201
|
Sun Z, Wang X, Liu J, Wang Z, Wang W, Kong D, Leng X. ICG/l-Arginine Encapsulated PLGA Nanoparticle-Thermosensitive Hydrogel Hybrid Delivery System for Cascade Cancer Photodynamic-NO Therapy with Promoted Collagen Depletion in Tumor Tissues. Mol Pharm 2021; 18:928-939. [PMID: 33427470 DOI: 10.1021/acs.molpharmaceut.0c00937] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is promising for clinical cancer therapy; however, the efficacy was limited as an individual treatment regimen. Here, an approach synergistically combining PDT and nitric oxide (NO) gas therapy along with destruction of the tumor extracellular matrix (ECM) was presented to eliminate cancer. Specifically, the NO donor l-arginine (l-Arg) and the photosensitizer indocyanine green (ICG) were co-encapsulated in poly(lactic-glycolic acid) (PLGA) nanoparticles and then loaded into the poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) hydrogel to develop an injectable, thermosensitive dual drug delivery system (PLGA@ICG@l-Arg/Gel). Significantly, reactive oxygen species (ROS) produced by PLGA@ICG@l-Arg/Gel under near-infrared (NIR) light irradiation could not only result in the apoptosis of cancer cells but also oxidize l-Arg to generate NO, which could suppress the proliferation of cancer cells. Moreover, ROS could further oxidize NO to generate peroxynitrite anions (ONOO-). ONOO- could activate matrix metalloproteinases (MMPs), which notably degraded collagen in ECM so as to damage the tumor microenvironment. PLGA@ICG@l-Arg/Gel significantly increased the antitumor efficacy against highly malignant 4T1 tumors in mice. Taken together, PLGA@ICG@l-Arg/Gel is a multifunctional platform that provides a novel strategy for cancer treatment with cascade amplification of the ROS oxidation effect, which holds great potential in clinical translation.
Collapse
Affiliation(s)
- Zhiting Sun
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxiao Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.,Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
202
|
Hou J, Ji Q, Ji J, Ju S, Xu C, Yong X, Xu X, Muddassir M, Chen X, Xie J, Han X. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Am J Cancer Res 2021; 11:3244-3261. [PMID: 33537085 PMCID: PMC7847691 DOI: 10.7150/thno.54217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.
Collapse
|
203
|
Huang HY, Chen LQ, Sun W, Du HH, Dong S, Ahmed AMQ, Cao D, Cui JH, Zhang Y, Cao QR. Collagenase IV and clusterin-modified polycaprolactone-polyethylene glycol nanoparticles for penetrating dense tumor tissues. Theranostics 2021; 11:906-924. [PMID: 33391512 PMCID: PMC7738847 DOI: 10.7150/thno.47446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: Novel collagenase IV (ColIV) and clusterin (CLU)-modified polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles that load doxorubicin (DOX) were designed and fully evaluated in vitro and in vivo. Methods: PCL-PEG-ColIV was synthesized by linking PCL-PEG and ColIV through a carbodiimide method. DOX-loaded nanoparticles (DOX-PCL-PEG-ColIV) were self-assembly prepared, followed by noncovalently adsorbing CLU on the DOX-PCL-PEG-ColIV surface to obtain DOX-PCL-PEG-ColIV /CLU nanoparticles, which can penetrate through the tumor extracellular matrix (ECM) and inhibit phagocytosis by macrophage. The physicochemical properties of nanoparticles were characterized. The cellular uptake and antiphagocytosis ability of nanoparticles in MCF-7 tumor cells and RAW264.7 cells were investigated. The penetration ability of nanoparticles was individually evaluated in the two-dimensional (2D) and three-dimensional (3D) ECM models. The tissue distribution and antitumor effect of nanoparticles were evaluated in MCF-7 cell-bearing nude mice. Results: Compared with DOX-PCL-PEG-COOH nanoparticles, DOX-PCL-PEG-ColIV/CLU nanoparticles could effectively overcome the phagocytosis by RAW264.7 and showed excellent cellular uptake in MCF-7 cells. In addition, they showed remarkable penetration ability through the 2D and 3D ECM models. DOX-PCL-PEG-ColIV/CLU nanoparticles significantly reduced the drug distribution in the liver and spleen and enhanced the drug accumulation in tumor tissue compared with DOX-PCL-PEG-COOH or DOX-PCL-PEG-ColIV nanoparticles. DOX-PCL-PEG-ColIV/CLU nanoparticles showed remarkable antitumor effect but did not cause severe pathological damages in the main tissues, including the heart, liver, spleen, lung, and kidney. Conclusion: Novel ColIV and CLU-modified PCL-PEG nanoparticles showed excellent cellular uptake, ECM penetration, antiphagocytosis, and antitumor effects both in vitro and in vivo.
Collapse
|
204
|
Halupczok S, Pfister M, Ringhand A, Fetsch C, Cubukova A, Appelt-Menzel A, Luxenhofer R. Poly(2-ethyl-2-oxazoline- co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity. Polym Chem 2021. [DOI: 10.1039/d0py01258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers obtained via partial reduction of poly(2-ethy-2-oxazoline)s were studied on their cytocompatibility and their buffer capacity in acidic environment.
Collapse
Affiliation(s)
- Sebastian Halupczok
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Maria Pfister
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Annemarie Ringhand
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Corinna Fetsch
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Alevtina Cubukova
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
- University Hospital Würzburg
| | - Robert Luxenhofer
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| |
Collapse
|
205
|
Li Y, Zhao Z, Lin CY, Liu Y, Staveley-OCarroll KF, Li G, Cheng K. Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Am J Cancer Res 2021; 11:2182-2200. [PMID: 33500719 PMCID: PMC7797682 DOI: 10.7150/thno.53102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Dense desmoplastic stroma is a fundamental characteristic of pancreatic ductal adenocarcinoma (PDAC) and comprises up to 80% of the tumor mass. Type I collagen is the major component of the extracellular matrix (ECM), which acts as a barrier to impede the delivery of drugs into the tumor microenvironment. While the strategy to deplete PDAC stroma has failed in clinical trials, normalization of the stroma to allow chemotherapy to kill the tumor cells in the “nest” could be a promising strategy for PDAC therapy. We hypothesize that silencing the poly(rC)-binding protein 2 (αCP2, encoded by the PCBP2 gene) leads to the destabilization and normalization of type I collagen in the PDAC stroma. Methods: We develop a micro-flow mixing method to fabricate a peptide-based core-stabilized PCBP2 siRNA nanocomplex to reverse the accumulation of type I collagen in PDAC tumor stroma. Various in vitro studies were performed to evaluate the silencing activity, cellular uptake, serum stability, and tumor penetration of the PCBP2 siRNA nanocomplex. We also investigated the penetration of small molecules in stroma-rich pancreatic cancer spheroids after the treatment with the PCBP2 siRNA nanocomplex. The anti-tumor activity of the PCBP2 siRNA nanocomplex and its combination with gemcitabine was evaluated in an orthotopic stroma-rich pancreatic cancer mouse model. Results: Silencing the PCBP2 gene using siRNA reverses the accumulation of type I collagen in human pancreatic stellate cells (PSCs) and mouse NIH 3T3 fibroblast cells. The siRNA nanocomplex significantly reduces ECM production and enhances drug penetration through desmoplastic tumor stroma. The combination of gemcitabine with the PCBP2 siRNA nanocomplex markedly suppresses the tumor progression in a desmoplastic PDAC orthotopic mouse model. Conclusion: This approach provides a new therapeutic avenue to improve the antitumor efficacy of PDAC therapies by normalizing tumor stroma using the PCBP2 siRNA nanocomplex.
Collapse
|
206
|
Drescher S, van Hoogevest P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12121235. [PMID: 33353254 PMCID: PMC7766331 DOI: 10.3390/pharmaceutics12121235] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the research on phospholipids and their use for drug delivery related to the Phospholipid Research Center Heidelberg (PRC). The focus is on projects that have been approved by the PRC since 2017 and are currently still ongoing or have recently been completed. The different projects cover all facets of phospholipid research, from basic to applied research, including the use of phospholipids in different administration forms such as liposomes, mixed micelles, emulsions, and extrudates, up to industrial application-oriented research. These projects also include all routes of administration, namely parenteral, oral, and topical. With this review we would like to highlight possible future research directions, including a short introduction into the world of phospholipids.
Collapse
|
207
|
Sandha KK, Shukla MK, Gupta PN. Recent Advances in Strategies for Extracellular Matrix Degradation and Synthesis Inhibition for Improved Therapy of Solid Tumors. Curr Pharm Des 2020; 26:5456-5467. [DOI: 10.2174/1381612826666200728141601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
Despite a great deal of efforts made by researchers and the advances in the technology, the treatment of
cancer is very challenging. Significant advances in the field of cancer therapeutics have been made but due to the
complexity of solid tumor microenvironment, specially their dense extracellular matrix (which makes the conditions
favorable for cancer growth, metastasis and acts as a barrier to the chemotherapeutic drugs as well as
nanomedicine), the treatment of solid tumors is difficult. Overexpression of extracellular matrix components such
as collagen, hyaluronan and proteoglycans in solid tumor leads to high interstitial fluid pressure, hypoxia, vascular
collapse and poor perfusion which hinder the diffusion and convection of the drugs into the tumor tissue. This
leads to the emergence of drug resistance and poor antitumor efficacy of chemotherapeutics. A number of approaches
are being investigated in order to modulate this barrier for improved outcome of cancer chemotherapy.
In this review, recent advances in the various approaches for the modulation of the extracellular matrix barrier of
the solid tumor are covered and significant findings are discussed in an attempt to facilitate more investigations in
this potential area to normalize the tumor extracellular matrix for improving drug exposure to solid tumor.
Collapse
Affiliation(s)
- Kamalpreet Kaur Sandha
- PK-PD Toxicology & Formulation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, J&K, 180001, India
| | - Monu Kumar Shukla
- PK-PD Toxicology & Formulation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, J&K, 180001, India
| | - Prem N. Gupta
- PK-PD Toxicology & Formulation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, J&K, 180001, India
| |
Collapse
|
208
|
Salapa J, Bushman A, Lowe K, Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. NANO CONVERGENCE 2020; 7:38. [PMID: 33301056 PMCID: PMC7728832 DOI: 10.1186/s40580-020-00247-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 05/02/2023]
Abstract
Upper gastrointestinal (GI) carcinomas are characterized as one of the deadliest cancer types with the highest recurrence rates. Their treatment is challenging due to late diagnosis, early metastasis formation, resistance to systemic therapy and complicated surgeries performed in poorly accessible locations. Current cancer medication face deficiencies such as high toxicity and systemic side-effects due to the non-specific distribution of the drug agent. Nanomedicine has the potential to offer sophisticated therapeutic possibilities through adjusted delivery systems. This review aims to provide an overview of novel approaches and perspectives on nanoparticle (NP) drug delivery systems for gastrointestinal carcinomas. Present regimen for the treatment of upper GI carcinomas are described prior to detailing various NP drug delivery formulations and their current and potential role in GI cancer theranostics with a specific emphasis on targeted nanodelivery systems. To date, only a handful of NP systems have met the standard of care requirements for GI carcinoma patients. However, an increasing number of studies provide evidence supporting NP-based diagnostic and therapeutic tools. Future development and strategic use of NP-based drug formulations will be a hallmark in the treatment of various cancers. This article seeks to highlight the exciting potential of novel NPs for targeted cancer therapy in GI carcinomas and thus provide motivation for further research in this field.
Collapse
Affiliation(s)
- Julia Salapa
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Physics, Technical University of Vienna, Karlsplatz 13, 1040 Vienna, Austria
| | - Allison Bushman
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kevin Lowe
- Carle Foundation Hospital South, Urbana, IL 61801 USA
- Carle-Illinois College of Medicine, Urbana, IL 61801 USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Carle-Illinois College of Medicine, Urbana, IL 61801 USA
- Cancer Center at Illinois, Urbana, IL 61801 USA
- Biomedical Research Facility, 3rd Floor Mills Breast Cancer Institute, Carle Foundation Hospital South, Urbana, IL 61801 USA
| |
Collapse
|
209
|
Haider T, Sandha KK, Soni V, Gupta PN. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111229. [DOI: 10.1016/j.msec.2020.111229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
210
|
Ebelt ND, Zamloot V, Manuel ER. Targeting desmoplasia in pancreatic cancer as an essential first step to effective therapy. Oncotarget 2020; 11:3486-3488. [PMID: 33014284 PMCID: PMC7517960 DOI: 10.18632/oncotarget.27745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is considered one of the most lethal cancers in the US. It contributes to an estimated 47,000 deaths annually and is predicted to surpass prostate, breast and colorectal cancers as the leading cause of cancer-related death. Although major advancements in cancer treatment have improved outcomes for many cancer types, survival rate for pancreatic cancer has not improved in nearly four decades despite tremendous effort. One attribute of pancreatic cancer that is considered a major barrier to effective treatment is the formation of fibrotic tissue around tumor cells known as desmoplasia. A number of promising approaches have been developed to deplete fibrotic components in pancreatic tumors to enhance drug delivery, some of which have been tested in clinical trials of advanced, unresectable pancreatic cancer. Here, we discuss previous efforts, shortcomings and new considerations for developing more effective agents to eliminate desmoplasia.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Vic Zamloot
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
211
|
Lussier F, Staufer O, Platzman I, Spatz JP. Can Bottom-Up Synthetic Biology Generate Advanced Drug-Delivery Systems? Trends Biotechnol 2020; 39:445-459. [PMID: 32912650 DOI: 10.1016/j.tibtech.2020.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Creating a magic bullet that can selectively kill cancer cells while sparing nearby healthy cells remains one of the most ambitious objectives in pharmacology. Nanomedicine, which relies on the use of nanotechnologies to fight disease, was envisaged to fulfill this coveted goal. Despite substantial progress, the structural complexity of therapeutic vehicles impedes their broad clinical application. Novel modular manufacturing approaches for engineering programmable drug carriers may be able to overcome some fundamental limitations of nanomedicine. We discuss how bottom-up synthetic biology principles, empowered by microfluidics, can palliate current drug carrier assembly limitations, and we demonstrate how such a magic bullet could be engineered from the bottom up to ultimately improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Felix Lussier
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany.
| | - Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|
212
|
Engineering extracellular matrix to improve drug delivery for cancer therapy. Drug Discov Today 2020; 25:1727-1734. [DOI: 10.1016/j.drudis.2020.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
213
|
Tariq H, Bokhari SAI. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol 2020; 14:537-547. [PMID: 33010128 PMCID: PMC8676046 DOI: 10.1049/iet-nbt.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human-health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
214
|
Frieboes HB, Raghavan S, Godin B. Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Front Bioeng Biotechnol 2020; 8:1011. [PMID: 32974325 PMCID: PMC7466654 DOI: 10.3389/fbioe.2020.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) presents a challenging barrier for effective nanotherapy-mediated drug delivery to solid tumors. In particular for tumors less vascularized than the surrounding normal tissue, as in liver metastases, the structure of the organ itself conjures with cancer-specific behavior to impair drug transport and uptake by cancer cells. Cells and elements in the TME of hypovascularized tumors play a key role in the process of delivery and retention of anti-cancer therapeutics by nanocarriers. This brief review describes the drug transport challenges and how they are being addressed with advanced in vitro 3D tissue models as well as with in silico mathematical modeling. This modeling complements network-oriented techniques, which seek to interpret intra-cellular relevant pathways and signal transduction within cells and with their surrounding microenvironment. With a concerted effort integrating experimental observations with computational analyses spanning from the molecular- to the tissue-scale, the goal of effective nanotherapy customized to patient tumor-specific conditions may be finally realized.
Collapse
Affiliation(s)
- Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Shreya Raghavan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX, United States
- Developmental Therapeutics Program, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
215
|
Zinger A, Baudo G, Naoi T, Giordano F, Lenna S, Massaro M, Ewing A, Kim HR, Tasciotti E, Yustein JT, Taraballi F. Reproducible and Characterized Method for Ponatinib Encapsulation into Biomimetic Lipid Nanoparticles as a Platform for Multi-Tyrosine Kinase-Targeted Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6737-6745. [DOI: 10.1021/acsabm.0c00685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Assaf Zinger
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Gherardo Baudo
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Tomoyuki Naoi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Federica Giordano
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Matteo Massaro
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - April Ewing
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Ha Ram Kim
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
216
|
Wan Z, Xie F, Wang L, Zhang G, Zhang H. Preparation and Evaluation of Cabazitaxel-Loaded Bovine Serum Albumin Nanoparticles for Prostate Cancer. Int J Nanomedicine 2020; 15:5333-5344. [PMID: 32801692 PMCID: PMC7402868 DOI: 10.2147/ijn.s258856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Cabazitaxel (CBZ) is a new taxane-based antitumor drug approved by the FDA for the treatment of prostate cancer, especially for patients with advanced prostate cancer for whom docetaxel is ineffective or causes aggravation. However, Tween 80 injection can cause serious allergic reactions, and CBZ itself has strong toxicity, adverse reactions, and poor tumor selectivity, which greatly limits its clinical applications. Therefore, the CBZ-loaded bovine serum albumin nanoparticles (CBZ-BSA-Gd-NPs) were developed to overcome the allergenic response of Tween 80 and realize the integration of diagnosis and treatment. METHODS CBZ-BSA-Gd-NPs were prepared by the biomineralization method. The characterization, magnetic resonance imaging (MRI), safety, and antitumor activity of the nanoparticles were evaluated in vitro and in vivo. RESULTS The prepared nanoparticles were uniform in size (166 nm), with good MRI performance and stability over 24 h. Compared with CBZ-Tween 80 injection, CBZ-BSA-Gd-NPs showed much lower hemolysis, similar tumor inhibition, and enhanced cellular uptake in vitro. The pharmacokinetic behavior of CBZ-BSA-Gd-NPs in rats showed that the retention time of the nanoparticles was prolonged, the clearance rate decreased, and the area under the drug-time curve increased. The distribution of CBZ-BSA-Gd-NPs in nude mice was characterized by UPLC-MS/MS and MRI, and the results showed that CBZ-BSA-Gd-NPs could effectively target tumor tissues with reduced distribution in the heart, liver, spleen, lungs, and kidneys compared with CBZ-Tween 80, which indicated that CBZ-BSA-Gd-NPs not only had a passive targeting effect on tumor tissue but also achieved the integration of diagnosis and treatment. In vivo, CBZ-BSA-Gd-NPs showed improved tumor inhibitory effect with a safer profile. CONCLUSION In summary, CBZ-BSA-Gd-NPs can serve as an effective therapeutic drug carrier to deliver CBZ into prostate cancer, and realize the integration of diagnosis and therapy.
Collapse
Affiliation(s)
- Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai200438, People’s Republic of China
| | - Liang Wang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai201204, People’s Republic of China
| | - Guoqing Zhang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai200438, People’s Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai201204, People’s Republic of China
| |
Collapse
|
217
|
Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem Sci 2020; 11:10553-10570. [PMID: 34094312 PMCID: PMC8162460 DOI: 10.1039/d0sc01721c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Semiconducting polymer nanoparticles (SPNs) have gained growing attention in biomedical applications. However, the preparation of SPNs is usually limited to nanoprecipitation in the presence of amphiphilic copolymers, which encounters the issue of dissociation. As an alternative to SPNs, grafted semiconducting polymer amphiphiles (SPAs) composed of a semiconducting polymer (SP) backbone and hydrophilic side chains show increased physiological stability and improved optical properties. This review summarizes recent advances in SPAs for cancer imaging and combination phototherapy. The applications of SPAs in optical imaging including fluorescence, photoacoustic, multimodal and activatable imaging are first described, followed by the discussion of applications in imaging-guided phototherapy and combination therapy, light-triggered drug delivery and gene regulation. At last, the conclusion and future prospects in this field are discussed.
Collapse
Affiliation(s)
- Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Wen Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University Tianjin 300071 China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| |
Collapse
|
218
|
Haider MS, Lübtow MM, Endres S, Forster S, Flegler VJ, Böttcher B, Aseyev V, Pöppler AC, Luxenhofer R. Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24531-24543. [PMID: 32378873 DOI: 10.1021/acsami.9b22495] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis and Bavarian Polymer Institute, Faculty of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Michael M Lübtow
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis and Bavarian Polymer Institute, Faculty of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sebastian Endres
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis and Bavarian Polymer Institute, Faculty of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Vanessa J Flegler
- Biocenter and Rudolf Virchow Centre, University of Würzburg, Haus D15, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Centre, University of Würzburg, Haus D15, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Vladimir Aseyev
- Department of Chemistry, University of Helsinki, PB 55, Helsinki FIN-00014, Finland
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis and Bavarian Polymer Institute, Faculty of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Department of Chemistry, University of Helsinki, PB 55, Helsinki FIN-00014, Finland
| |
Collapse
|
219
|
Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS NANO 2020; 14:4890-4904. [PMID: 32286784 DOI: 10.1021/acsnano.0c00974] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dense fibrotic stroma in pancreatic ductal adenocarcinoma (PDA) resists drug diffusion into the tumor and leads to an unsatisfactory prognosis. To address this problem, we demonstrate a dendrimer-camptothecin (CPT) conjugate that actively penetrates deep into PDA tumors through γ-glutamyl transpeptidase (GGT)-triggered cell endocytosis and transcytosis. The dendrimer-drug conjugate was synthesized by covalent attachment of CPT to polyamidoamine (PAMAM) dendrimers through a reactive oxygen species (ROS)-sensitive linker followed with surface modification with glutathione. Once the conjugate was delivered to the PDA tumor periphery, the overexpressed GGT on the vascular endothelial cell or tumor cell triggers the γ-glutamyl transfer reactions of glutathione to produce primary amines. The positively charged conjugate was rapidly internalized via caveolae-mediated endocytosis and followed by vesicle-mediated transcytosis, augmenting its deep penetration within the tumor parenchyma and releasing active CPT throughout the tumor after cleavage by intracellular ROS. The dendrimer-drug conjugate exhibited high antitumor activity in multiple mice tumor models, including patient-derived PDA xenograft and orthotopic PDA cell xenograft, compared to the standard first-line chemotherapeutic drug (gemcitabine) for advanced pancreatic cancer. This study demonstrates the high efficiency of an active tumor-penetrating dendrimer-drug conjugate via transcytotic transport with ROS-responsive drug release for PDA therapy.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng Yan
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
220
|
Lübtow MM, Oerter S, Quader S, Jeanclos E, Cubukova A, Krafft M, Haider MS, Schulte C, Meier L, Rist M, Sampetrean O, Kinoh H, Gohla A, Kataoka K, Appelt-Menzel A, Luxenhofer R. In Vitro Blood–Brain Barrier Permeability and Cytotoxicity of an Atorvastatin-Loaded Nanoformulation Against Glioblastoma in 2D and 3D Models. Mol Pharm 2020; 17:1835-1847. [DOI: 10.1021/acs.molpharmaceut.9b01117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael M. Lübtow
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sabrina Oerter
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sabina Quader
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-Ku, Kawasaki-Shi 210-0821, Japan
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Alevtina Cubukova
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies TLC-RT, Röntgenring 11, 97070 Würzburg, Germany
| | - Marion Krafft
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Clemens Schulte
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Laura Meier
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Maximilian Rist
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Oltea Sampetrean
- Institute for Advanced Medical Research (IAMR), Division of Gene Regulation, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-Ku, Kawasaki-Shi 210-0821, Japan
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-Ku, Kawasaki-Shi 210-0821, Japan
- Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies TLC-RT, Röntgenring 11, 97070 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft Matter Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
221
|
Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 2020; 8:6765-6781. [PMID: 32315375 DOI: 10.1039/d0tb00649a] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The delivery of drugs to tumors by nanoparticles is a rapidly growing field. However, the complex tumor microenvironment (TME) barriers greatly hinder drug delivery to tumors. In this study, we first summarized the barriers in TME, including anomalous vasculature, rigid extracellular matrix, hypoxia, acidic pH, irregular enzyme level, altered metabolism pathway and immunosuppressive conditions. To overcome these barriers, many strategies have been developed, such as modulating TME, active targeting by ligand modification and biomimetic strategies, and TME-responsive drug delivery strategies to improve nanoparticle penetration, cellular uptake and drug release. Although extensive progress has been achieved, there are still many challenges, which are discussed in the last section. Overall, we carefully discuss the landscape of TME, development for improving drug delivery, and challenges that need to be further addressed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | | | | | | |
Collapse
|
222
|
Peng F, Li R, Zhang F, Qin L, Ling G, Zhang P. Potential drug delivery nanosystems for improving tumor penetration. Eur J Pharm Biopharm 2020; 151:220-238. [PMID: 32311427 DOI: 10.1016/j.ejpb.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 03/02/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022]
Abstract
Nanosystems, as one of the most important drug delivery systems, play a crucial rule in tumor therapy. However, the deep tumor penetration is retarded by the tumor physiological factors and nanomedicine properties. In this review, we firstly elaborate the factors which impact tumor penetration, including the tumor physiological factors and nanomedicine properties. Then, the latest and potential drug delivery nanosystems for improving tumor penetration are summarized and analyzed in detail. Moreover, recent combination therapies for improving penetration are described to enhance penetration. Finally, we summarize the typical clinical therapies of potential drug delivery nanosystems.
Collapse
Affiliation(s)
- Feifei Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Ruirui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Fang Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
223
|
Wang J, He ZW, Jiang JX. Nanomaterials: Applications in the diagnosis and treatment of pancreatic cancer. World J Gastrointest Pharmacol Ther 2020; 11:1-7. [PMID: 32405438 PMCID: PMC7205863 DOI: 10.4292/wjgpt.v11.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the leading causes of cancer-related death in human sowing to missed early and effective diagnosis. The inability to translate research into clinical trials and to target chemotherapy drugs to tumors is a major obstacle in PC treatment. Compared with traditional cancer detection methods, the method combining existing clinical diagnosis and detection systems with nanoscale components using novel nanomaterials shows higher sensitivity and specificity. Nanomaterials can interact with biological systems to efficiently and accurately detect and monitor biological events during diagnosis and treatment. With the advance of experimental and engineering technology, more nanomaterials will begin the transition to clinical trials for their validation. This paper describes a number of nanomaterials used in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhi-Wei He
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian-Xin Jiang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
224
|
Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020; 232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/09/2023]
|
225
|
Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. J Control Release 2020; 320:105-111. [PMID: 31978441 DOI: 10.1016/j.jconrel.2020.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is highly metastatic with very short survival and increasing mortality rates. Recent advances in therapeutic regimes and other adjuvant therapies improved slightly overall survival of pancreatic cancer, but fighting metastasis has been challenging and is necessary for achieving cure. Nanomedicine, not limited to drug delivery, offers opportunities for targeting cancer metastasis. Research regarding the prevention of metastasis of this malignancy is highly demanded. Herein, we focus on advances of nanomedicine-based strategies for targeting different stages of metastasis, including cancer stem cells, tumor microenvironment, circulating tumor cells and tumor exosomes. A greater emphasis on targeting metastasis of pancreatic cancer using nanomedicine-based strategies provides avenues for improving pancreatic cancer treatment outcomes in the future.
Collapse
|
226
|
Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics 2020; 10:1960-1980. [PMID: 32042347 PMCID: PMC6993244 DOI: 10.7150/thno.39995] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling in vivo is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.
Collapse
Affiliation(s)
- Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
227
|
Wu D, Chen X, Zhou J, Chen Y, Wan T, Wang Y, Lin A, Ruan Y, Chen Z, Song X, Fang W, Duan H, Ping Y. A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. MATERIALS HORIZONS 2020. [DOI: 10.1039/d0mh00870b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mesoporous core–shell nanohybrid allows delivery of thermophilic enzymes for stromal depletion and high photothermal conversion efficiency for tumor therapy.
Collapse
|
228
|
Al-Bari AA. Facts and Myths: Efficacies of Repurposing Chloroquine and Hydroxychloroquine for the Treatment of COVID-19. Curr Drug Targets 2020; 21:1703-1721. [PMID: 32552642 DOI: 10.2174/1389450121666200617133142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) is caused by the 2019 novel coronavirus (2019-nCoV). The 2019-nCoV first broke out in Wuhan and subsequently spread worldwide owing to its extreme transmission efficiency. The fact that the COVID-19 cases and mortalities are reported globally and the WHO has declared this outbreak as the pandemic, the international health authorities have focused on rapid diagnosis and isolation of patients as well as search for therapies able to counter the disease severity. Due to the lack of known specific, effective and proven therapies as well as the situation of public-health emergency, drug repurposing appears to be the best armour to find a therapeutic solution against 2019-nCoV infection. Repurposing anti-malarial drugs and chloroquine (CQ)/ hydroxychloroquine (HCQ) have shown efficacy to inhibit most coronaviruses, including SARS-CoV-1 coronavirus. These CQ analogues have shown potential efficacy to inhibit 2019-nCoV in vitro that leads to focus several future clinical trials. This review discusses the possible effective roles and mechanisms of CQ analogues for interfering with the 2019-nCoV replication cycle and infection.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
229
|
Thomas OS, Weber W. Overcoming Physiological Barriers to Nanoparticle Delivery-Are We There Yet? Front Bioeng Biotechnol 2019; 7:415. [PMID: 31921819 PMCID: PMC6928054 DOI: 10.3389/fbioe.2019.00415] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
The exploitation of nanosized materials for the delivery of therapeutic agents is already a clinical reality and still holds unrealized potential for the treatment of a variety of diseases. This review discusses physiological barriers a nanocarrier must overcome in order to reach its target, with an emphasis on cancer nanomedicine. Stages of delivery include residence in the blood stream, passive accumulation by virtue of the enhanced permeability and retention effect, diffusion within the tumor lesion, cellular uptake, and arrival at the site of action. We also briefly outline strategies for engineering nanoparticles to more efficiently overcome these challenges: Increasing circulation half-life by shielding with hydrophilic polymers, such as PEG, the limitations of PEG and potential alternatives, targeting and controlled activation approaches. Future developments in these areas will allow us to harness the full potential of nanomedicine.
Collapse
Affiliation(s)
- Oliver S. Thomas
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
230
|
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel) 2019; 11:E1855. [PMID: 31769416 PMCID: PMC6966668 DOI: 10.3390/cancers11121855] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.
Collapse
Affiliation(s)
- Lucia Salvioni
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Maria Antonietta Rizzuto
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Jessica Armida Bertolini
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Laura Pandolfi
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Miriam Colombo
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Davide Prosperi
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
- Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
231
|
Molinaro R, Martinez JO, Zinger A, De Vita A, Storci G, Arrighetti N, De Rosa E, Hartman KA, Basu N, Taghipour N, Corbo C, Tasciotti E. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomater Sci 2019; 8:333-341. [PMID: 31714542 DOI: 10.1039/c9bm01766f] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the last decades, several approaches were developed to design drug delivery systems to address the multiple biological barriers encountered after administration while safely delivering a payload. In this scenario, bio-inspired and bio-mimetic approaches have emerged as promising solutions to evade the mononuclear phagocytic system while simultaneously negotiating the sequential transport across the various biological barriers. Leukocytes freely circulate in the bloodstream and selectively target the inflamed vasculature in response to injury, infection, and cancer. Recently we have shown the use of biomimetic nanovesicles, called leukosomes, which combine both the physical and biological properties of liposomes and leukocytes, respectively, to selectively deliver drugs to the inflamed vasculature. Here we report the use of leukosomes to target and deliver doxorubicin, a model chemotherapeutic, to tumors in syngeneic murine models of breast cancer and melanoma. Exploiting the inflammatory pathway responsible for recruiting immune cells to the site of injury, leukosomes exhibited increased targeting of cancer vasculature and stroma. Furthermore, delivery of doxorubicin with leukosomes enabled significant tumor growth inhibition compared with free doxorubicin in both breast and melanoma tumors. This study demonstrates the promise of using biomimetic nanovesicles for effective cancer management in solid tumors.
Collapse
Affiliation(s)
- Roberto Molinaro
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jonathan O Martinez
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Alessandro De Vita
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Gianluca Storci
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Departmentof Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Noemi Arrighetti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica De Rosa
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Kelly A Hartman
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nupur Basu
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nima Taghipour
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Claudia Corbo
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy.
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
232
|
Lübtow MM, Lorson T, Finger T, Gröber‐Becker F, Luxenhofer R. Combining Ultra‐High Drug‐Loaded Micelles and Injectable Hydrogel Drug Depots for Prolonged Drug Release. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael M. Lübtow
- Functional Polymer Materials Chair for Advanced Materials Synthesis Department of Chemistry and Pharmacy and Bavarian Polymer Institute University of Würzburg Röntgenring 11 97070 Würzburg Germany
| | - Thomas Lorson
- Functional Polymer Materials Chair for Advanced Materials Synthesis Department of Chemistry and Pharmacy and Bavarian Polymer Institute University of Würzburg Röntgenring 11 97070 Würzburg Germany
| | - Tamara Finger
- Translational Center ‘Regenerative Therapies' (TLC‐RT) Fraunhofer Institute for Silicate Research (ISC) Neunerplatz 2 97082 Würzburg Germany
| | - Florian‐Kai Gröber‐Becker
- Translational Center ‘Regenerative Therapies' (TLC‐RT) Fraunhofer Institute for Silicate Research (ISC) Neunerplatz 2 97082 Würzburg Germany
- Chair of Tissue Engineering and Regenerative Medicine University Hospital Würzburg Röntgenring 11 97070 Würzburg Germany
| | - Robert Luxenhofer
- Functional Polymer Materials Chair for Advanced Materials Synthesis Department of Chemistry and Pharmacy and Bavarian Polymer Institute University of Würzburg Röntgenring 11 97070 Würzburg Germany
| |
Collapse
|