley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Audrey S Duke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sharfa Farzandh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Donna A Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
216
|
Jin M, Li Y, Gu C, Liu X, Sun L. Tailoring microenvironment of adsorbents to achieve excellent
CO
2
uptakes from wet gases. AIChE J 2020. [DOI: 10.1002/aic.16645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng‐Meng Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yu‐Xia Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Chen Gu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Xiao‐Qin Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Lin‐Bing Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
217
|
Zhou G, Wang B, Cao R. Acid Catalysis in Confined Channels of Metal–Organic Frameworks: Boosting Orthoformate Hydrolysis in Basic Solutions. J Am Chem Soc 2020; 142:14848-14853. [DOI: 10.1021/jacs.0c07257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
218
|
Xu X, Lin K, Wang Y, Xu K, Sun Y, Yang X, Yang M, He Z, Zhang Y, Zheng H, Chen X. A metal-organic framework based inner ear delivery system for the treatment of noise-induced hearing loss. NANOSCALE 2020; 12:16359-16365. [PMID: 32725028 DOI: 10.1039/d0nr04860g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noise-induced hearing loss (NIHL) is associated with both acute and chronic noise exposure. The application of steroid hormones is the first-line treatment for NIHL. However, a high dose of steroid hormone in the body is necessary to maintain its efficacy and causes side effects, such as headache and osteoporosis. In this work, we prepared a zeolitic imidazolate framework (ZIF)-based system for steroid hormone delivery in the inner ear. Methylprednisolone (MP), a typical steroid hormone, was encapsulated into ZIF-90 nanoparticles (NPs) using one-pot synthesis method. The obtained MP@ZIF-90 NPs are negatively charged and 120 nm in size and showed good biocompatibility and stability at a pH value of 7.4. After intraperitoneal injection, ZIF-90 could efficiently protect drugs during peripheral blood circulation, enter the inner ear via the blood labyrinthine barrier (BLB) and slowly release the drugs. Auditory brainstem response (ABR) tests indicated that MP@ZIF-90 exhibits better protection of mice from noise than those using the free MP and ZIF-8 with encapsulated MP (MP@ZIF-8). More importantly, MP@ZIF-90 showed no defects to the inner ear after being treated for noise and low nephrotoxicity during therapy, which demonstrates the biocompatibility of this material. We believe the ZIF-90 based delivery system is an efficient strategy for inner ear therapy of NIHL.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Goetjen TA, Liu J, Wu Y, Sui J, Zhang X, Hupp JT, Farha OK. Metal-organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem Commun (Camb) 2020; 56:10409-10418. [PMID: 32745156 DOI: 10.1039/d0cc03790g] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic polymers are ubiquitous across both the industrial and consumer segments of the world economy. Catalysts enable rapid, efficient, selective, and even stereoselective, formation of desired polymers from any of a host of candidate monomers. While numerous molecular catalysts have been shown to be effective for these reactions, separation of the catalysts from reaction products is typically difficult - a potentially problematic complication that suggests instead the use of heterogeneous catalysts. Many of the most effective heterogeneous catalysts, however, comprise supported collections of reaction centres that are decidedly nonuniform in their composition, siting, and activity. Nonuniformity complicates atomic-scale evaluation of the basis for catalytic activity and thus impedes scientific hypothesis-driven understanding and development of superior catalysts. In view of the fundamental desirability of structural and chemical uniformity at the meso, nano, and even atomic scale, crystallographically well-defined, high-porosity metal-organic frameworks (MOFs) have attracted attention as model catalysts and/or catalyst-supports for a wide variety of chemical transformations. In the realm of synthetic polymers, catalyst-functionalized MOFs have been studied for reactions ranging from coordination-mediated polymerization of ethylene to visible-light initiated radical polymerizations. Nevertheless, many polymerization reactions remain to be explored - and, no doubt, will be explored, given the remarkable structural and compositional diversity of attainable MOFs. Noteworthy emerging studies include work directed toward more sophisticated catalytic schemes such as polymer templating using MOF pore architectures and tandem copolymerizations using MOF-supported reaction centres. Finally, it is appropriate to recognize that MOFs themselves are synthetic polymers - albeit, uncoventional ones.
Collapse
Affiliation(s)
- Timothy A Goetjen
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | |
Collapse
|
220
|
Yang DD, Lu LP, Zhu ML. A new family of lanthanide coordination polymers based on 3,3'-[(5-carboxylato-1,3-phenylene)bis(oxy)]dibenzoate: synthesis, crystal structures and magnetic and luminescence properties. Acta Crystallogr C Struct Chem 2020; 76:763-770. [PMID: 32756039 DOI: 10.1107/s2053229620009547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
Six two-dimensional (2D) coordination polymers (CPs), namely, poly[{μ5-3,3-[(5-carboxylato-1,3-phenylene)bis(oxy)]dibenzoato-κ6O1:O1':O3,O3':O5:O5'}bis(N,N-dimethylformamide-κO)lanthanide(III)], [Ln(C21H11O8)(C3H7NO)2]n, with lanthanide/Ln = cerium/Ce for CP1, praseodymium/Pr for CP2, neodymium/Nd for CP3, samarium/Sm for CP4, europium/Eu for CP5 and gadolinium/Gd for CP6, have been prepared by solvothermal methods using the ligand 3,3'-[(5-carboxy-1,3-phenylene)bis(oxy)]dibenzoic acid (H3cpboda) in the presence of Ln(NO3)3. The complexes were characterized by single-crystal X-ray and powder diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis (TGA). All the structures of this family of lanthanide CPs are isomorphous with the triclinic space group P-1 and reveal that they have the same 2D network based on binuclear LnIII units, which are further extended via interlayer C-H...π interactions into a three-dimensional supramolecular structure. The carboxylate groups of the cpboda3- ligands link adjacent LnIII ions and form binuclear [Ln2(RCOO)4] secondary building units (SBUs), in which each binuclear LnIII SBU contains four carboxylate groups from different cpboda3- ligands. Moreover, with the increase of the rare-earth Ln atomic radius, the dihedral angles between the aromatic rings gradually increase. Magnetically, CP6 shows weak antiferromagnetic coupling between the GdIII ions. The solid-state luminescence properties of CP2, CP5 and CP6 were examined at ambient temperature and CP5 exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.53, 0.31), with luminescence quantum yields of 22%. Therefore, CP5 should be regarded as a potential optical material.
Collapse
Affiliation(s)
- Dong Dong Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Li Ping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Miao Li Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
221
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
222
|
Halter DP, Klein RA, Boreen MA, Trump BA, Brown CM, Long JR. Self-adjusting binding pockets enhance H 2 and CH 4 adsorption in a uranium-based metal-organic framework. Chem Sci 2020; 11:6709-6716. [PMID: 32953032 PMCID: PMC7473405 DOI: 10.1039/d0sc02394a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
A new, air-stable, permanently porous uranium(iv) metal-organic framework U(bdc)2 (1, bdc2- = 1,4-benzenedicarboxylate) was synthesized and its H2 and CH4 adsorption properties were investigated. Low temperature adsorption isotherms confirm strong adsorption of both gases in the framework at low pressures. In situ gas-dosed neutron diffraction experiments with different D2 loadings revealed a rare example of cooperative framework contraction (ΔV = -7.8%), triggered by D2 adsorption at low pressures. This deformation creates two optimized binding pockets for hydrogen (Q st = -8.6 kJ mol-1) per pore, in agreement with H2 adsorption data. Analogous experiments with CD4 (Q st = -24.8 kJ mol-1) and N,N-dimethylformamide as guests revealed that the binding pockets in 1 adjust by selective framework contractions that are unique for each adsorbent, augmenting individual host-guest interactions. Our results suggest that the strategic combination of binding pockets and structural flexibility in metal-organic frameworks holds great potential for the development of new adsorbents with an enhanced substrate affinity.
Collapse
Affiliation(s)
- Dominik P Halter
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Ryan A Klein
- Chemistry and Nanoscience Department , National Renewable Energy Laboratory , Golden , CO 80401 , USA
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA
| | - Michael A Boreen
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Benjamin A Trump
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA
| | - Craig M Brown
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA
- Department of Chemical Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Jeffrey R Long
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , CA 94720 , USA
| |
Collapse
|
223
|
He T, Huang Z, Yuan S, Lv XL, Kong XJ, Zou X, Zhou HC, Li JR. Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal–Organic Framework. J Am Chem Soc 2020; 142:13491-13499. [DOI: 10.1021/jacs.0c05074] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tao He
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiu-Liang Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, PR China
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
224
|
Drout RJ, Kato S, Chen H, Son FA, Otake KI, Islamoglu T, Snurr RQ, Farha OK. Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. J Am Chem Soc 2020; 142:12357-12366. [DOI: 10.1021/jacs.0c04668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Riki J. Drout
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Satoshi Kato
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-ichi Otake
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
225
|
Chen D, Yang W, Jiao L, Li L, Yu SH, Jiang HL. Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000041. [PMID: 32529707 DOI: 10.1002/adma.202000041] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Indexed: 05/22/2023]
Abstract
The chemical environment of metal nanoparticles (NPs) possesses significant influence on their catalytic performance yet is far from being well understood. Herein, tiny Pd NPs are encapsulated into the pore space of metal-organic frameworks (MOFs), UiO-66-X (X = H, OMe, NH2 , 2OH, 2OH(Hf)), affording Pd@UiO-66-X composites. The surface microenvironment of the Pd NPs is readily modulated by pore wall engineering, via the functional group and metal substitution in the MOFs. Consequently, the catalytic activity of Pd@UiO-66-X follows the order of Pd@UiO-66-OH > Pd@UiO-66-2OH(Hf) > Pd@UiO-66-NH2 > Pd@UiO-66-OMe > Pd@UiO-66-H toward the hydrogenation of benzoic acid. It is found that the activity difference is not only ascribed to the distinct charge transfer between Pd and the MOF, but is also explained by the discriminated substrate adsorption energy of Pd@UiO-66-X (-OH < -2OH(Hf) < -NH2 < -OMe < -H), based on CO-diffuse reflectance infrared Fourier transform spectra and density-functional theory (DFT) calculations. The Pd@UiO-66-OH, featuring a high Pd electronic state and moderate adsorption energy, displays the highest activity. This work highlights the influence of the surface microenvironment of guest metal NPs, the catalytic activity of which is dominated by electron transfer and the adsorption energy, via the systematic substitution of metal and functional groups in host MOFs.
Collapse
Affiliation(s)
- Dongxiao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P.R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Luyan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
226
|
Chang YS, Li JH, Chen YC, Ho WH, Song YD, Kung CW. Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
227
|
He X, Looker BG, Dinh KT, Stubbs AW, Chen T, Meyer RJ, Serna P, Román-Leshkov Y, Lancaster KM, Dincă M. Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02493] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benjamin G. Looker
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kimberly T. Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda W. Stubbs
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Pedro Serna
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
228
|
Kung CW, Goswami S, Hod I, Wang TC, Duan J, Farha OK, Hupp JT. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Acc Chem Res 2020; 53:1187-1195. [PMID: 32401008 DOI: 10.1021/acs.accounts.0c00106] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials characterized by inorganic nodes and multitopic organic linkers. Because of their molecular-scale porosity and periodic intraframework chemical functionality, MOFs are attractive scaffolds for supporting and/or organizing catalysts, photocatalysts, chemical-sensing elements, small enzymes, and numerous other functional-property-imparting, nanometer-scale objects. Notably, these objects can be installed after the synthesis of the MOF, eliminating the need for chemical and thermal compatibility of the objects with the synthesis milieu. Thus, postsynthetically functionalized MOFs can present three-dimensional arrays of high-density, yet well-separated, active sites. Depending on the application and corresponding morphological requirements, MOF materials can be prepared in thin-film form, pelletized form, isolated single-crystal form, polycrystalline powder form, mixed-matrix membrane form, or other forms. For certain applications, most obviously catalytic hydrolysis and electro- or photocatalytic water splitting, but also many others, an additional requirement is water stability. MOFs featuring hexa-zirconium(IV)-oxy nodes satisfy this requirement. For applications involving electrocatalysis, charge storage, photoelectrochemical energy conversion, and chemiresistive sensing, a further requirement is electrical conductivity, as embodied in electron or hole transport. As most MOFs, under most conditions, are electrically insulating, imparting controllable charge-transport behavior is both a chemically intriguing and chemically compelling challenge.Herein, we describe three strategies to render zirconium-based metal-organic frameworks (MOFs) tunably electrically conductive and, therefore, capable of transporting charge on the few nanometers (i.e., several molecular units) to few micrometers (i.e., typical dimensions for MOF microcrystallites) scale. The first strategy centers on redox-hopping between periodically arranged, chemically equivalent sites, essentially repetitive electron (or hole) self-exchange. Zirconium nodes are electrically insulating, but they can function as grafting sites for (a) redox-active inorganic clusters or (b) molecular redox couples. Alternatively, charge hopping based on linker redox properties can be exploited. Marcus's theory of electron transfer has proven useful for understanding/predicting trends in redox-hopping based conductivity, most notably, in accounting for variations as great as 3000-fold depending on the direction of charge propagation through structurally anisotropic MOFs. In MOF environments, propagation of electronic charge via redox hopping is necessarily accompanied by movement of charge-compensating ions. Consequently, rates of redox hopping can depend on both the identity and concentration of ions permeating the MOF. In the context of electrocatalysis, an important goal is to transport electronic charge fast enough to match or exceed the inherent activity of MOF-based or MOF-immobilized catalysts.Bandlike electronic conductivity is the focus of an alternative strategy: one based on the introduction of molecular guests capable of forming donor-acceptor charge transfer complexes with the host framework. Theory again can be applied predictively to alter conductivity. A third strategy similarly emphasizes electronic conductivity, but it makes use of added bridges in the form of molecular oligomers or inorganic clusters that can then be linked to span the length of a MOF crystallite. For all strategies, retention of molecular-scale porosity is emphasized, as this property is key to many applications. Finally, while our focus is on Zr-MOFs, the described approaches clearly are extendable to other MOF compositions, as has already been demonstrated, in part, in studies by others.
Collapse
Affiliation(s)
- Chung-Wei Kung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of Negev, Beer-Sheva 8410501, Israel
| | - Timothy C. Wang
- NuMat Technologies, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
229
|
Mian MR, Afrin U, Fataftah MS, Idrees KB, Islamoglu T, Freedman DE, Farha OK. Control of the Porosity in Manganese Trimer-Based Metal-Organic Frameworks by Linker Functionalization. Inorg Chem 2020; 59:8444-8450. [PMID: 32463656 DOI: 10.1021/acs.inorgchem.0c00885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manganese complexes have attracted significant interest in chemical industries and academic research for their application as catalysts owing to their ability to attain a variety of oxidation states. Generally, sterically bulky ligands are required to isolate molecular homogeneous catalysts in order to prevent decomposition. Herein, we capitalize on the catalytic properties of Mn and circumvent the instability of these complexes through incorporation of Mn-atoms into porous crystalline frameworks, such as metal-organic frameworks (MOFs). MOFs are able to enhance the stability of these catalysts while also providing accessibility to the Mn sites for enhanced reactivity. We solvothermally synthesized two trinuclear Mn-based MOFs, namely [Mn3O(BDC)3(H2O)3]n (Mn-MIL-88, where H2BDC = benzene-1,4-dicarboxylic acid) and [Mn3O(BDC-Me4)3(H2O)3]n (Mn-MIL-88-Me4, where H2BDC-Me4 = 2,3,5,6-tetramethylterephthalic acid). Through comprehensive single-crystal X-ray diffraction, spectroscopic, and magnetic studies, we revealed that both MOFs are in a Mn(II/III) mixed-valence state instead of the commonly observed Mn(III) oxidation state. Furthermore, the use of a methylated linker (BDC-Me4) allowed access to permanent porosity in Mn-MIL-88-Me4, which is an analogue of the flexible MIL-88 family, yielding a catalyst for alcohol oxidation.
Collapse
Affiliation(s)
- Mohammad Rasel Mian
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Unjila Afrin
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Majed S Fataftah
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Danna E Freedman
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
230
|
Chen C, Fan Y, Cao C, Wang H, Fan Y, Jiang J, Wei Z, Maurin G, Su C. Dynamic Coordination Chemistry of Fluorinated Zr‐MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry 2020; 26:8254-8261. [DOI: 10.1002/chem.202001052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Cheng‐Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Chen‐Chen Cao
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Hai‐Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Zhang‐Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional Materials, School of ChemistrySun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 China
| |
Collapse
|
231
|
Li L, Yang W, Yang Q, Guan Q, Lu J, Yu SH, Jiang HL. Accelerating Chemo- and Regioselective Hydrogenation of Alkynes over Bimetallic Nanoparticles in a Metal–Organic Framework. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00177] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luyan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China
| | - Qihao Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiaoqiao Guan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
232
|
Jiao L, Zhang R, Wan G, Yang W, Wan X, Zhou H, Shui J, Yu SH, Jiang HL. Nanocasting SiO 2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat Commun 2020; 11:2831. [PMID: 32504040 PMCID: PMC7275045 DOI: 10.1038/s41467-020-16715-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Single-atom catalysts (SACs) have sparked broad interest recently while the low metal loading poses a big challenge for further applications. Herein, a dual protection strategy has been developed to give high-content SACs by nanocasting SiO2 into porphyrinic metal-organic frameworks (MOFs). The pyrolysis of SiO2@MOF composite affords single-atom Fe implanted N-doped porous carbon (FeSA-N-C) with high Fe loading (3.46 wt%). The spatial isolation of Fe atoms centered in porphyrin linkers of MOF sets the first protective barrier to inhibit the Fe agglomeration during pyrolysis. The SiO2 in MOF provides additional protection by creating thermally stable FeN4/SiO2 interfaces. Thanks to the high-density FeSA sites, FeSA-N-C demonstrates excellent oxygen reduction performance in both alkaline and acidic medias. Meanwhile, FeSA-N-C also exhibits encouraging performance in proton exchange membrane fuel cell, demonstrating great potential for practical application. More far-reaching, this work grants a general synthetic methodology toward high-content SACs (such as FeSA, CoSA, NiSA).
Collapse
Affiliation(s)
- Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Rui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Gang Wan
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
233
|
Singh A, Karmakar S, Abraham IM, Rambabu D, Dave D, Manjithaya R, Maji TK. Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorg Chem 2020; 59:8251-8258. [PMID: 32490672 DOI: 10.1021/acs.inorgchem.0c00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we demonstrate mimicking of photophysical properties of native green fluorescent protein (gfp) by immobilizing the gfp chromophore analogues in nanoscale MOF-808 and further exploring the bioimaging applications. The two virtually nonfluorescent gfp chromophore analogues carrying different functionalities, BDI-AE (COOH/COOMe) and BDI-EE (COOMe/COOMe) were immobilized in nanosized MOF-808 via postsynthetic modification. An 1H NMR and IR study confirms that BDI-AE was coordinated in NMOF-808, whereas BDI-EE was just noncovalently encapsulated. Interestingly, the extremely weakly fluorescent monomers BDI-AE and BDI-EE (QY = 0.01-0.03%, lifetime = 0.01-0.03 ns) showed a 102-fold increase in quantum efficiency with a significantly longer excited-state lifetime (QY = 1.8-5.6%, lifetime 0.89-1.49 ns) after immobilization in the NMOF-808 scaffold. Moreover, BDI-AE@MOF-808 has 4 times higher quantum efficiency as well as longer excited-state lifetime in comparison to BDI-EE@NMOF-808 due to the rigidity imposed in the chromophore upon coordination with Zr4+ in the former case. Further, a cell viability test performed for BDI-AE@NMOF-808 in HeLa cells confirmed the nontoxic nature of the material and, more importantly, bioimaging applications have also been explored successfully.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Irine Maria Abraham
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dhwanit Dave
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ravi Manjithaya
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
234
|
Ji H, Naveen K, Lee W, Kim TS, Kim D, Cho DH. Pyridinium-Functionalized Ionic Metal-Organic Frameworks Designed as Bifunctional Catalysts for CO 2 Fixation into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24868-24876. [PMID: 32394698 DOI: 10.1021/acsami.0c05912] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic metal-organic frameworks (MOFs) offer a new platform to design and construct complete heterogeneous bifunctional catalytic systems for the chemical fixation of CO2 with epoxides. Herein, we developed a series of bifunctional pyridinium ionic MOF heterogeneous catalysts (66Pym-RXs and 67BPym-MeI) by the postsynthetic N-alkylation of noncoordinated pyridine sites in porous MOFs. The synergetic catalytic effect of acidic sites with nucleophilic anions in the ionic MOF significantly enhanced the catalytic activity toward the cycloaddition of CO2 with epoxides to produce cyclic carbonates under cocatalyst-free and solvent-free mild conditions. The catalytic activity of ionic MOFs is easily tuned by the introduction of different alkyl groups into pyridinium cations and halide ions. The 66Pym-iPrI catalyst displayed the highest catalytic performance in terms of the turnover number value for the synthesis of cyclic carbonates. The proposed alternative method provides the means of developing functional N-heterocyclic groups for the new design of bifunctional ionic MOFs as potential heterogeneous catalysts for CO2 fixation applications.
Collapse
Affiliation(s)
- Hoon Ji
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, 45, Jongga-ro, Jung-gu, Ulsan 44412, Republic of Korea
| | - Kanagaraj Naveen
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, 45, Jongga-ro, Jung-gu, Ulsan 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, 45, Jongga-ro, Jung-gu, Ulsan 44412, Republic of Korea
| | - Tea Soon Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, 45, Jongga-ro, Jung-gu, Ulsan 44412, Republic of Korea
| | - Dongwoo Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, 45, Jongga-ro, Jung-gu, Ulsan 44412, Republic of Korea
| | - Deug-Hee Cho
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, 45, Jongga-ro, Jung-gu, Ulsan 44412, Republic of Korea
| |
Collapse
|
235
|
Huang H, Shen K, Chen F, Li Y. Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01459] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Haigen Huang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Kui Shen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Fengfeng Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
236
|
Hastings AM, Ray D, Jeong W, Gagliardi L, Farha OK, Hixon AE. Advancement of Actinide Metal-Organic Framework Chemistry via Synthesis of Pu-UiO-66. J Am Chem Soc 2020; 142:9363-9371. [PMID: 32337982 DOI: 10.1021/jacs.0c01895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis and characterization of the first plutonium metal-organic framework (MOF). Pu-UiO-66 expands the established UiO-66 series, which includes transition metal, lanthanide, and early actinide elements in the hexanuclear nodes. The thermal stability and porosity of Pu-UiO-66 were experimentally determined, and multifaceted computational methods were used to corroborate experimental values, examine inherent defects in the framework, decipher spectroscopic signatures, and elucidate the electronic structure. The crystallization of a plutonium chain side product provides direct evidence of the competition that occurs between modulator and linker in MOF syntheses. Ultimately, the synthesis of Pu-UiO-66 demonstrates adept control of Pu(IV) coordination under hydrolysis-prone conditions, provides an opportunity to extend trends across isostructural UiO-66 frameworks, and serves as the foundation for future plutonium MOF chemistry.
Collapse
Affiliation(s)
- Ashley M Hastings
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 301 Stinson-Remick, Notre Dame, Indiana 46556, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - WooSeok Jeong
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amy E Hixon
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 301 Stinson-Remick, Notre Dame, Indiana 46556, United States
| |
Collapse
|
237
|
Yin H, Cay-Durgun P, Lai T, Zhu G, Engebretson K, Setiadji R, Green MD, Lind ML. Effect of ZIF-71 ligand-exchange surface modification on biofuel recovery through pervaporation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
238
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
239
|
Sun Q, Aguila B, Song Y, Ma S. Tailored Porous Organic Polymers for Task-Specific Water Purification. Acc Chem Res 2020; 53:812-821. [PMID: 32281372 DOI: 10.1021/acs.accounts.0c00007] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Industrial Revolution has resulted in social and economic improvements, but unfortunately, with the development of manufacturing and mining, water sources have been pervaded with contaminants, putting Earth's freshwater supply in peril. Therefore, the segregation of pollutants-such as radionuclides, heavy metals, and oil spills-from water streams, has become a pertinent problem. Attempts have been made to extract these pollutants through chemical precipitation, sorbents, and membranes. The limitations of the current remediation methods, including the generation of a considerable volume of chemical sludge as well as low uptake capacity and/or selectivity, actuate the need for materials innovation. These insufficiencies have provoked our interest in the exploration of porous organic polymers (POPs) for water treatment. This category of porous material has been at the forefront of materials research due to its modular nature, i.e., its tunable functionality and tailorable porosity. Compared to other materials, the practicality of POPs comes from their purely organic composition, which lends to their stability and ease of synthesis. The potential of using POPs as a design platform for solid extractors is closely associated with the ease with which their pore space can be functionalized with high densities of strong adsorption sites, resulting in a material that retains its robustness while providing specified interactions depending on the contaminant of choice.POPs raise opportunities to improve current or enable new technologies to achieve safer water. In this Account, we describe some of our efforts toward the exploitation of the unique properties of POPs for improving water purification by answering key questions and proposing research opportunities. The design strategies and principles involved for functionalizing POPs include the following: increasing the density and flexibility of the chelator to enhance their cooperation, introducing the secondary sphere modifiers to reinforce the primary binding, and enforcing the orientation of the ligands in the pore channel to increase the accessibility and cooperation of the functionalities. For each strategy, we first describe its chemical basis, followed by presenting examples that convey the underlying concepts, giving rise to functional materials that are beyond the traditional ones, as demonstrated by radionuclide sequestration, heavy metal decontamination, and oil-spill cleanup. Our endeavors to explore the applicability of POPs to deal with these high-priority contaminants are expected to impact personal consumer water purifiers, industrial wastewater management systems, and nuclear waste management. In our view, more exciting will be new applications and new examples of the functionalization strategies made by creatively merging the strategies mentioned above, enabling increasingly selective binding and efficiency and ultimately promoting POPs for practical applications to enhance water security.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Briana Aguila
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yanpei Song
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
240
|
Hanna SL, Rademacher DX, Hanson DJ, Islamoglu T, Olszewski AK, Nenoff TM, Farha OK. Structural Features of Zirconium-Based Metal–Organic Frameworks Affecting Radiolytic Stability. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06820] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sylvia L. Hanna
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David X. Rademacher
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Donald J. Hanson
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alyssa K. Olszewski
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tina M. Nenoff
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Omar K. Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
241
|
Kirlikovali KO, Chen Z, Islamoglu T, Hupp JT, Farha OK. Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14702-14720. [PMID: 31951378 DOI: 10.1021/acsami.9b20154] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Organophoshorus nerve agents are among the most toxic chemicals known to humans, and because of their unfortunate recent use despite international bans, there is an urgent need to develop materials that can effectively degrade these nerve agents. Within the past decade, zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as a bioinspired class of materials capable of rapidly hydrolyzing these compounds and significantly diminishing their toxicity. Both experimental and computational insights have guided the design of Zr-MOFs, leading to the development of catalysts capable of detoxifying nerve agents and simulants, chemicals with similar functionality but lower toxicity, via hydrolysis within seconds in basic aqueous solutions. While these systems are acceptable for the elimination of stockpile weapons, translating this catalytic performance to filters incorporating Zr-MOFs that can be used in masks or protective clothing is not trivial. As such, a large area of focus recently has been targeted toward integrating these hydrolysis catalysts into protective clothing and gear while retaining the performance from solution-based catalytic systems. This Forum Article provides an overview of the development of Zr-MOFs for the catalytic hydrolysis of organophosphorus substrates, including design principles and mechanistic insights for both solution-based and textile-coated systems. Finally, we highlight the remaining challenges yet to be addressed and offer perspectives on the future directions for this field.
Collapse
|
242
|
Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev 2020; 120:8468-8535. [DOI: 10.1021/acs.chemrev.9b00685] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasiya Bavykina
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Il Son Khan
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
243
|
Young RJ, Huxley MT, Pardo E, Champness NR, Sumby CJ, Doonan CJ. Isolating reactive metal-based species in Metal-Organic Frameworks - viable strategies and opportunities. Chem Sci 2020; 11:4031-4050. [PMID: 34122871 PMCID: PMC8152792 DOI: 10.1039/d0sc00485e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023] Open
Abstract
Structural insight into reactive species can be achieved via strategies such as matrix isolation in frozen glasses, whereby species are kinetically trapped, or by confinement within the cavities of host molecules. More recently, Metal-Organic Frameworks (MOFs) have been used as molecular scaffolds to isolate reactive metal-based species within their ordered pore networks. These studies have uncovered new reactivity, allowed observation of novel metal-based complexes and clusters, and elucidated the nature of metal-centred reactions responsible for catalysis. This perspective considers strategies by which metal species can be introduced into MOFs and highlights some of the advantages and limitations of each approach. Furthermore, the growing body of work whereby reactive species can be isolated and structurally characterised within a MOF matrix will be reviewed, including discussion of salient examples and the provision of useful guidelines for the design of new systems. Novel approaches that facilitate detailed structural analysis of reactive chemical moieties are of considerable interest as the knowledge garnered underpins our understanding of reactivity and thus guides the synthesis of materials with unprecedented functionality.
Collapse
Affiliation(s)
- Rosemary J Young
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
- School of Chemistry, The University of Nottingham Nottingham UK
| | - Michael T Huxley
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Emilio Pardo
- Institute of Molecular Science, University of Valencia Valencia Spain
| | | | - Christopher J Sumby
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Christian J Doonan
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| |
Collapse
|
244
|
Islamoglu T, Chen Z, Wasson MC, Buru CT, Kirlikovali KO, Afrin U, Mian MR, Farha OK. Metal–Organic Frameworks against Toxic Chemicals. Chem Rev 2020; 120:8130-8160. [DOI: 10.1021/acs.chemrev.9b00828] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra T. Buru
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Unjila Afrin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
245
|
Zhang H, Su J, Zhao K, Chen L. Recent Advances in Metal‐Organic Frameworks and Their Derived Materials for Electrocatalytic Water Splitting. ChemElectroChem 2020. [DOI: 10.1002/celc.202000136] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heng Zhang
- School of Materials Science and EngineeringKunming University of Science and Technology Kunming, Yunnan 650093 P.R. China
- Ningbo Institute of Materials Technology & EngineeringChinese Academy of Sciences Ningbo, Zhejiang 315201 P.R. China
| | - Jianwei Su
- Ningbo Institute of Materials Technology & EngineeringChinese Academy of Sciences Ningbo, Zhejiang 315201 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Kunyu Zhao
- School of Materials Science and EngineeringKunming University of Science and Technology Kunming, Yunnan 650093 P.R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology & EngineeringChinese Academy of Sciences Ningbo, Zhejiang 315201 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
246
|
Bai Z, Liu S, Chen P, Cheng G, Wu G, Liu Y. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers. NANOTECHNOLOGY 2020; 31:125702. [PMID: 31783393 DOI: 10.1088/1361-6528/ab5d5e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) show possibilities to be potential candidates for proton exchange membranes (PEMs). However, the poor flexibility and processability of MOFs due to their crystalline nature limit their applications significantly. An efficient approach to overcome this limitation is to combine MOFs with polymers. In this work, novel lightweight and flexible Ni-MOFs/polyacrylonitrile nanofibers were fabricated by electrospinning. The nanofibers consisted of one-dimensional proton conduction channels for imidazole and show enhanced proton conductivity. A proton conductivity of 6.04 × 10-5 Scm-1 was achieved at 363 K and 90% RH. Furthermore, the proton transport dynamics of the fibers were investigated using the AC impedance technique.
Collapse
Affiliation(s)
- Zhongxiong Bai
- School of Physical Sciences, Guizhou University, Guiyang 550025, People's Republic of China
| | | | | | | | | | | |
Collapse
|
247
|
Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem Rev 2020; 120:12175-12216. [DOI: 10.1021/acs.chemrev.9b00840] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tingting Kong
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
248
|
Huang G, Yang L, Yin Q, Fang Z, Hu X, Zhang A, Jiang J, Liu T, Cao R. A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ge Huang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
| | - Li Yang
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceSchool of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institutes of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Qi Yin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
| | - Zhi‐Bin Fang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
| | - Xiao‐Jing Hu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing P. R. China
| | - An‐An Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceSchool of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Tian‐Fu Liu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing P. R. China
| | - Rong Cao
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzho Fujian 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
249
|
Halder A, Lee S, Yang B, Pellin MJ, Vajda S, Li Z, Yang Y, Farha OK, Hupp JT. Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. J Chem Phys 2020; 152:084703. [DOI: 10.1063/1.5130600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Avik Halder
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Bing Yang
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Michael J. Pellin
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Stefan Vajda
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Zhanyong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
250
|
Kalinovskyy Y, Wright AJ, Hiscock JR, Watts TD, Williams RL, Cooper NJ, Main MJ, Holder SJ, Blight BA. Swell and Destroy: A Metal-Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8634-8641. [PMID: 31990517 DOI: 10.1021/acsami.9b18478] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organophosphorus chemical warfare agents function as potent neurotoxins. Whilst the destruction of nerve agents is most readily achieved by hydrolysis, their storage and transport are hazardous and lethal in milligram doses, with any spillage resulting in fatalities. Furthermore, current decontamination and remediation measures are limited by a need for stoichiometric reagents, solvents, and buffered solutions, complicating the process for the treatment of bulk contaminants. Herein, we report a composite polymer material capable of rendering bulk VX unusable by immobilization within a porous polymer until a metal-organic framework (MOF) catalyst fully hydrolyzes the neurotoxin. This is an all-in-one capability that minimizes the use of multiple reagents, facilitated by a porous high internal phase emulsion-based polystyrene monolith housing an active zirconia MOF catalyst (MOF-808); the porous polymer absorbs and immobilizes the liquid agents, while the MOF enables hydrolysis. The dichotomous hierarchy of porous materials facilitates the containment and rapid hydrolysis of VX (>80% degradation in 8 h) in the presence of excess H2O. This composite can further enable the hydrolysis of neat VX with reliance on ambient humidity (>95% in 11 days). Potentially, 4.5 kg of the composite can absorb, immobilize, and degrade the contents of a standard chemical drum/barrel (208 L, 55 gal) of the chemical warfare agent (CWA). We believe that this composite is the first example of what will be the go-to approach for CWA immobilization and degradation in the future. Furthermore, we believe that this demonstration of a catalytically reusable absorbent sponge provides a signpost for the development of similar materials where immobilization of a substrate in a catalytically active environment is desirable.
Collapse
Affiliation(s)
- Yaroslav Kalinovskyy
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Alexander J Wright
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Jennifer R Hiscock
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Toby D Watts
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Rebecca L Williams
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ , Wiltshire, U.K
| | - Nicholas J Cooper
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ , Wiltshire, U.K
| | - Marcus J Main
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ , Wiltshire, U.K
| | - Simon J Holder
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Barry A Blight
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
- Department of Chemistry , University of New Brunswick , Fredericton , New Brunswick E3B 5A3 , Canada
| |
Collapse
|