201
|
Wang Y, Wei W, Wu SL, Ni BJ. Zerovalent Iron Effectively Enhances Medium-Chain Fatty Acids Production from Waste Activated Sludge through Improving Sludge Biodegradability and Electron Transfer Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10904-10915. [PMID: 32867479 DOI: 10.1021/acs.est.0c03029] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel zerovalent iron (ZVI) technique to simultaneously improve the production of medium-chain fatty acids (MCFAs) from waste activated sludge (WAS) and enhance WAS degradation during anaerobic WAS fermentation was proposed in this study. Experimental results showed that the production and selectivity of MCFAs were effectively promoted when ZVI was added at 1-20 g/L. The maximum MCFAs production of 15.4 g COD (Chemical Oxygen Demand)/L and MCFAs selectivity of 71.7% were both achieved at 20 g/L ZVI, being 5.3 and 4.8 times that without ZVI (2.9 g COD/L and 14.9%). Additionally, ZVI also promoted WAS degradation, which increased from 0.61 to 0.96 g COD/g VS when ZVI increased from 0 to 20 g/L. The microbial community analysis revealed that the ZVI increased the populations of key anaerobes related to hydrolysis, acidification, and chain elongation. Correspondingly, the solubilization, hydrolysis, and acidification processes of WAS were revealed to be improved by ZVI, thereby providing more substrates (short-chain fatty acids (SCFAs)) for producing MCFAs. The mechanism studies showed that ZVI declined the oxidation-reduction potential (ORP), creating a more favorable environment for the anaerobic biological processes. More importantly, ZVI with strong conductivity could act as an electron shuttle, contributing to increasing electron transfer efficiency from electron donor to acceptor. This strategy provides a new paradigm of transforming waste sludge into assets by a low-cost waste to bring significant economic benefits to sludge disposal and wastewater treatment.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Lin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
202
|
Pang H, Pan X, Li L, He J, Zheng Y, Qu F, Ma Y, Cui B, Nan J, Liu Y. An innovative alkaline protease-based pretreatment approach for enhanced short-chain fatty acids production via a short-term anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 312:123397. [PMID: 32526667 DOI: 10.1016/j.biortech.2020.123397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This study reported a novel pretreatment approach with combination of alkaline protease (AP) and pH 10 for enhancing short-chain fatty acids (SCFAs) production from waste activated sludge (WAS). Through the AP-based pretreatment, WAS flocs were disintegrated with cell lysis, leading to release of biodegradable organic matters. At the external AP dosage of 5%, SCOD of 5363.7 mg/L (SCOD/TCOD = 32.5%) was achievable after 2-h pretreatment. More than 66% of SCOD was composed of proteins and carbohydrates. Considerable SCFAs of 607 mg COD/g VSS was produced over a short-term anaerobic fermentation of 3 days, which was 5.4 times higher than that in the control. Acetic and propionic acids accounted for 74.1% of the SCFAs. The AP-based approach increased endogenous protease and α-glucosidase activities, facilitating biodegradation of dissolved organic matters and SCFAs production. Such approach is promising for WAS disposal and carbon recovery, the produced SCFAs might supply 60% of carbon gap in wastewater.
Collapse
Affiliation(s)
- Heliang Pang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lin Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Yanshi Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Baihui Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
203
|
Liu L, Zhou S, Deng Y. The 3-ketoacyl-CoA thiolase: an engineered enzyme for carbon chain elongation of chemical compounds. Appl Microbiol Biotechnol 2020; 104:8117-8129. [PMID: 32830293 DOI: 10.1007/s00253-020-10848-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 01/03/2023]
Abstract
Because of their function of catalyzing the rearrangement of the carbon chains, thiolases have attracted increasing attentions over the past decades. The 3-ketoacyl-CoA thiolase (KAT) is a member of the thiolase, which is capable of catalyzing the Claisen condensation reaction between the two acyl-CoAs, thereby achieving carbon chain elongation. In this way, diverse value-added compounds might be synthesized starting from simple small CoA thioesters. However, most KATs are hampered by low stability and poor substrate specificity, which has hindered the development of large-scale biosynthesis. In this review, the common characteristics in the three-dimensional structure of KATs from different sources are summarized. Moreover, structure-guided rational engineering is discussed as a strategy for enhancing the performance of KATs. Finally, we reviewed the metabolic engineering applications of KATs for producing various energy-storage molecules, such as n-butanol, fatty acids, dicarboxylic acids, and polyhydroxyalkanoates. KEY POINTS: • Summarize the structural characteristics and catalyzation mechanisms of KATs. • Review on the rational engineering to enhance the performance of KATs. • Discuss the applications of KATs for producing energy-storage molecules.
Collapse
Affiliation(s)
- Lixia Liu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
204
|
Raes SMT, Jourdin L, Buisman CJN, Strik DPBTB. Bioelectrochemical Chain Elongation of Short‐Chain Fatty Acids Creates Steering Opportunities for Selective Formation ofn‐Butyrate,n‐Valerate orn‐Caproate. ChemistrySelect 2020. [DOI: 10.1002/slct.202002001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sanne M. T. Raes
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Ludovic Jourdin
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Cees J. N. Buisman
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - David P. B. T. B. Strik
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
205
|
Duber A, Zagrodnik R, Chwialkowska J, Juzwa W, Oleskowicz-Popiel P. Evaluation of the feed composition for an effective medium chain carboxylic acid production in an open culture fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138814. [PMID: 32361117 DOI: 10.1016/j.scitotenv.2020.138814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to investigate the effect of substrate composition on chain elongation pathways and on shaping reactor microbiome during open culture fermentation (OCF). The process was performed in a continuous mode in an upflow anaerobic sludge blanket (UASB) reactor fed with either fresh acid whey (AW) or AW at controlled stage of prefermentation (with controlled content of electron donors). Dosing AW with an increasing ethanol loading rate led to ethanol oxidation and short chain carboxylic acids (SCCAs) generation. Change of the feedstock composition (higher lactate and lactose content and ethanol cut off) shifted the process outcome towards medium chain carboxylic acids (MCCAs) production, with caproate as the main product. The MCCAs production rate has grown from 0.7 ± 0 to 4.12 ± 1 g/L/day (38.3 ± 5 to 212.6 ± 60 mmol C/L/day) and reached specificity of 48 ± 18% mol C. The differentiation between microbiome samples confirmed the reactor microbiome shaped according to the feed composition. The only known caproic acid producers were represented by Caproiciproducens ssp., that reached a relative OTU abundance between 3 and 7%. The developed method enables to substitute the use of fossil resources with products from the OCF of waste and wastewater. Thus, it contributes to reduce the carbon footprint and enhance the sustainability of the chemical industry.
Collapse
Affiliation(s)
- Anna Duber
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Roman Zagrodnik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Joanna Chwialkowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
206
|
Zhang W, Yin F, Dong H, Cao Q, Wang S, Xu J, Zhu Z. Bioconversion of swine manure into high-value products of medium chain fatty acids. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:478-487. [PMID: 32615515 DOI: 10.1016/j.wasman.2020.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
This research proposes and demonstrates, for the first time, the utilization of swine manure as a complex feedstock to produce high-value medium chain fatty acids (MCFA). The two-stage anaerobic digestion (AD) carboxylates platform was adopted for the conversion of swine manure to short chain fatty acids (SCFAs) and then SCFAs to MCFA (n-caproate, n-heptanoate, and n-caprylate) with ethanol supplementation. We defined the appropriate initial pH of 10.0 for SCFAs production with a carbon conversion rate of 71.2%, and acetate, propionate were the main products, which accounted for around 72.9% of the total SCFAs in the primary stage (I). Through the addition of ethanol, 61.3% of the converted carbon in the complex SCFAs solution was converted into MCFA (C6-C8) in the chain elongation stage (II), while only 6.7% was attributed to methane formation. The concentrations of n-caproate, n-heptanoate, and n-caprylate reached 8.6 g COD/L (3.9 g/L), 6.4 g COD/L (2.7 g/L), and 2.6 g COD/L (1.07 g/L), respectively. This study achieved a relatively higher concentration of n-heptanoate compared with past studies of MCFA from other feedstock. These findings demonstrated a new route for resource recovery and the operating parameters for producing MCFA from swine manure.
Collapse
Affiliation(s)
- Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China.
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Jiajie Xu
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
207
|
Owusu-Agyeman I, Plaza E, Cetecioglu Z. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 112:30-39. [PMID: 32497899 DOI: 10.1016/j.wasman.2020.05.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Volatile fatty acids (VFAs) are intermediates of anaerobic digestion with high value and wide range of usage. Co-digestion of sewage sludge and external organic waste (OW) for VFA production can help achieve both resource recovery and ensure sustainable and innovative waste management. In view of this, the effect of substrate proportions on VFA production from co-digestion of primary sewage sludge and OW is studied. Long-term operation in a semi-continuous reactor was performed to assess the resilience of such a system and the VFA-rich effluent was tested for its ability to be used as carbon source for denitrification. Co-digestion was initially carried out in batch reactors with OW proportion of 0%, 25%, 50%, 75%, 100% in terms of COD and scaled up in a semi-continuous reactor operation with 50% OW. In the short-term operation in the batch mode, acetic acid dominated, however, increasing OW fraction resulted in increased valeric and caproic acid production. Moreover, in the long-term semi-continuous operation, caproic acid dominated, accounting for ≈55% of VFAs. The VFA-rich effluent from the semi-continuous reactor achieved the highest denitrification rate as a carbon source when compared with acetic acid and methanol. The results demonstrate that co-fermentation can increase VFA yield and shift products from acetic acid to caproic acid in long-term operation and the VFAs can be used within wastewater treatment plants to close the loop.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
208
|
Flaiz M, Baur T, Brahner S, Poehlein A, Daniel R, Bengelsdorf FR. Caproicibacter fermentans gen. nov., sp. nov., a new caproate-producing bacterium and emended description of the genus Caproiciproducens. Int J Syst Evol Microbiol 2020; 70:4269-4279. [DOI: 10.1099/ijsem.0.004283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic bacterial strain designated EA1T was isolated from an enrichment culture inoculated with biogas reactor content. Cells of strain EA1T are spore-forming rods (1–3×0.4–0.8 µm) and stain Gram-negative, albeit they possess a Gram-positive type of cell-wall ultrastructure. Growth of strain EA1T was observed at 30 and 37 °C and within a pH range of pH 5–9. The major components recovered in the fatty acid fraction were C14:0, C16:0, C16:0 DMA (dimethyl acetal) and C16:1
ω7c. Strain EA1T fermented several mono- and disaccharides. Metabolic end products from fructose were acetate, butyrate, caproate and lactate. Furthermore, ethanol, CO2 and H2 were identified as products. The genome consists of a chromosome (3.9 Mbp) with 3797 predicted protein-encoding genes and a G+C content of 51.25 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EA1T represents a novel taxon within the family
Oscillospiraceae
. The most closely related type strains of EA1T, based on 16S rRNA gene sequence identity, are
Caproiciproducens galactitolivorans
BS-1T (94.9 %), [
Clostridium
] leptum DSM 753T (93.8 %), [
Clostridium
] sporosphaeroides DSM 1294T (91.7 %) and
Ruminococcus bromii
ATCC 27255T (91.0 %). Further phenotypic characteristics of strain EA1T differentiate it from related, validly described bacterial species. Strain EA1T represents a novel genus and novel species within the family
Oscillospiraceae
. The proposed name is Caproicibacter fermentans gen. nov., sp. nov. The type strain is EA1T (DSM 107079T=JCM 33110T).
Collapse
Affiliation(s)
- Maximilian Flaiz
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tina Baur
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Brahner
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Frank R. Bengelsdorf
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
209
|
Chatzipanagiotou K, Jourdin L, Buisman CJN, Strik DPBTB, Bitter JH. CO
2
Conversion by Combining a Copper Electrocatalyst and Wild‐type Microorganisms. ChemCatChem 2020. [DOI: 10.1002/cctc.202000678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Konstantina‐Roxani Chatzipanagiotou
- Biobased Chemistry and Technology Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
- Environmental Technology Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Ludovic Jourdin
- Environmental Technology Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Cees J. N. Buisman
- Environmental Technology Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - David P. B. T. B. Strik
- Environmental Technology Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Johannes H. Bitter
- Biobased Chemistry and Technology Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
210
|
Wang Q, Zhang P, Bao S, Liang J, Wu Y, Chen N, Wang S, Cai Y. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor. BIORESOURCE TECHNOLOGY 2020; 306:123188. [PMID: 32199398 DOI: 10.1016/j.biortech.2020.123188] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
This work studied the effect of total solid (TS) of sewage sludge on VFA production and composition in anaerobic fermentation. Results revealed that VFA concentration reached the highest of 10.16 g/L and the ratio of acetic acid, propionic acid and n-butyric acid was 5:2:2 with the 8% TS sewage sludge. In subsequent chain elongation with sludge fermentation liquid, n-caproic acid concentration reached 43.45 mmol/L. The microbial community analysis indicated that relative abundance of Clostridium_sensu_stricto_12 for n-caproic acid production was high (52.41%). The chain elongation with sludge fermentation liquid had more pathways to produce n-caproic acid, and the chain elongation reactions were thermodynamically possible. The mixed VFAs and high concentration of n-butyric acid benefitted n-caproic acid production. Carbon balance revealed that the VFA composition of sludge fermentation liquid was beneficial to the chain elongation. This study will contribute to wasted sludge minimization and high-value material production.
Collapse
Affiliation(s)
- Qingyan Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| | - Shuai Bao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jinsong Liang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Wu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Na Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
211
|
de Sousa e Silva A, Sales Morais NW, Maciel Holanda Coelho M, Lopes Pereira E, Bezerra dos Santos A. Potentialities of biotechnological recovery of methane, hydrogen and carboxylic acids from agro-industrial wastewaters. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
212
|
Zagrodnik R, Duber A, Łężyk M, Oleskowicz-Popiel P. Enrichment Versus Bioaugmentation-Microbiological Production of Caproate from Mixed Carbon Sources by Mixed Bacterial Culture and Clostridium kluyveri. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5864-5873. [PMID: 32267683 PMCID: PMC7588035 DOI: 10.1021/acs.est.9b07651] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Chain elongation is a process that produces medium chain fatty acids such as caproic acid, which is one of the promising products of the carboxylate platform. This study analyzed the impact of bioaugmentation of heat-treated anaerobic digester sludge with Clostridium kluyveri (AS + Ck) on caproic acid production from a mixed substrate (lactose, lactate, acetate, and ethanol). It was compared with processes initiated with non-augmented heat-treated anaerobic digester sludge (AS) and mono-culture of C. kluyveri (Ck). Moreover, stability of the chain elongation process was evaluated by performing repeated batch experiments. All bacterial cultures demonstrated efficient caproate production in the first batch cycle. After 18 days, caproate concentration reached 9.06 ± 0.43, 7.86 ± 0.38, and 7.67 ± 0.37 g/L for AS, Ck, and AS + Ck cultures, respectively. In the second cycle, AS microbiome was enriched toward caproate production and showed the highest caproate concentration of 11.44 ± 0.47 g/L. On the other hand, bioaugmented culture showed the lowest caproate production in the second cycle (4.10 ± 0.30 g/L). Microbiome analysis in both AS and AS + Ck culture samples indicated strong enrichment toward the anaerobic order of Clostridia. Strains belonging to genera Sporanaerobacter, Paraclostridium, Haloimpatiens, Clostridium, and Bacillus were dominating in the bioreactors.
Collapse
Affiliation(s)
- Roman Zagrodnik
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznan, Poland
| | - Anna Duber
- Water
Supply and Bioeconomy Division, Faculty of Environmental Engineering
and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Water
Supply and Bioeconomy Division, Faculty of Environmental Engineering
and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water
Supply and Bioeconomy Division, Faculty of Environmental Engineering
and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
213
|
Coelho MMH, Morais NWS, Pereira EL, Leitão RC, dos Santos AB. Potential assessment and kinetic modeling of carboxylic acids production using dairy wastewater as substrate. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
214
|
Pan XR, Huang L, Fu XZ, Yuan YR, Liu HQ, Li WW, Yu L, Zhao QB, Zuo J, Chen L, Lam PKS. Long-term, selective production of caproate in an anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2020; 302:122865. [PMID: 32004814 DOI: 10.1016/j.biortech.2020.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Fermentative caproate production from wastewater is attractive but is currently limited by the low product purity and concentration. In this work, continuous, selective production of caproate from acetate and ethanol, the common products of wastewater anaerobic fermentation, was achieved in an anaerobic membrane bioreactor (AnMBR). The reactor was continuously operated for over 522 days without need for chemical cleaning. With an ethanol-to-acetate ratio of 3.0, the effluent caproate concentration was 2.62 g/L on average and the caproate ratio in liquid products reached 74%. Further raising the influent ethanol content slightly increased the effluent caproate level but lowered the product selectivity and resulted in microbial inhibition. The Clostridia (the major caproate-producing bacteria) and Methanobacterium species (which consume hydrogen to alleviate microbial inhibition) was significantly enriched in the acclimated sludge. Our results imply a great potential of utilizing AnMBR to recover caproate from the effluent of wastewater acidogenic fermentation process.
Collapse
Affiliation(s)
- Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Zhong Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Ru Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hou-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Paul Kwan-Sing Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
215
|
Liu C, Wang W, O-Thong S, Yang Z, Zhang S, Liu G, Luo G. Microbial insights of enhanced anaerobic conversion of syngas into volatile fatty acids by co-fermentation with carbohydrate-rich synthetic wastewater. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:53. [PMID: 32190118 PMCID: PMC7076986 DOI: 10.1186/s13068-020-01694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The co-fermentation of syngas (mainly CO, H2 and CO2) and different concentrations of carbohydrate/protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study. RESULTS It was found that co-fermentation of syngas with carbohydrate-rich synthetic wastewater could enhance the conversion efficiency of syngas and the most efficient conversion of syngas was obtained by co-fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efficiencies of CO and H2, compared to syngas alone. The protein-rich synthetic wastewater as co-substrate, however, had inhibition on syngas conversion due to the presence of high concentration of NH4 +-N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H2, was present in syngas and glucose co-fermentation system, compared to glucose solo-fermentation or syngas solo-fermentation. In addition, the known acetogen Clostridium formicoaceticum, which could utilize both carbohydrate and CO/H2 was enriched in syngas solo-fermentation and syngas with glucose co-fermentation. In addition, butyrate was detected in syngas and glucose co-fermentation system, compared to glucose solo-fermentation. The detected n-butyrate could be converted from acetate and lactate/ethanol which produced from glucose in syngas and glucose co-fermentation system supported by label-free quantitative proteomic analysis. CONCLUSIONS These results demonstrated that the co-fermentation with syngas and carbohydrate-rich wastewater could be a promising technology to increase the conversion of syngas to VFAs. In addition, the syngas and glucose co-fermentation system could change the degradation pathway of glucose in co-fermentation and produce fatty acids with longer carbon chain supported by microbial community and label-free quantitative proteomic analysis. The above results are innovative and lead to achieve effective conversion of syngas into VFAs/longer chain fatty acids, which would for sure have a great interest for the scientific and engineering community. Furthermore, the present study also used the combination of high-throughput sequencing of 16S rRNA genes, qPCR analysis and label-free quantitative proteomic analysis to provide deep insights of the co-fermentation process from the taxonomic and proteomic aspects, which should be applied for future studies relating with anaerobic fermentation.
Collapse
Affiliation(s)
- Chao Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Sompong O-Thong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
- Department of Biology, Faculty of Science, Thaksin University, Phathalung, 93110 Thailand
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| |
Collapse
|
216
|
Chen WS, Huang S, Plugge CM, Buisman CJN, Strik DPBTB. Concurrent use of methanol and ethanol for chain-elongating short chain fatty acids into caproate and isobutyrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110008. [PMID: 31929052 DOI: 10.1016/j.jenvman.2019.110008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/07/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Microbial chain elongation (MCE) is a bioprocess that could utilise a mixed-culture fermentation to valorise organic waste. MCE converting ethanol and short chain fatty acids (SCFA; derived from organic waste) to caproate has been studied extensively and implemented. Recent studies demonstrated the conversion of SCFAs and methanol or ethanol into isomerised fatty acids as novel products, which may expand the MCE application and market. Integrating caproate and isomerised fatty acid production in one reactor system is theoretically feasible given the employment of a mixed culture and may increase the economic competence of MCE; however, the feasibility of such has never been demonstrated. This study investigated the feasibility of using two electron donors, i.e. methanol and ethanol, for upgrading SCFAs into isobutyrate and caproate concurrently in MCE Results show that supplying methanol and ethanol in MCE simultaneously converted acetate and/or butyrate into caproate and isobutyrate, by a mixed-culture microbiome. The butyrate supplement stimulated the caproate production rate from 1.5 to 2.6 g/L.day and induced isobutyrate production (1.5 g/L.day). Further increasing ethanol feeding rate from 140 to 280 mmol carbon per litre per day enhanced the direct use of butyrate for caproate production, which improved the caproate production rate to 5.9 g/L.day. Overall, the integration of two electron donors, i.e. ethanol and methanol, in one chain-elongation reactor system for upgrading SCFAs was demonstrated. As such, MCE could be applied to valorise organic waste (water) streams into a wider variety of value-added biochemical.
Collapse
Affiliation(s)
- Wei-Shan Chen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Shengle Huang
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands.
| |
Collapse
|
217
|
Liu B, Kleinsteuber S, Centler F, Harms H, Sträuber H. Competition Between Butyrate Fermenters and Chain-Elongating Bacteria Limits the Efficiency of Medium-Chain Carboxylate Production. Front Microbiol 2020; 11:336. [PMID: 32210937 PMCID: PMC7067704 DOI: 10.3389/fmicb.2020.00336] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Medium-chain carboxylates such as n-caproate and n-caprylate are valuable chemicals, which can be produced from renewable feedstock by anaerobic fermentation and lactate-based microbial chain elongation. Acidogenic microbiota involved in lactate-based chain elongation and their interplay with lactic acid bacteria have not been characterized in detail yet. Here, the metabolic and community dynamics were studied in a continuous bioreactor with xylan and lactate as sole carbon sources. Four succession stages were observed during 148 days of operation. After an adaptation period of 36 days, a relatively stable period of 28 days (stage I) was reached with n-butyrate, n-caproate and n-caprylate productivities of 7.2, 8.2 and 1.8 gCOD L-1 d-1, respectively. After a transition period, the process changed to another period (stage II), during which 46% more n-butyrate, 51% less n-caproate and 67% less n-caprylate were produced. Co-occurrence networks of species based on 16S rRNA amplicon sequences and correlations with process parameters were analyzed to infer ecological interactions and potential metabolic functions. Diverse functions including hydrolysis of xylan, primary fermentation of xylose to acids (e.g., to acetate by Syntrophococcus, to n-butyrate by Lachnospiraceae, and to lactate by Lactobacillus) and chain-elongation with lactate (by Ruminiclostridium 5 and Pseudoramibacter) were inferred from the metabolic network. In stage I, the sub-network characterized by strongest positive correlations was mainly related to the production of n-caproate and n-caprylate. Lactic acid bacteria of the genus Olsenella co-occurred with potentially chain-elongating bacteria of the genus Pseudoramibacter, and their abundance was positively correlated with n-caproate and n-caprylate concentrations. A new sub-network appeared in stage II, which was mainly related to n-butyrate production and revealed a network of different lactic acid bacteria (Bifidobacterium) and potential n-butyrate producers (Clostridium sensu stricto 12). The synergy effects between lactate-producing and lactate-consuming bacteria constitute a division of labor cooperation of mutual benefit. Besides cooperation, competition between different taxa determined the bacterial community assembly over the four succession stages in this resource-limited system. During long-term reactor operation under constant conditions, chain-elongating bacteria were outcompeted by butyrate-producing bacteria, leading to the increase of n-butyrate yield at the cost of medium-chain carboxylate yields in this closed model system.
Collapse
Affiliation(s)
| | | | | | | | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
218
|
Peces M, Pozo G, Koch K, Dosta J, Astals S. Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario. BIORESOURCE TECHNOLOGY 2020; 300:122561. [PMID: 31911313 DOI: 10.1016/j.biortech.2019.122561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, co-fermentation of primary sludge (PS) or waste activated sludge (WAS) with lipids was explored to improve volatile fatty acid production. PS and WAS were used as base substrate to facilitate lipid fermentation at 20 °C under semi-aerobic conditions. Mono-fermentation tests showed higher VFA yields for PS (32-89 mgCOD gVS-1) than for WAS (20-41 mgCOD gVS-1) where propionate production was favoured. The principal component analysis showed that the base substrate had a notable influence on co-fermentation yields and profile. Co-fermentation with WAS resulted in a greater extent of oleic acid degradation (up to 4.7%) and evidence of chain elongation producing valerate. The occurrence of chain elongation suggests that co-fermentation can be engineered to favour medium-chain fatty acids without the addition of external commodity chemicals. BMP tests showed that neither mono-fermentation nor co-fermentation had an impact on downstream anaerobic digestion.
Collapse
Affiliation(s)
- Miriam Peces
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072 QLD, Australia; Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark.
| | - Guillermo Pozo
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072 QLD, Australia; Separation and Conversion Technologies, VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Astals
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072 QLD, Australia; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
219
|
Orsi WD, Schink B, Buckel W, Martin WF. Physiological limits to life in anoxic subseafloor sediment. FEMS Microbiol Rev 2020; 44:219-231. [PMID: 32065239 PMCID: PMC7269680 DOI: 10.1093/femsre/fuaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
In subseafloor sediment, microbial cell densities exponentially decrease with depth into the fermentation zone. Here, we address the classical question of 'why are cells dying faster than they are growing?' from the standpoint of physiology. The stoichiometries of fermentative ATP production and consumption in the fermentation zone place bounds on the conversion of old cell biomass into new. Most fermentable organic matter in deep subseafloor sediment is amino acids from dead cells because cells are mostly protein by weight. Conversion of carbon from fermented dead cell protein into methanogen protein via hydrogenotrophic and acetoclastic methanogenesis occurs at ratios of ∼200:1 and 100:1, respectively, while fermenters can reach conversion ratios approaching 6:1. Amino acid fermentations become thermodynamically more efficient at lower substrate and product concentrations, but the conversion of carbon from dead cell protein into fermenter protein is low because of the high energetic cost of translation. Low carbon conversion factors within subseafloor anaerobic feeding chains account for exponential declines in cellular biomass in the fermentation zone of anoxic sediments. Our analysis points to the existence of a life-death transition zone in which the last biologically catalyzed life processes are replaced with purely chemical reactions no longer coupled to life.
Collapse
Affiliation(s)
- William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - Wolfgang Buckel
- Department of Biology, Philipps-Universität, 35032 Marburg, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
220
|
Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. Sci Rep 2020; 10:3682. [PMID: 32111851 PMCID: PMC7048776 DOI: 10.1038/s41598-020-60052-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/03/2020] [Indexed: 01/13/2023] Open
Abstract
Chain elongation is a microbial process in which an electron donor, such as ethanol, is used to elongate short chain carboxylic acids, such as acetic acid, to medium chain carboxylic acids. This metabolism has been extensively investigated, but the spread and differentiation of chain elongators in the environment remains unexplored. Here, chain elongating communities were enriched from several inocula (3 anaerobic digesters, 2 animal faeces and 1 caproic acid producing environment) using ethanol and acetic acid as substrates at pH 7 and 5.5. This approach showed that (i) the inoculum’s origin determines the pH where native chain elongators can grow; (ii) pH affects caproic acid production, with average caproic acid concentrations of 6.4 ± 1.6 g·L−1 at pH 7, versus 2.3 ± 1.8 g·L−1 at pH 5.5; however (iii) pH does not affect growth rates significantly; (iv) all communities contained a close relative of the known chain elongator Clostridium kluyveri; and (v) low pH selects for communities more enriched in this Clostridium kluyveri-relative (57.6 ± 23.2% at pH 7, 96.9 ± 1.2% at pH 5.5). These observations show that ethanol-consuming chain elongators can be found in several natural and engineered environments, but are not the same everywhere, emphasising the need for careful inoculum selection during process development.
Collapse
|
221
|
Liu X, Chen Q, Sun D, Wang Y, Dong H, Dang Y, Holmes DE. Applying potentials to conductive materials impairs High-loading anaerobic digestion performance by affecting direct interspecies electron transfer. BIORESOURCE TECHNOLOGY 2020; 297:122422. [PMID: 31767427 DOI: 10.1016/j.biortech.2019.122422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In order to illustrate the impact that application of positive or negative potential to conductive materials can have on direct interspecies electron transfer (DIET) and reactor performance under high organic loading rates, three continuous laboratory-scale reactors with carbon-cloth electrodes poised at +0.7 V, -0.7 V (vs. Ag/AgCl) and no-potential were fed high concentrations of ethanol wastewater. While exoelectrogens and methanogens that are capable of DIET were significantly enriched in poised reactors, they performed worse than the non-current control. Volatile fatty acids (VFAs) accumulated more rapidly in the positively then negatively poised reactor, but neither could withstand high-loading rates. These results demonstrate that applying potential to conductive materials had a negative effect on anaerobic digestion under high-loading conditions.
Collapse
Affiliation(s)
- Xinying Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Qian Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yumingzi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - He Dong
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States
| |
Collapse
|
222
|
Contreras-Dávila CA, Carrión VJ, Vonk VR, Buisman CNJ, Strik DPBTB. Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. WATER RESEARCH 2020; 169:115215. [PMID: 31678751 DOI: 10.1016/j.watres.2019.115215] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The production of biochemicals from renewables through biorefinery processes is important to reduce the anthropogenic impact on the environment. Chain elongation processes based on microbiomes have been successfully developed to produce medium-chain fatty acids (MCFA) from organic waste streams. Yet, the sustainability of chain elongation can still be improved by reducing the use of electron donors and additional chemicals. This work aimed to couple lactate production and subsequent chain elongation to decrease chemicals input such as electron donors and hydroxide for pH control in repeated-batch food waste fermentation. Food waste with adjusted pH was used as substrate and fermentation proceeded without pH control. During fermentation, lactate was first formed through the homolactic pathway and then converted to fatty acids (FA), mainly n-butyrate and n-caproate. The highest n-caproate carbon selectivities (mmol C/mmol CFA) and production rates were 38% and 4.2 g COD/L-d, respectively. Hydroxide input was reduced over time to a minimum of 0.47 mol OH-/mol MCFA or 0.79 mol OH-/kg CODFA. Lactate was a key electron donor for chain elongation and its conversion was observed at pH as low as 4.3. The microbiome enriched in this work was dominated by Lactobacillus spp. and Caproiciproducens spp. The high abundance of Caproiciproducens spp. and their co-occurrence with Lactobacillus spp. suggest Caproiciproducens spp. used lactate as electron donor for chain elongation. This work shows the production of n-caproate from food waste with decreased use of hydroxide and no use of exogenous electron donors.
Collapse
Affiliation(s)
- Carlos A Contreras-Dávila
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Víctor J Carrión
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, the Netherlands; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Vincent R Vonk
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Cees N J Buisman
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
223
|
Morais NWS, Coelho MMH, Silva ADSE, Pereira EL, Leitão RC, Dos Santos AB. Kinetic modeling of anaerobic carboxylic acid production from swine wastewater. BIORESOURCE TECHNOLOGY 2020; 297:122520. [PMID: 31812597 DOI: 10.1016/j.biortech.2019.122520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to evaluate the potential of anaerobic carboxylic acids (CA) production from swine wastewater (SW), perform modeling studies of the acidogenic process and estimate the kinetic parameters. Tests were carried out in four batch reactors with 250 mL reaction volume, with brewery sludge as inoculum and using chloroform (0.05%, v/v) for methanogenesis inhibition. Hydrolysis was the main limiting step of CA production from SW, once that it took more than twenty days for the particulate COD consumption to stabilize and fourteen days to produce 60% of the acids formed. A yield of 0.33 mg mgCODA-1, corresponding to 0.40 mgCOD mgCODA-1, was obtained. Kinetic models describing logistic growth functions were best suited to simulate CA production.
Collapse
Affiliation(s)
- Naassom Wagner Sales Morais
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Amanda de Sousa E Silva
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Erlon Lopes Pereira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renato Carrhá Leitão
- Embrapa Agroindústria Tropical. Rua Dra. Sara Mesquita, 2270, Zip: 60511-110, Fortaleza, CE, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
224
|
Wu SL, Sun J, Chen X, Wei W, Song L, Dai X, Ni BJ. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations. WATER RESEARCH 2020; 169:115218. [PMID: 31677435 DOI: 10.1016/j.watres.2019.115218] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Effective sludge treatment with bioenergy production is attracting increasing interests as large quantities of waste activated sludge (WAS) are produced during the wastewater treatment. In this study, a new biotechnical process for converting the WAS alkaline fermentation liquor (WASAFL) into valuable, easy-separated medium chain fatty acids (MCFAs) through chain elongation (CE) was investigated, which may provide a new insight into sludge treatment. In the process, ethanol was served as the electron donor (EDs) and WASAFL were main electron acceptors (EAs). The MCFAs productions were investigated under three different ED to EA ratios (i.e., 1:2, 1:1 and 2:1). The result showed that MCFAs production was increased from 2.88 ± 0.01 to 5.28 ± 0.18 g COD/L with the increase of ED to EA ratio. However, the highest MCFA selectivity was achieved at 72.9% when the ED to EA ratio was 1:1. The decrease in the selectivity at high ED:EA ratio is mainly due to the production of higher alcohol (i.e., n-butanol and n-hexanol). The thermodynamic analysis confirmed all CE processes for MCFAs production from WASAFL were exothermic reactions, with the spontaneity and energy release of the reactions increased with the ethanol level. The microbial community analysis showed that the relative abundances of Clostridium, Oscillibacter, Leptolinea and Exilispira were positively correlated with the MCFAs production. The metagenomic analysis suggested that both the reverse β-oxidization pathway and fatty acid biosynthesis pathway contributed to the CE process in the studied system. The functional enzymes were mainly associated within Clostridium, with Clostridium Kluyveri, Clostridium botulinum and Clostridium magnum being likely the key species responsible for the CE process.
Collapse
Affiliation(s)
- Shu-Lin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Shenzhen Institute of Sustainable Development, Shenzhen, 518055, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
225
|
Medium-Chain Fatty Acid Synthesis by " Candidatus Weimeria bifida" gen. nov., sp. nov., and " Candidatus Pseudoramibacter fermentans" sp. nov. Appl Environ Microbiol 2020; 86:AEM.02242-19. [PMID: 31704684 PMCID: PMC6974650 DOI: 10.1128/aem.02242-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022] Open
Abstract
Chain elongation by medium-chain fatty acid (MCFA)-producing microbiomes offers an opportunity to produce valuable chemicals from organic streams that would otherwise be considered waste. However, the physiology and energetics of chain elongation are only beginning to be studied, and many of these organisms remain uncultured. We analyzed MCFA production by two uncultured organisms that were identified as the main MCFA producers in a microbial community enriched from an anaerobic digester; this characterization, which is based on meta-multi-omic analysis, complements the knowledge that has been acquired from pure-culture studies. The analysis revealed previously unreported features of the metabolism of MCFA-producing organisms. Chain elongation is emerging as a bioprocess to produce valuable medium-chain fatty acids (MCFA; 6 to 8 carbons in length) from organic waste streams by harnessing the metabolism of anaerobic microbiomes. Although our understanding of chain elongation physiology is still evolving, the reverse β-oxidation pathway has been identified as a key metabolic function to elongate the intermediate products of fermentation to MCFA. Here, we describe two uncultured chain-elongating microorganisms that were enriched in an anaerobic microbiome transforming the residues from a lignocellulosic biorefining process. Based on a multi-omic analysis, we describe “Candidatus Weimeria bifida” gen. nov., sp. nov., and “Candidatus Pseudoramibacter fermentans” sp. nov., both predicted to produce MCFA but using different substrates. The analysis of a time series metatranscriptomic data set suggests that “Ca. Weimeria bifida” is an effective xylose utilizer since both the pentose phosphate pathway and the bifid shunt are active. Furthermore, the metatranscriptomic data suggest that energy conservation during MCFA production in this organism is essential and occurs via the creation of an ion motive force using both the RNF complex and an energy-conserving hydrogenase. For “Ca. Pseudoramibacter fermentans,” predicted to produce MCFA from lactate, the metatranscriptomic analysis reveals the activity of an electron-confurcating lactate dehydrogenase, energy conservation via the RNF complex, H2 production for redox balance, and glycerol utilization. A thermodynamic analysis also suggests the possibility of glycerol being a substrate for MCFA production by “Ca. Pseudoramibacter fermentans.” In total, this work reveals unknown characteristics of MCFA production in two novel organisms. IMPORTANCE Chain elongation by medium-chain fatty acid (MCFA)-producing microbiomes offers an opportunity to produce valuable chemicals from organic streams that would otherwise be considered waste. However, the physiology and energetics of chain elongation are only beginning to be studied, and many of these organisms remain uncultured. We analyzed MCFA production by two uncultured organisms that were identified as the main MCFA producers in a microbial community enriched from an anaerobic digester; this characterization, which is based on meta-multi-omic analysis, complements the knowledge that has been acquired from pure-culture studies. The analysis revealed previously unreported features of the metabolism of MCFA-producing organisms.
Collapse
|
226
|
ter Heijne A. Bioelectrochemistry for flexible control of biological processes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 1:100011. [PMID: 36160372 PMCID: PMC9488031 DOI: 10.1016/j.ese.2020.100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/12/2023]
|
227
|
Aghapour Aktij S, Zirehpour A, Mollahosseini A, Taherzadeh MJ, Tiraferri A, Rahimpour A. Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
228
|
Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
229
|
Chen Y, Lin H, Yan W, Huang J, Wang G, Shen N. Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge. BIORESOURCE TECHNOLOGY 2019; 294:122160. [PMID: 31563112 DOI: 10.1016/j.biortech.2019.122160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, alkaline fermentation was applied to promote organics and P recovery from polyaluminum chloride (PACl)-enhanced primary sedimentation sludge. Coagulant results demonstrated that the optimum PACl dosage of 100 mg/L resulted in the effective concentration of 73% of organic matter and 90% of P from wastewater into sludge. Batch fermentation results highlighted the ability of alkaline fermentation in improving the biodegradability of PACl sludge. More specifically, at pH 11, 43.3% of soluble organics and 36.49% of P were released to the fermentation supernatant. Furthermore, P fractionation fermented sludge results revealed that partial Al-P dissolution and organic phosphorus hydrolysis were the main drivers of the released P. Finally, at pH 11, 85% of P was recovered as magnesium ammonium phosphate from the fermentation supernatant at the 2:1 Mg/P molar ratio. In conclusion, 24.9% of organics and 27.9% of P from raw wastewater were converted to valuable products via alkaline fermentation.
Collapse
Affiliation(s)
- Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hui Lin
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wang Yan
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jinjin Huang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China.
| |
Collapse
|
230
|
Paiano P, Menini M, Zeppilli M, Majone M, Villano M. Electro-fermentation and redox mediators enhance glucose conversion into butyric acid with mixed microbial cultures. Bioelectrochemistry 2019; 130:107333. [DOI: 10.1016/j.bioelechem.2019.107333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
231
|
Han W, He P, Shao L, Lü F. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review. J Environ Sci (China) 2019; 86:50-64. [PMID: 31787190 DOI: 10.1016/j.jes.2019.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals. Chain elongation (CE) for production of medium-chain carboxylic acids (MCCAs, especially caproate, enanthate and caprylate) from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society. The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production. Additionally, the microbial characteristics of the CE process are surveyed and discussed. Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed, we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission. This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste, or even non-biodegradable waste (such as, plastics and rubbers). Meanwhile, the remaining scientific questions, unsolved problems, application potential and possible developments for this technology are discussed.
Collapse
Affiliation(s)
- Wenhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Liming Shao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
232
|
Wu Q, Guo W, You S, Bao X, Luo H, Wang H, Ren N. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply. BIORESOURCE TECHNOLOGY 2019; 291:121573. [PMID: 31376665 DOI: 10.1016/j.biortech.2019.121573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 06/10/2023]
Abstract
Upgrading lactate/carbohydrate-rich waste biomass into medium-chain carboxylic acids (MCCAs) by chain elongation (CE) technology exhibits economic and environmental benefits. However, the largely dispersive lactate-carbon-flow decreases MCCAs yield. This work discovered appropriate H2 supply could significantly reduce lactate-carbon-flow loss and improve MCCAs production (∼1.65 times) when the system is not operated according to well-defined operating conditions, and revealed corresponding mechanism. Hydrogen (H2) supply largely enhanced electron efficiency and electron transfer capacity, and H2 could reduce propionate (from competing acrylate pathway, which should be prevented, but when not possible, the carbon recovery from propionate is possible) to propanol, which was used as electron donor to elongate acetate and propionate. Moreover, H2 could react with CO2 (from CE process) to sequentially generate acetate and ethanol, which further contributed to caproate/caprylate generation. Comparing with non-H2-supplemented test, the lactate-carbon-flow used for MCCAs production was enhanced by ∼28.4% after H2 supply, and Clostridium spp. were the key discriminative microorganisms.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
233
|
Fu X, Jin X, Pan C, Ye R, Wang Q, Wang H, Lu W. Enhanced butyrate production by transition metal particles during the food waste fermentation. BIORESOURCE TECHNOLOGY 2019; 291:121848. [PMID: 31377513 DOI: 10.1016/j.biortech.2019.121848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Butyrate is an important precursor for fine chemicals and biofuels. The aim of this study is to investigate butyrate production as affected by transition metal addition of food waste fermentation including, nickel, Raney nickel and copper particles. Performance of fermentation showed nickel particles achieved the highest butyrate concentration, 7.3 g/L, which was 38.5% higher than that in the control trial. Raney nickel also showed similar effect on the enhancement of butyrate production. However, increased dosage of transition metal particle addition led to decreased butyrate production. The theoretical link between metal-assisted dark fermentation and butyrate production was tentatively explored. Redox potential affected by nickel addition was assumed to be an essential factor for butyrate production. Microbial community analysis found Clostridium sensu stricto 11 may be the dominant functional species for butyrate production. The study demonstrates that development on transition metal catalyst may contribute to waste biorefinery for added value products/energy production.
Collapse
Affiliation(s)
- Xindi Fu
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xi Jin
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Chao Pan
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Rong Ye
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Qian Wang
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, 100084 Beijing, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
234
|
Syngas-aided anaerobic fermentation for medium-chain carboxylate and alcohol production: the case for microbial communities. Appl Microbiol Biotechnol 2019; 103:8689-8709. [PMID: 31612269 DOI: 10.1007/s00253-019-10086-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Syngas fermentation has been successfully implemented in commercial-scale plants and can enable the biochemical conversion of the driest fractions of biomass through synthesis gas (H2, CO2, and CO). The process relies on optimized acetogenic strains able to reach and maintain high productivity of ethanol and acetate. In parallel, microbial communities have shown to be the best choice for the production of valuable medium-chain carboxylates through anaerobic fermentation of biomass, demanding low technical complexity and being able to realize simultaneous hydrolysis of the substrate. Each of the two technologies benefits from different strong points and has different challenges to overcome. This review discusses the rationales for merging these two seemingly disparate technologies by analyzing previous studies and drawing opinions based on the lessons learned from such studies. For keeping the technical demands of the resulting process low, a case is built for using microbial communities instead of pure strains. For that to occur, a shift from conventional syngas-based to "syngas-aided" anaerobic fermentation is suggested. Strategies for tackling the intricacies of working simultaneously with communities and syngas, such as competing pathways, and thermodynamic aspects are discussed as well as the stoichiometry and economic feasibility of the concept. Overall, syngas-aided anaerobic fermentation seems to be a promising concept for the biorefinery of the future. However, the effects of process parameters on microbial interactions have to be understood in greater detail, in order to achieve and sustain feasible medium-chain carboxylate and alcohol productivity.
Collapse
|
235
|
Seib MD, Booton AJ, Scarborough MJ, Noguera DR. Evaluation of acid-phase digestion as a pretreatment to enhance co-digestion of source separated organics and municipal sewage sludges. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1257-1265. [PMID: 31850877 DOI: 10.2166/wst.2019.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work assessed if acid-phase digestion could improve volatile solids (VS) destruction and methane yield when co-digesting municipal sewage sludges (primary and waste activated sludge) and source separated organics (SSO). The SSO was made up of food waste and the organic fraction of municipal solid waste. Two laboratory-scale acid-phase digesters and three laboratory-scale methane-phase digesters were employed in order to determine the impacts of SSO co-digestion with municipal sludges both with and without acid-phase digestion as a pretreatment step. Reactors were operated at 35 °C using volatile solids loading rates of 34.2-44.1 g VS/LR-day for acid-phase digesters and 1.2-2.4 1 g VS/LR-day for methane-phase digesters. Solids retention times ranging from 1.2 to 1.5 day and 20.7 to 23.2 days were employed for acid-phase and methane-phase digesters, respectively. VS destruction ranged from 62% to 67%, with reactors receiving SSO achieving higher VS destruction. Results also show that reactors receiving SSO were able to handle organic loading increases of at least 39% without showing signs of overloading. Microbial community analysis revealed that SSO had a noticeable impact on acid-phase digestion with Megasphaera emerging as the most abundant genus.
Collapse
Affiliation(s)
- M D Seib
- Madison Metropolitan Sewerage District, Madison, WI, USA E-mail:
| | - A J Booton
- Department of Civil Engineering, University of Wisconsin, Platteville, WI, USA
| | - M J Scarborough
- Department of Civil & Environmental Engineering, University of Wisconsin, Madison, WI, USA
| | - D R Noguera
- Department of Civil & Environmental Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
236
|
Ganigué R, Naert P, Candry P, de Smedt J, Stevens CV, Rabaey K. Fruity flavors from waste: A novel process to upgrade crude glycerol to ethyl valerate. BIORESOURCE TECHNOLOGY 2019; 289:121574. [PMID: 31247530 DOI: 10.1016/j.biortech.2019.121574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Valeric acid and its ester derivatives are chemical compounds with a high industrial interest. Here we report a new approach to produce them from crude glycerol, by combining propionic acid fermentation with chain elongation. Propionic acid was produced by Propionibacterium acidipropionici (8.49 ± 1.40 g·L-1). In the subsequent mixed population chain elongation, valeric acid was the dominant product (5.3 ± 0.69 g·L-1) of the chain elongation process. Residual glycerol negatively impacted the selectivity of mixed culture chain elongation towards valeric acid, whereas this was unaffected when Clostridium kluyveri was used as bio-catalyst. Valeric acid could be selectively isolated and upgraded to ethyl valerate by using dodecane as extractant and medium for esterification, whereas shorter-chain carboxylic acids could be recovered by using a 10 wt% solution of trioctylphosphine oxide (TOPO) in dodecane. Overall, our work shows that the combined fermentation, electrochemistry and homogeneous catalysis enables fine chemical production from side streams.
Collapse
Affiliation(s)
- Ramon Ganigué
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2); CAPTURE, Belgium(3).
| | - Pieter Naert
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2); SynBioC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Candry
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2)
| | - Jonas de Smedt
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2)
| | - Christian V Stevens
- SynBioC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2); CAPTURE, Belgium(3)
| |
Collapse
|
237
|
Effect of Acid/Ethanol Ratio on Medium Chain Carboxylate Production with Different VFAs as the Electron Acceptor: Insight into Carbon Balance and Microbial Community. ENERGIES 2019. [DOI: 10.3390/en12193720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medium chain carboxylates (MCCs) are important precursors for biodiesel production. Using chain elongation to produce MCCs is an emerging bioenergy technology. In this study, batch tests were conducted to investigate fermentative MCC production through chain elongation from acetate, propionate, n-butyrate, and ethanol. The effect of the acid/ethanol ratio on MCC production by mixed culture was investigated. Better MCC production, especially n-caproate production, was achieved at optimal acid/ethanol ratios of 1:4, 1:3, and 1:2 with acetate, propionate, and n-butyrate as the electron acceptor, respectively. The n-caproate concentration was high, up to 41.54 mmol/L, and the highest n-caproate production efficiency was 57.96% with the n-butyrate/ethanol ratio of 1:2. The higher concentration of ethanol might stimulate the growth of chain elongation bacteria to promote chain elongation. The highest MCC production efficiency with different electron acceptors corresponded to less carbon loss and a higher chain elongation degree. In addition, with the optimal acid/ethanol ratio, the substrate was maximally utilized for chain elongation. The microbial community analysis confirmed the carbon balance analysis with the maximum relative abundance of 52.66–60.55% of the n-caproate producer Clostridium_sensu_stricto_12 enriched by the optimal acid/ethanol ratios with different volatile fatty acids (VFAs) as electron acceptors.
Collapse
|
238
|
Yan Y, Du Z, Zhang L, Feng L, Sun D, Dang Y, Holmes DE, Smith JA. Identification of parameters needed for optimal anaerobic co-digestion of chicken manure and corn stover. RSC Adv 2019; 9:29609-29618. [PMID: 35531503 PMCID: PMC9072019 DOI: 10.1039/c9ra05556h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
While studies have shown that anaerobic co-digestion of chicken manure (CM) and corn stover (CS) is an efficient method to treat these agricultural wastes, the microbial ecology of these systems and optimal parameters for the digestion process are yet to be determined. In this study, the effects of different initial substrate concentrations and CS : CM mixture ratios on co-digestion and microbial community structure were evaluated. Results demonstrated that both the highest cumulative methane yields and methane production rates were obtained from reactors with a CS : CM ratio of 1 : 1 during hemi-solid-state anaerobic digestion (HSS-AD). Cumulative methane yields and methane production rates were 24.8% and 42% lower in solid-state anaerobic digestion (SS-AD) reactors using the same CS : CM ratios. Analysis of microbial community structures revealed that cellulolytic bacteria and a diversity of syntrophic microorganisms capable of direct interspecies electron transfer (DIET) and hydrogen interspecies transfer (HIT) were enriched in the best-performing reactors. Methanosarcina species also dominated during HSS-AD, and their presence was positively correlated with methane production in the reactors.
Collapse
Affiliation(s)
- Yilong Yan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University 1215 Wilbraham Road Springfield Massachusetts 01119 USA
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University 1615 Stanley Street New Britain CT 06050 USA
| |
Collapse
|
239
|
An Efficient New Process for the Selective Production of Odd-Chain Carboxylic Acids by Simple Carbon Elongation Using Megasphaera hexanoica. Sci Rep 2019; 9:11999. [PMID: 31427713 PMCID: PMC6700076 DOI: 10.1038/s41598-019-48591-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/25/2019] [Indexed: 12/01/2022] Open
Abstract
The caproate-producing bacterium, Megasphaera hexanoica, metabolizes fructose to produce C2~C8 carbon-chain carboxylic acids using various electron acceptors. In particular, odd-chain carboxylic acids (OCCAs) such as valerate (C5) and heptanoate (C7), were produced at relatively high concentrations upon propionate supplementation. Using a statistical experimental design method, the optimal culture medium was established for the selective production of OCCAs among the total produced acids. In a medium containing 2.42 g L−1 sodium acetate and 18.91 g L−1 sodium propionate, M. hexanoica produced 9.48 g L−1 valerate, 2.48 g L−1 heptanoate, and 0.12 g L−1 caproate. To clarify the metabolism of the exogenous added propionate for OCCAs production, 13C tracer experiments were performed by supplementing the culture broth with [1,2,3-13C3] propionate. The metabolites analysis based on mass spectrometry showed that the propionate was only used to produce valerate and heptanoate without being participated in other metabolic pathways. Furthermore, the carbon elongation pathway in M. hexanoica was explained by the finding that the incorporation of propionate and acetate in the produced valerate occurred in only one orientation.
Collapse
|
240
|
Lin M, Dai X, Weimer PJ. Shifts in fermentation end products and bacterial community composition in long-term, sequentially transferred in vitro ruminal enrichment cultures fed switchgrass with and without ethanol as a co-substrate. BIORESOURCE TECHNOLOGY 2019; 285:121324. [PMID: 30981010 DOI: 10.1016/j.biortech.2019.121324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
In vitro ruminal fermentations resemble in vivo fermentations with respect to substrate consumption and distribution of fermentation products in short term (1-5 d) incubations. However, little is known regarding changes in in vitro fermentations over prolonged incubation or multiple transfers. Gas production, pH, fermentation products, and bacterial community composition were examined in duplicate in vitro fermentations of switchgrass plus distillers grains that were transferred at 3-4 d intervals over 900 d. Additionally, duplicate fermentations inoculated from 160 d-old enrichments into the same medium but supplemented with ethanol, and transferred at 3-4 d over a 730 d period were characterized. SWG and SWG + E fermentation showed marked differences in community composition, pH, total product concentrations and ratios, relative to each other and to the original inoculum. The results have implications for the use of ruminal inocula for industrial production of short- and medium-chain fatty acids via the carboxylate platform.
Collapse
Affiliation(s)
- Miao Lin
- Department of Animal Sciences and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Paul J Weimer
- United States Department of Agriculture, Agricultural Research Service, US Dairy Forage Research Center, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
241
|
Hegner R, Neubert K, Rosa LFM, Harnisch F. Engineering electrochemical CO
2
reduction to formate under bioprocess‐compatible conditions to bioreactor scale. ChemElectroChem 2019. [DOI: 10.1002/celc.201900526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard Hegner
- Helmholtz Center for Environmental Research GmbH - UFZDepartment of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Katharina Neubert
- Helmholtz Center for Environmental Research GmbH - UFZDepartment of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Luis F. M. Rosa
- Helmholtz Center for Environmental Research GmbH - UFZDepartment of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Falk Harnisch
- Helmholtz Center for Environmental Research GmbH - UFZDepartment of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| |
Collapse
|
242
|
de Leeuw K, Buisman CJ, Strik DP. Branched Medium Chain Fatty Acids: Iso-Caproate Formation from Iso-Butyrate Broadens the Product Spectrum for Microbial Chain Elongation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7704-7713. [PMID: 31244077 PMCID: PMC6610548 DOI: 10.1021/acs.est.8b07256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/26/2019] [Accepted: 06/04/2019] [Indexed: 05/26/2023]
Abstract
Chain elongation fermentation can be used to convert organic residues into biobased chemicals. This research aimed to develop a bioprocess for branched medium chain fatty acids (MCFAs) production. A long-term continuous reactor experiment showed that iso-caproate (4-methyl pentanoate, i-C6) can be produced via ethanol based chain elongation. The enriched microbiome formed iso-caproate from iso-butyrate at a rate of 44 ± 6 mmol C L-1 day-1 during the last phase. This amounted to 20% of all formed compounds based on carbon atoms. The main fermentation product was n-caproate (55% of all carbon), as a result of acetate and subsequent n-butyrate elongation. The microbiome preferred straight-chain elongation over branched-chain elongation. Lowering the acetate concentration in the influent led to an increase of excessive ethanol oxidation (EEO) into electron equivalents (e.g., H2) and acetate. The formed acetate in turn stimulated straight chain elongation, but the resulting lower net acetate supply rate towards straight chain elongation led to an increased selectivity towards and productivity of i-C6. The electrons produced via oxidation routes and chain elongation were apparently utilized by hydrogenotrophic methanogens, homoacetogens, and carboxylate-to-alcohol reducing bacteria. Further improvements could be achieved if the acetate-producing EEO was minimized and limitations of ethanol and CO2 were prevented.
Collapse
Affiliation(s)
- Kasper
D. de Leeuw
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Cees J.N. Buisman
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - David P.B.T.B. Strik
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| |
Collapse
|
243
|
Enhanced Anaerobic Mixed Culture Fermentation with Anion-Exchange Resin for Caproate Production. Processes (Basel) 2019. [DOI: 10.3390/pr7070404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bioproduction of caproate from organic waste by anaerobic mixed culture is a very attractive technology for upgrading low-grade biomass to a high-value resource. However, the caproate production process is markedly restricted by the feedback inhibition of caproate. In this study, four types of anion-exchange resin were investigated for their enhancing capability in caproate fermentation of anaerobic mixed culture. The strong base anion-exchange resin D201 showed the highest adsorption capacity (62 mg/g), selectivity (7.50), and desorption efficiency (88.2%) for caproate among the test resins. Subsequently, the optimal desorption temperature and NaOH concentration of eluent for D201 were determined. The adsorption and desorption efficiency of D201 remained stable during eight rounds of the adsorption–desorption cycle, indicating a satisfactory reusability of D201. Finally, performances of caproate fermentation with and without resin adsorption for carboxylate were evaluated. The results demonstrated that the final concentration of caproate was improved from 12.43 ± 0.29 g/L (without adsorption) to 17.30 ± 0.13 g/L (with adsorption) and the maximum caproate production rate was improved from 0.60 ± 0.01 g/L/d to 2.03 ± 0.02 g/L/d. In the group with adsorption, the cumulative caproate production was increased to 29.10 ± 0.33 g/L broth, which was 134% higher than that of the control group. Therefore, this study provides effective approaches to enhance caproate production.
Collapse
|
244
|
Yu J, Huang Z, Wu P, Zhao M, Miao H, Liu C, Ruan W. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia. BIORESOURCE TECHNOLOGY 2019; 284:398-405. [PMID: 30959377 DOI: 10.1016/j.biortech.2019.03.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The regulation of two-stage caproate fermentation from fruit and vegetable waste (FVW) via anaerobic microbial consortia was investigated in this study. The results showed the highest caproate production achieved 14.9 g/L at the optimal inoculum to substrate ratio (ISR) of 2:1, ethanol to acid ratio (E/A) of 4:1, and pH of 7.5. The caproate yield and selectivity respectively reached 0.62 g/g and 80.8% (as COD). In acidification stage, an appropriate ISR provided a high conversion efficiency and more acetate formation, which was beneficial to caproate biosynthesis. In caproate production stage, chain elongation performance was sensitive to E/A and pH condition. Butyrate became the main by-product at low E/A or acidic conditions, while excessive ethanol or alkaline condition seriously suppressed substrate conversion. The caproate fermentation was dominated by Clostridium kluyveri. Furthermore, caproate formation was uncoupled with Clostridium kluyveri proliferation, which was mainly generated during the middle and late stages of growth.
Collapse
Affiliation(s)
- Jiangnan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingxing Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Chunmei Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
245
|
Kim BC, Kim M, Choi Y, Nam K. Effect of basic oxygen furnace slag addition on enhanced alkaline sludge fermentation and simultaneous phosphate removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:66-72. [PMID: 30889519 DOI: 10.1016/j.jenvman.2019.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
This study presents a promising approach that enhances the sludge fermentation by using basic oxygen furnace (BOF) slag as an alkaline source for the first time. BOF slag added to the reactors could maintain a stable alkaline condition due to continuous release of Ca(OH)2 from slag. The reactor pH could be adjusted to a target value by the choice of the BOF slag dose. Concentrations of soluble chemical oxygen demand (sCOD) and short-chain carboxylates (SCCs) were substantially increased in the presence of BOF slag. At a BOF slag mass to sludge volume ratio of 1/10 g slag/L sludge, the reactor pH was maintained at 10 and the concentration of SCCs produced was the highest (i.e., 3510 mg COD L-1 from 14,000 mg VS L-1 of sludge mixture), followed by B/S ratios of 1/20, 1.50, 1/5, and 1/2.5 g slag L-1 sludge with reactor pH of 9.4, 8.9, 10.5, and 11, respectively. Our data suggest that the pH value that best facilitates the degradation of sludge into SCCs and inhibit the conversion of SCCs into biogas is around 10. Interestingly, compositions of the accumulated SCCs varied greatly depending on the BOF slag dose. BOF slag showed phosphorus removal ability due to enhanced precipitation of Ca-PO43--P complexes, which significantly lowered PO43- concentration of the reactor effluent.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Moonkyung Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyoungphile Nam
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
246
|
Lambrecht J, Cichocki N, Schattenberg F, Kleinsteuber S, Harms H, Müller S, Sträuber H. Key sub-community dynamics of medium-chain carboxylate production. Microb Cell Fact 2019; 18:92. [PMID: 31138218 PMCID: PMC6537167 DOI: 10.1186/s12934-019-1143-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The carboxylate platform is a promising technology for substituting petrochemicals in the provision of specific platform chemicals and liquid fuels. It includes the chain elongation process that exploits reverse β-oxidation to elongate short-chain fatty acids and forms the more valuable medium-chain variants. The pH value influences this process through multiple mechanisms and is central to effective product formation. Its influence on the microbiome dynamics was investigated during anaerobic fermentation of maize silage by combining flow cytometric short interval monitoring, cell sorting and 16S rRNA gene amplicon sequencing. RESULTS Caproate and caprylate titres of up to 6.12 g L-1 and 1.83 g L-1, respectively, were achieved in a continuous stirred-tank reactor operated for 241 days. Caproate production was optimal at pH 5.5 and connected to lactate-based chain elongation, while caprylate production was optimal at pH 6.25 and linked to ethanol utilisation. Flow cytometry recorded 31 sub-communities with cell abundances varying over 89 time points. It revealed a highly dynamic community, whereas the sequencing analysis displayed a mostly unchanged core community. Eight key sub-communities were linked to caproate or caprylate production (rS > | ± 0.7|). Amongst other insights, sorting and subsequently sequencing these sub-communities revealed the central role of Bifidobacterium and Olsenella, two genera of lactic acid bacteria that drove chain elongation by providing additional lactate, serving as electron donor. CONCLUSIONS High-titre medium-chain fatty acid production in a well-established reactor design is possible using complex substrate without the addition of external electron donors. This will greatly ease scaling and profitable implementation of the process. The pH value influenced the substrate utilisation and product spectrum by shaping the microbial community. Flow cytometric single cell analysis enabled fast, short interval analysis of this community and was coupled with 16S rRNA gene amplicon sequencing to reveal the major role of lactate-producing bacteria.
Collapse
Affiliation(s)
- Johannes Lambrecht
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Nicolas Cichocki
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
247
|
de Smit SM, de Leeuw KD, Buisman CJN, Strik DPBTB. Continuous n-valerate formation from propionate and methanol in an anaerobic chain elongation open-culture bioreactor. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:132. [PMID: 31149028 PMCID: PMC6535856 DOI: 10.1186/s13068-019-1468-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/14/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Chain elongation forms a new platform technology for the circular production of biobased chemicals from renewable carbon and energy sources. This study aimed to develop a continuous methanol-based chain elongation process for the open-culture production of a new-generation biofuel precursor and potential platform chemical: n-valerate. Propionate was used as a substrate for chain elongation to n-valerate in an anaerobic open-culture bioreactor. In addition, the co-production of n- and iso-butyrate in addition to n-valerate via, respectively, acetate and propionate elongation was investigated. RESULTS n-Valerate was produced during batch and continuous experiments with a pH in the range 5.5-5.8 and a hydraulic retention time of 95 h. Decreasing the pH from 5.8 to 5.5 caused an increase of the selectivity for n-valerate formation (from 58 up to 70 wt%) during methanol-based propionate elongation. n-Valerate and both n- and iso-butyrate were produced during simultaneous methanol-based elongation of propionate and acetate. Propionate was within the open-culture preferred over acetate as a substrate with 10-30% more consumption. Increasing the methanol concentration in the influent (from 250 to 400 mM) resulted in a higher productivity (from 45 to 58 mmol C/L/day), but a lower relative product selectivity (from 49 to 43 wt%) of n-valerate. The addition of acetate as a substrate did not change the average n-valerate productivities. Within the continuous bioreactor experiments, 6 to 17 wt% of formed products was methane. The microbial community during all steady-states in both methanol-based elongation bioreactors was dominated by species related to Clostridium luticellarii and Candidatus Methanogranum. C. luticellarii is the main candidate for n-valerate formation from methanol and propionate. CONCLUSIONS n-Valerate was for the first time proven to be produced from propionate and methanol by an open-culture bioreactor. Methanogenic activity can be inhibited by decreasing the pH, and the n-valerate productivity can be improved by increasing the methanol concentration. The developed process can be integrated with various biorefinery processes from thermochemical, (bio)electrochemical, photovoltaic and microbial technologies. The findings from this study form a useful tool to steer the process of biological production of chemicals from biomass and other carbon and energy sources.
Collapse
Affiliation(s)
- Sanne M. de Smit
- Environmental Technology, Wageningen University & Research, Axis-Z, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Kasper D. de Leeuw
- Environmental Technology, Wageningen University & Research, Axis-Z, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Environmental Technology, Wageningen University & Research, Axis-Z, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - David P. B. T. B. Strik
- Environmental Technology, Wageningen University & Research, Axis-Z, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
248
|
Stoll IK, Boukis N, Neumann A, Ochsenreither K, Zevaco TA, Sauer J. The Complex Way to Sustainability: Petroleum-Based Processes versus Biosynthetic Pathways in the Formation of C4 Chemicals from Syngas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. Katharina Stoll
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nikolaos Boukis
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anke Neumann
- Technical Biology (TeBi), Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76128, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Technical Biology (TeBi), Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76128, Karlsruhe, Germany
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
249
|
de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 2019; 53:14-23. [DOI: 10.1016/j.ymben.2019.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 11/26/2022]
|
250
|
Chwialkowska J, Duber A, Zagrodnik R, Walkiewicz F, Łężyk M, Oleskowicz-Popiel P. Caproic acid production from acid whey via open culture fermentation - Evaluation of the role of electron donors and downstream processing. BIORESOURCE TECHNOLOGY 2019; 279:74-83. [PMID: 30711755 DOI: 10.1016/j.biortech.2019.01.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 05/16/2023]
Abstract
The objective of this study was to investigate the potential of supplementing ethanol and lactic acid as electron donors in reverse β-oxidation for short chain carboxylic acids chain elongation during anaerobic fermentation of acid whey. Best results were achieved when lactic acid was added at concentration of 300 mM. It resulted in medium chain carboxylic acids (MCCAs) concentration of 5.0 g/L. In the trials with ethanol addition, the overall yield was 20% lower. Subsequently liquid-liquid extraction with ionic liquids (ILs) was investigated as a potential purification method of caproic acid. The most promising, with respect to recovery of caproic acid, was piperazinium IL [C1C1C10Ppz][NTF2], however, the selectivity was only 0.39. Less effective [C1C1C6Ppz][NTF2] recovered 85.9% of caproic acid while reaching a higher selectivity of 0.53. Technoeconomic model revealed that to meet the conservative value of $2.25 per kg of caproic acid, the downstream processing should not exceed $0.65 per kg.
Collapse
Affiliation(s)
- Joanna Chwialkowska
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Duber
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Roman Zagrodnik
- Department of Kinetics and Catalysis, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89 b, 61-614 Poznan, Poland
| | - Filip Walkiewicz
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|