201
|
Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans—An integrated vaccinomics approach. Mol Immunol 2020; 120:146-163. [DOI: 10.1016/j.molimm.2020.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
|
202
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
203
|
Shahid F, Ashfaq UA, Javaid A, Khalid H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. INFECTION GENETICS AND EVOLUTION 2020; 80:104199. [PMID: 31962160 DOI: 10.1016/j.meegid.2020.104199] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is an RNA virus that has spread through mosquito sting. Currently, no vaccine and antiviral medication available so far against ZIKV. Therefore, it has fostered a study to design MEBP vaccine enabling effective prevention against the ZIKV infection. In this study combination of immuno-informatics and molecular docking approach was used to constitute a MEBP vaccine. The ZIKV proteome was used for prediction of B-cell, T-cell (HTL & CTL) and IFN-γ epitopes. After prediction, highly antigenic and overlapping epitopes have been shortlisted which includes 14 CTL and 11 HTL epitopes that have been linked to the final peptide through AAY and GPGPG linkers respectively. An adjuvant at the N-end of the vaccine was added to improve the immunogenicity of the vaccine through the EAAAK linker. The final construct constitutes 435 amino acids after the addition of linkers and adjuvant. The existence of B-cell and IFN-γ epitopes affirms the humoral and cell-mediated immune responses acquired by the construct. Allergenicity, antigenicity and different physiochemical attributes of the vaccine were evaluated to assure its safety and immunogenicity profile. In fact, the construct was antigenic and non-allergenic. Docking was performed among vaccine and TLR-3 to evaluate the binding affinity and the molecular interaction. Finally, the construct was subjected to In silico cloning to confers the authenticity of its expression efficiency. However, the proposed construct need to be validate experimentally to ensure its safety and immunogenic profile.
Collapse
Affiliation(s)
- Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
204
|
Pumchan A, Krobthong S, Roytrakul S, Sawatdichaikul O, Kondo H, Hirono I, Areechon N, Unajak S. Novel Chimeric Multiepitope Vaccine for Streptococcosis Disease in Nile Tilapia (Oreochromis niloticus Linn.). Sci Rep 2020; 10:603. [PMID: 31953479 PMCID: PMC6969146 DOI: 10.1038/s41598-019-57283-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae is a causative agent of streptococcosis disease in various fish species, including Nile tilapia (Oreochromis niloticus Linn.). Vaccination is an effective disease prevention and control method, but limitations remain for protecting against catastrophic mortality of fish infected with different strains of streptococci. Immunoproteomics analysis of S. agalactiae was used to identify antigenic proteins and construct a chimeric multiepitope vaccine. Epitopes from five antigenic proteins were shuffled in five helices of a flavodoxin backbone, and in silico analysis predicted a suitable RNA and protein structure for protein expression. 45F2 and 42E2 were identified as the best candidates for a chimeric multiepitope vaccine. Recombinant plasmids were constructed to produce a recombinant protein vaccine and DNA vaccine system. Overexpressed proteins were determined to be 30 kDa and 25 kDa in the E. coli and TK1 systems, respectively. The efficacy of the chimeric multiepitope construct as a recombinant protein vaccine and DNA vaccine was evaluated in Nile tilapia, followed by S. agalactiae challenge at 1 × 107 CFU/mL. Relative percentage survival (RPS) and cumulative mortality were recorded at approximately 57-76% and 17-30%, respectively. These chimeric multiepitope vaccines should be applied in streptococcosis disease control and developed into a multivalent vaccine to control multiple diseases.
Collapse
Affiliation(s)
- Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Sucheewin Krobthong
- Proteomics Laboratory, Genome Institutes, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Laboratory, Genome Institutes, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-KU, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-KU, Tokyo, 108-8477, Japan
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, (CASAF, NRU-KU, Thailand), Bangkok, 10900, Thailand.
| |
Collapse
|
205
|
Tosta SFDO, Passos MS, Kato R, Salgado Á, Xavier J, Jaiswal AK, Soares SC, Azevedo V, Giovanetti M, Tiwari S, Alcantara LCJ. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J Biomol Struct Dyn 2020; 39:219-235. [PMID: 31854239 DOI: 10.1080/07391102.2019.1707120] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yellow fever disease is considered a re-emerging major health issue which has caused recent outbreaks with a high number of deaths. Tropical countries, mainly African and South American, are the most affected by Yellow fever outbreaks. Despite the availability of an attenuated vaccine, its use is limited for some groups such as pregnant and nursing women, immunocompromised and immunosuppressed patients, elderly people >65 years, infants <6 months and patients with biological disorders like thymus disorders. In order to achieve new preventive measures, we applied immunoinformatics approaches to develop a multi-epitope-based subunit vaccine for Yellow fever virus. Different epitopes, related to humoral and cell-mediated immunity, were predicted for complete polyproteins of two Yellow fever strains (Asibi and 17 D vaccine). Those epitopes common for both strains were mapped into a set of 137 sequences of Yellow fever virus, including 77 sequences from a recent outbreak at the state of Minas Gerais, southeast Brazil. Therefore, the present work uses robust bioinformatics approaches for the identification of a multi-epitope vaccine against the Yellow fever virus. Our results indicate that the identified multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against Yellow fever virus infection. Hence, it should be subjected to further experimental validations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Stephane Fraga de Oliveira Tosta
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Mariana Santana Passos
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rodrigo Kato
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Álvaro Salgado
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Joilson Xavier
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Arun Kumar Jaiswal
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Department of Immunology, Microbiology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Vasco Azevedo
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marta Giovanetti
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Manguinhos, Rio De Janeiro, Brazil
| | - Sandeep Tiwari
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Carlos Junior Alcantara
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Manguinhos, Rio De Janeiro, Brazil
| |
Collapse
|
206
|
Sayed SB, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK. Exploring Lassa Virus Proteome to Design a Multi-epitope Vaccine Through Immunoinformatics and Immune Simulation Analyses. Int J Pept Res Ther 2020; 26:2089-2107. [PMID: 32421065 PMCID: PMC7223894 DOI: 10.1007/s10989-019-10003-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment and preventive measures against LASV resulted in a high mortality rate in its endemic regions. In this study, a multi-epitope vaccine was designed using immunoinformatics as a prophylactic agent against the virus. Following a rigorous assessment, the vaccine was built using T-cell (NCTL = 8 and NHTL = 6) and B-cell (NLBL = 4) epitopes from each LASV-derived protein in addition with suitable linkers and adjuvant. The physicochemistry, immunogenic potency and safeness of the designed vaccine (~ 68 kDa) were assessed. In addition, chosen CTL and HTL epitopes of our vaccine showed 97.37% worldwide population coverage. Besides, disulphide engineering also improved the stability of the chimeric vaccine. Molecular docking of our vaccine protein with toll-like receptor 2 (TLR2) showed binding efficiency followed by dynamics simulation for stable interaction. Furthermore, higher levels of cell-mediated immunity and rapid antigen clearance were suggested by immune simulation and repeated-exposure simulation, respectively. Finally, the optimized codons were used in in silico cloning to ensure higher expression within E. coli K12 bacterium. With further assessment both in vitro and in vivo, we believe that our proposed peptide-vaccine would be potential immunogen against Lassa fever.
Collapse
Affiliation(s)
- Sifat Bin Sayed
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Zulkar Nain
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Md Shakil Ahmed Khan
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Faruq Abdulla
- 2Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Rubaia Tasmin
- 3Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Utpal Kumar Adhikari
- 4School of Medicine, Western Sydney University, Campbelltown, NSW 2560 Australia
| |
Collapse
|
207
|
Sajjad R, Ahmad S, Azam SS. In silico screening of antigenic B-cell derived T-cell epitopes and designing of a multi-epitope peptide vaccine for Acinetobacter nosocomialis. J Mol Graph Model 2020; 94:107477. [PMID: 31654980 DOI: 10.1016/j.jmgm.2019.107477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/20/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Globally, antibiotic-resistant and tolerated bacterial isolates of Acinetobacter species are imposing high financial cost on health care systems and as such, molecular targets with promising immune protection could provide substantive benefits to human healthcare. Here, we performed an in silico based proteome-wide screening for antigenic B-cell derived T-cell epitopes and their following use to design a multi-epitope peptide vaccine that can effectively engage the host immune system against Acinetobacter nosocomialis SSA3 strain. Epitopes of the fimbrial biogenesis outer membrane usher FimD protein: YQQGINNYL and YRTNYTTVG were revealed appropriate for multi-epitope peptide construct designing. This protein has no homology to the host, essential to the pathogen survival and is localized at the pathogen surface. The predicted epitopes have high affinity for the highly expressed DRB*0101 allele in humans based on the lowest IC50 value in MHCPred and have an exo-membrane topology for efficient immune system recognition. The designed multi-epitope peptide vaccine is composed of the mentioned shortlisted antigenic epitopes linked to each other through a GPGPG linker, and an EAAAK linker that joined the multi-epitope peptide to the Cholera B subunit from Vibrio cholera as an adjuvant to increase vaccine construct antigenicity. The vaccine construct was docked and simulated with a transmembrane toll-like receptor (TLR4) that revealed construct stable binding with the TLR4 through the adjuvant, allowing the epitopes exposed to the host immune system essential for generating effective innate and long-lasting adaptive immunity. The designed multi-epitope peptide vaccine may prompt the development of a vaccine to control refractory and deleterious A. nosocomialis infections.
Collapse
Affiliation(s)
- Rida Sajjad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
208
|
Majid M, Andleeb S. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Sci Rep 2019; 9:19780. [PMID: 31874963 PMCID: PMC6930219 DOI: 10.1038/s41598-019-55613-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis is an enteric pathogen which is described as a causative agent of various intestinal infections and inflammatory diseases. Moreover, various research studies have reported it to be a leading factor in the development of colorectal cancer. As a part of the normal human microbiome, its treatment has become quite a challenge due to the alarming resistance against the available antibiotics. Although, this particular strain of B. fragilis shows susceptibility to few antibiotics, it is pertinent to devise an effective vaccine strategy for its elimination. There is no vaccine available against this pathogen up to date; therefore, we systematically ventured the outer membrane toxin producing proteins found exclusively in the toxigenic B. fragilis through the in-silico approaches to predict a multi-epitopic chimeric vaccine construct. The designed protein constitutes of epitopes which are predicted for linear B cells, Helper and T cells of outer membrane proteins expected to be putative vaccine candidates. The finalized proteins are only expressed in the enterotoxigenic B. fragilis, thus proving them to be exclusive. The 3D structure of the protein was first predicted followed by its refinement and validation via utilizing the bioinformatic approaches. Docking of the designed protein with the TLR2 receptor forecasted apt binding. Upon immune simulation, notable levels were observed in the expression of the immune cells.
Collapse
Affiliation(s)
- Mahnoor Majid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, 44000, Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
209
|
Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN, Vanhamme L, Souopgui J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep 2019; 9:4409. [PMID: 30867498 PMCID: PMC6416346 DOI: 10.1038/s41598-019-40833-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Onchocerciasis is a parasitic disease with high socio-economic burden particularly in sub-Saharan Africa. The elimination plan for this disease has faced numerous challenges. A multi-epitope prophylactic/therapeutic vaccine targeting the infective L3 and microfilaria stages of the parasite's life cycle would be invaluable to achieve the current elimination goal. There are several observations that make the possibility of developing a vaccine against this disease likely. For example, despite being exposed to high transmission rates of infection, 1 to 5% of people have no clinical manifestations of the disease and are thus considered as putatively immune individuals. An immuno-informatics approach was applied to design a filarial multi-epitope subunit vaccine peptide consisting of linear B-cell and T-cell epitopes of proteins reported to be potential novel vaccine candidates. Conservation of the selected proteins and predicted epitopes in other parasitic nematode species suggests that the generated chimera could be helpful for cross-protection. The 3D structure was predicted, refined, and validated using bioinformatics tools. Protein-protein docking of the chimeric vaccine peptide with the TLR4 protein predicted efficient binding. Immune simulation predicted significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2. Overall, the constructed recombinant putative peptide demonstrated antigenicity superior to current vaccine candidates.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Kevin Kum Esoh
- Department of Biochemistry, Faculty of Science, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Neba Derrick Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Nkemngo Francis Nongley
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Bertha Fru Asa
- Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Ferdinand Njume Ngale
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
210
|
Chauhan V, Rungta T, Goyal K, Singh MP. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep 2019; 9:2517. [PMID: 30792446 PMCID: PMC6385272 DOI: 10.1038/s41598-019-39299-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/22/2019] [Indexed: 01/29/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) responsible for causing Kaposi sarcoma (KS), an opportunistic angioproliferative neoplasm is emerging rapidly. Despite this there is no permanent cure for this disease. The present study was aimed to design a multi-epitope based vaccine targeting the major glycoproteins of KSHV which plays an important role in the virus entry. After the application of rigorous immunoinformatics analysis and several immune filters, the multi-epitope vaccine was constructed, consisting of CD4, CD8 and IFN-γ inducing epitopes. Several physiochemical characteristics, allergenicity and antigenicity of the multi-epitope vaccine were analyzed in order to ensure its safety and immunogenicity. Further, the binding affinity and stability of the vaccine with Toll like receptor -9 (TLR-9) was analyzed by molecular docking and dynamics simulation studies. In addition, an in silico cloning was performed to ensure the expression and translation efficiency of the vaccine, utilizing pET-28a (+) vector. Such T-cell-based immunotherapies which leverage this mechanism could prove their potential against cancer. Further, the authors propose to test the present findings in the lab settings to ensure the safety, immunogenicity and efficacy of the presented vaccine which may help in controlling KSHV infection.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Proliferation/genetics
- Computational Biology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/genetics
- Glycoproteins/immunology
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/pathogenicity
- Humans
- Molecular Docking Simulation
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/prevention & control
- Sarcoma, Kaposi/virology
- Toll-Like Receptor 9/genetics
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Varun Chauhan
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Tripti Rungta
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Kapil Goyal
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Mini P Singh
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India.
| |
Collapse
|
211
|
Ikram A, Zaheer T, Awan FM, Obaid A, Naz A, Hanif R, Paracha RZ, Ali A, Naveed AK, Janjua HA. Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Sci Rep 2018; 8:16107. [PMID: 30382118 PMCID: PMC6208421 DOI: 10.1038/s41598-018-34254-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) vaccines, designed to augment specific T-cell responses, have been designated as an important aspect of effective antiviral treatment. However, despite the current satisfactory progress of these vaccines, extensive past efforts largely remained unsuccessful in mediating clinically relevant anti-HCV activity in humans. In this study, we used a series of immunoinformatics approaches to propose a multiepitope vaccine against HCV by prioritizing 16 conserved epitopes from three viral proteins (i.e., NS34A, NS5A, and NS5B). The prioritised epitopes were tested for their possible antigenic combinations with each other along with linker AAY using structural modelling and epitope-epitope interactions analysis. An adjuvant (β-defensin) at the N-terminal of the construct was added to enhance the immunogenicity of the vaccine construct. Molecular dynamics (MD) simulation revealed the most stable structure of the proposed vaccine. The designed vaccine is potentially antigenic in nature and can form stable and significant interactions with Toll-like receptor 3 and Toll-like receptor 8. The proposed vaccine was also subjected to an in silico cloning approach, which confirmed its expression efficiency. These analyses suggest that the proposed vaccine can elicit specific immune responses against HCV; however, experimental validation is required to confirm the safety and immunogenicity profile of the proposed vaccine construct.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahreem Zaheer
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rumeza Hanif
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling & Simulation (RCMS), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Islamic International Medical College, Riphah International University Rawalpindi, Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|