201
|
Buchmann A, Alber M, Zartman JJ. Sizing it up: The mechanical feedback hypothesis of organ growth regulation. Semin Cell Dev Biol 2014; 35:73-81. [DOI: 10.1016/j.semcdb.2014.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/28/2022]
|
202
|
Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 2014; 158:143-156. [PMID: 24995985 DOI: 10.1016/j.cell.2014.05.035] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/21/2022]
Abstract
Mechanical forces have been proposed to modulate organ growth, but a molecular mechanism that links them to growth regulation in vivo has been lacking. We report that increasing tension within the cytoskeleton increases Drosophila wing growth, whereas decreasing cytoskeletal tension decreases wing growth. These changes in growth can be accounted for by changes in the activity of Yorkie, a transcription factor regulated by the Hippo pathway. The influence of myosin activity on Yorkie depends genetically on the Ajuba LIM protein Jub, a negative regulator of Warts within the Hippo pathway. We further show that Jub associates with α-catenin and that its localization to adherens junctions and association with α-catenin are promoted by cytoskeletal tension. Jub recruits Warts to junctions in a tension-dependent manner. Our observations delineate a mechanism that links cytoskeletal tension to regulation of Hippo pathway activity, providing a molecular understanding of how mechanical forces can modulate organ growth.
Collapse
|
203
|
Okuda S, Inoue Y, Eiraku M, Adachi T, Sasai Y. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. Biomech Model Mechanobiol 2014; 14:413-25. [PMID: 25227116 DOI: 10.1007/s10237-014-0613-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
In biological development, multiple cells cooperate to form tissue morphologies based on their mechanical interactions; namely active force generation and passive viscoelastic response. In particular, the dynamic processes of tissue deformations are governed by the viscous properties of the tissues. These properties are spatially inhomogeneous because they depend on the tissue constituents, such as cytoplasm, cytoskeleton, basement membrane and extracellular matrix. The multicellular mechanics of tissue morphogenesis have been investigated in vertex dynamics models. However, conventional models are applicable only to quasi-static deformation processes, which do not account for tissue viscosities. We propose a vertex dynamics model that simulates the viscosity-dependent dynamic deformation processes during tissue morphogenesis. By incorporating local velocity fields into the governing equation of vertex movements, the model turns Galilean invariant. In addition, the viscous properties of tissue components are newly expressed by formulating friction forces on vertices as functions of the relative velocities among the vertices. The advantages of the proposed model are examined by epithelial growth simulations under the employed condition for quasi-static processes. As a result, the epithelial vesicle simulated by the proposed model is linearly elongated with nearly free stress, while that simulated by the conventional model is undulated with compressive residual stress. Therefore, the proposed model is able to reflect the timescale of deformations by satisfying Galilean invariance. Next, the applicability of the proposed model is assessed in epithelial growth simulations of viscous extracellular materials. In this test, the epithelial vesicles are deformed into tubular shapes by oriented cell divisions, and their morphologies are extremely sensitive to extracellular viscosity. Therefore, the dynamic deformations in the proposed model depend on the viscous properties of tissue components. The proposed model will be useful for simulating dynamic deformation processes of tissue morphogenesis depending on viscous properties of various tissue components.
Collapse
Affiliation(s)
- Satoru Okuda
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan,
| | | | | | | | | |
Collapse
|
204
|
Handke B, Szabad J, Lidsky PV, Hafen E, Lehner CF. Towards long term cultivation of Drosophila wing imaginal discs in vitro. PLoS One 2014; 9:e107333. [PMID: 25203426 PMCID: PMC4159298 DOI: 10.1371/journal.pone.0107333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/14/2014] [Indexed: 12/26/2022] Open
Abstract
The wing imaginal disc of Drosophila melanogaster is a prominent experimental system for research on control of cell growth, proliferation and death, as well as on pattern formation and morphogenesis during organogenesis. The precise genetic methodology applicable in this system has facilitated conceptual advances of fundamental importance for developmental biology. Experimental accessibility and versatility would gain further if long term development of wing imaginal discs could be studied also in vitro. For example, culture systems would allow live imaging with maximal temporal and spatial resolution. However, as clearly demonstrated here, standard culture methods result in a rapid cell proliferation arrest within hours of cultivation of dissected wing imaginal discs. Analysis with established markers for cells in S- and M phase, as well as with RGB cell cycle tracker, a novel reporter transgene, revealed that in vitro cultivation interferes with cell cycle progression throughout interphase and not just exclusively during G1. Moreover, quantification of EGFP expression from an inducible transgene revealed rapid adverse effects of disc culture on basic cellular functions beyond cell cycle progression. Disc transplantation experiments confirmed that these detrimental consequences do not reflect fatal damage of imaginal discs during isolation, arguing clearly for a medium insufficiency. Alternative culture media were evaluated, including hemolymph, which surrounds imaginal discs during growth in situ. But isolated larval hemolymph was found to be even less adequate than current culture media, presumably as a result of conversion processes during hemolymph isolation or disc culture. The significance of prominent growth-regulating pathways during disc culture was analyzed, as well as effects of insulin and disc co-culture with larval tissues as potential sources of endocrine factors. Based on our analyses, we developed a culture protocol that prolongs cell proliferation in cultured discs.
Collapse
Affiliation(s)
- Björn Handke
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - János Szabad
- Department of Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Peter V. Lidsky
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Ernst Hafen
- Department of Biology, Institute of Molecular Systems Biology (IMSB), ETH Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
205
|
Nestor-Bergmann A, Goddard G, Woolner S. Force and the spindle: mechanical cues in mitotic spindle orientation. Semin Cell Dev Biol 2014; 34:133-9. [PMID: 25080021 PMCID: PMC4169662 DOI: 10.1016/j.semcdb.2014.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts.
Collapse
Affiliation(s)
| | - Georgina Goddard
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Sarah Woolner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
206
|
Abstract
The RIKEN Center for Developmental Biology in Kobe, Japan, hosted a meeting entitled ‘Regeneration of Organs: Programming and Self-Organization’ in March, 2014. Scientists from across the globe met to discuss current research on regeneration, organ morphogenesis and self-organization – and the links between these fields. A diverse range of experimental models and organ systems was presented, and the speakers aptly illustrated the unique power of each. This Meeting Review describes the major advances reported and themes emerging from this exciting meeting.
Collapse
Affiliation(s)
- Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
207
|
Spindle orientation processes in epithelial growth and organisation. Semin Cell Dev Biol 2014; 34:124-32. [PMID: 24997348 DOI: 10.1016/j.semcdb.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/08/2023]
Abstract
This review focuses on the role of orientated cell division (OCD) in two aspects of epithelial growth, namely layer formation and growth in the epithelial plane. Epithelial stratification is invariably associated with fate asymmetric cell divisions. We discuss this through the example of epidermal stratification where cell division plane regulation facilitates concomitant thickening and cell differentiation. Embryonic neuroepithelia are considered as a special case of epithelial stratification. We highlight early ectodermal layer specification, which sets the epidermal versus neuronal fates, as well as later neurogenesis in vertebrates and mammals. We also discuss the heart epicardium as an example of coordinating OCDs with delamination and subsequent differentiation. Epithelial planar growth is examined both in the context of uniform growth, such as in Xenopus epiboly, the Drosophila wing disc and the mammalian intestinal crypt as well as in anisotropic growth, or elongation, such as Drosophila and vertebrate axial elongation and the mouse palate. Coupling between growth perpendicular to and within epithelial planes is recognised, but so are exceptions, as is the often passive role of spindle orientation sometimes hitherto considered to be an active driver of directional growth.
Collapse
|
208
|
Hamaratoglu F, Affolter M, Pyrowolakis G. Dpp/BMP signaling in flies: from molecules to biology. Semin Cell Dev Biol 2014; 32:128-36. [PMID: 24813173 DOI: 10.1016/j.semcdb.2014.04.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/30/2014] [Indexed: 01/08/2023]
Abstract
Decapentaplegic (Dpp), the fly homolog of the secreted mammalian BMP2/4 signaling molecules, is involved in almost all aspects of fly development. Dpp has critical functions at all developmental stages, from patterning of the eggshell to the determination of adult intestinal stem cell identity. Here, we focus on recent findings regarding the transcriptional regulatory logic of the pathway, on a new feedback regulator, Pentagone, and on Dpp's roles in scaling and growth of the Drosophila wing.
Collapse
Affiliation(s)
- Fisun Hamaratoglu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Centre for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
209
|
Marty F, Rockel-Bauer C, Simigdala N, Brunner E, Basler K. Large-scale imaginal disc sorting: A protocol for "omics"-approaches. Methods 2014; 68:260-4. [PMID: 24736056 DOI: 10.1016/j.ymeth.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
Imaginal discs, especially the wing imaginal disc, are powerful model systems to study organ development. The traditional methods to analyze wing imaginal discs depend on the laborious and time-consuming dissection of larvae. "Omics"-based approaches, such as RNA-seq, ChIP-seq, proteomics and lipidomics, offer new opportunities for the systems-level investigation of organ development. However, it is impractical to manually isolate the required starting material. This is even more problematic when experiments strive for enhanced temporal and spatial resolution. The mass isolation workflow discussed in this review, solves this problem. The semi-automated sorting of 1000 wing imaginal discs in less than 3h forms the basis of a workflow that can be connected to biochemical analyses of organ patterning and growth. In addition to the mass isolation workflow we briefly describe key "omics" technologies and their applications. The combination of mass isolation and "omics"-approaches ensures that the wing imaginal disc will continue to be a key model organ for studying developmental processes, both on the genetic, but increasingly also on the biochemical level.
Collapse
Affiliation(s)
- Florian Marty
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Claudia Rockel-Bauer
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Nikiana Simigdala
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Erich Brunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.
| |
Collapse
|
210
|
|
211
|
Lancaster OM, Baum B. Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol 2014; 34:109-15. [PMID: 24607328 DOI: 10.1016/j.semcdb.2014.02.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Cell division requires the wholesale reorganization of cell architecture. At the same time as the microtubule network is remodelled to generate a bipolar spindle, animal cells entering mitosis replace their interphase actin cytoskeleton with a contractile mitotic actomyosin cortex that is tightly coupled to the plasma membrane--driving mitotic cell rounding. Here, we consider how these two processes are coordinated to couple chromosome segregation and cell division. In doing so we explore the relative roles of cell shape and the actin cortex in spindle morphogenesis, orientation and positioning.
Collapse
Affiliation(s)
- Oscar M Lancaster
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
212
|
Ruiz PSB, Serras F. Mind the gap: cells respond to tissue damage by changing orientation of cell divisions. Fly (Austin) 2014; 8:33-5. [PMID: 24406337 DOI: 10.4161/fly.27690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nature presents plenty of examples of cellular behavior that determines the shape of an organ during development, such as epithelial polarity and cell division orientation. Little is known, however, about how organs regenerate or how cellular behavior affects regeneration. One of the most exciting aspects of regeneration biology is understanding how proliferation and patterning are coordinated, since it means that cells not only have to proliferate but also have to do so in an ordered manner so that organs are reconstructed proportionally. Drosophila wing imaginal discs and adult wings are models used in different approaches to investigate this issue; they have recently been used to reveal that, after localized cell death, neighboring cells change their cell division orientation toward the damaged zone. During this process, cell polarity and spindle orientation operate in coordination with cell proliferation to regenerate proper organ size and shape.
Collapse
Affiliation(s)
- Paula Santa Bárbara Ruiz
- Departament de Genètica, Facultat de Biologia; Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona, Spain
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia; Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona, Spain
| |
Collapse
|
213
|
Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg CP. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat Cell Biol 2013; 15:1405-14. [PMID: 24212092 DOI: 10.1038/ncb2869] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/26/2013] [Indexed: 12/14/2022]
Abstract
Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly.
Collapse
Affiliation(s)
- Pedro Campinho
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | | | | | | | | | | |
Collapse
|
214
|
|