201
|
The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochem Biophys Res Commun 2008; 373:659-64. [PMID: 18602372 DOI: 10.1016/j.bbrc.2008.06.096] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 06/24/2008] [Indexed: 01/21/2023]
Abstract
Histone lysine methylation is an evolutionally conserved modification involved in determining chromatin states associated with gene activation or repression. Here we report that the Arabidopsis SET domain group 8 (SDG8) protein is a histone H3 methyltransferase involved in regulating shoot branching. Knockout mutations of the SDG8 gene markedly reduce the global levels of histone H3 trimethylation at lysines 9 and 36 as well as dimethylation at lysine 36. The sdg8 mutants produce more shoot branches than wild-type plants. The expression of SPS/BUS (supershoot/bushy), a repressor of shoot branching, is decreased in sdg8 mutants, while UGT74E2 (UDP-glycosyltransferase 74E2), a gene associated with increased shoot branching, is up-regulated in sdg8 mutants. The altered expression of SPS/BUS and UGT74E2 correlates with changed histone H3 methylation at these loci. These results suggest that SDG8 regulates shoot branching via controlling the methylation states of its target genes.
Collapse
|
202
|
Lu F, Li G, Cui X, Liu C, Wang XJ, Cao X. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:886-96. [PMID: 18713399 DOI: 10.1111/j.1744-7909.2008.00692.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Histone methylation homeostasis is achieved by controlling the balance between methylation and demethylation to maintain chromatin function and developmental regulation. In animals, a conserved Jumonji C (JmjC) domain was found in a large group of histone demethylases. However, it is still unclear whether plants also contain the JmjC domain-containing active histone demethylases. Here we performed genome-wide screen and phylogenetic analysis of JmjC domain-containing proteins in the dicot plant, Arabidopsis, and monocot plant rice, and found 21 and 20 JmjC domain-containing, respectively. We also examined the expression of JmjC domain-containing proteins and compared them to human JmjC counterparts for potential enzymatic activity. The spatial expression patterns of the Arabidopsis JmjC domain-containing genes revealed that they are all actively transcribed genes. These active plant JmjC domain-containing genes could possibly function in epigenetic regulation to antagonize the activity of the large number of putative SET domain-containing histone methyltransferase activity to dynamically regulate histone methylation homeostasis.
Collapse
Affiliation(s)
- Falong Lu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
203
|
Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 2008; 315:355-68. [PMID: 18252252 DOI: 10.1016/j.ydbio.2007.12.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 11/29/2022]
Abstract
Plant SET domain proteins are known to be involved in the epigenetic control of gene expression during plant development. Here, we report that the Arabidopsis SET domain protein, SDG4, contributes to the epigenetic regulation of pollen tube growth, thus affecting fertilization. Using an SDG4-GFP fusion construct, the chromosomal localization of SDG4 was established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyses indicated that SDG4 is the major ASH1-related gene expressed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone H3 in the inflorescence and pollen grains. The significant reduction in the amount of methylated histone H3 K4 and K36 in sdg4 pollen vegetative nuclei resulted in suppression of pollen tube growth. Our results indicate that SDG4 is capable of modulating the expression of genes that function in the growth of pollen tube by methylation of specific lysine residues of the histone H3 in the vegetative nuclei.
Collapse
Affiliation(s)
- Joyce A Cartagena
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Yamada-Okabe T, Matsumoto N. Decreased serum dependence in the growth of NIH3T3 cells from the overexpression of human nuclear receptor-binding SET-domain-containing protein 1 (NSD1) or fission yeast su(var)3-9, enhancer-of-zeste, trithorax 2 (SET2). Cell Biochem Funct 2008; 26:146-50. [PMID: 17437319 DOI: 10.1002/cbf.1413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear receptor-binding SET-domain-containing protein 1 (NSD1), a culprit gene for Sotos syndrome, contains a su(var)3-9, enhancer-of-zeste, trithorax (SET) domain that is responsible for histone methyltransferase activity and other domains such as plant homeodomain (PHD) and proline-tryptophan-tryptophan-proline (PWWP) involved in protein-protein interactions in the C-terminal half of NSD1. To elucidate the function of NSD1 on cell growth, we overexpressed NSD1 in NIH3T3 cells. Cells overexpressing NSD1 grew in the presence of 2% serum, whereas vector transfected cells did not. Overexpression of the C-terminal half of NSD1 but not the N-terminal half of NSD1 also produced cell growth under low serum concentration. Furthermore, overexpression in NIH3T3 of Schizosaccharomyces pombe SET2 which has a SET domain but not PHD or PWWP domains conferred the reduced serum dependence. Thus, the SET domain of NSD1 is involved in cell growth by modulating serum dependence.
Collapse
Affiliation(s)
- Toshiko Yamada-Okabe
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan.
| | | |
Collapse
|
205
|
Lázaro A, Gómez-Zambrano A, López-González L, Piñeiro M, Jarillo JA. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:653-66. [PMID: 18296430 DOI: 10.1093/jxb/erm332] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mutations affecting the Arabidopsis SWC6 gene encoding a putative orthologue of a component of the SWR1 chromatin remodelling complex in plants have been characterized. swc6 mutations cause early flowering, shortened inflorescence internodes, and altered leaf and flower development. These phenotypic defects resemble those of the photoperiod independent early flowering 1 (pie1) and early in short days 1 (esd1) mutants, also affected in homologues of the SWR1 complex subunits. SWC6 is a ubiquitously expressed nuclear HIT-Zn finger-containing protein, with the highest levels found in pollen. Double mutant analyses suggest that swc6 abolishes the FLC-mediated late-flowering phenotype of plants carrying active alleles of FRI and of mutants of the autonomous pathway. It was found that SWC6 is required for the expression of the FLC repressor to levels that inhibit flowering. However, the effect of swc6 in an flc null background and the down-regulation of other FLC-like/MAF genes in swc6 mutants suggest that flowering inhibition mediated by SWC6 occurs through both FLC- and FLC-like gene-dependent pathways. Both genetic and physical interactions between SWC6 and ESD1 have been demonstrated, suggesting that both proteins act in the same complex. Using chromatin immunoprecipitation, it has been determined that SWC6, as previously shown for ESD1, is required for both histone H3 acetylation and H3K4 trimethylation of the FLC chromatin. Altogether, these results suggest that SWC6 and ESD1 are part of an Arabidopsis SWR1 chromatin remodelling complex involved in the regulation of diverse aspects of plant development, including floral repression through the activation of FLC and FLC-like genes.
Collapse
Affiliation(s)
- Ana Lázaro
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro de Biotecnologia y Genómica de Plantas (INIA-UAU), Ctra. de A Coruña, Km 7,5, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
206
|
Thorstensen T, Grini PE, Mercy IS, Alm V, Erdal S, Aasland R, Aalen RB. The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). PLANT MOLECULAR BIOLOGY 2008; 66:47-59. [PMID: 17978851 DOI: 10.1007/s11103-007-9251-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/04/2007] [Indexed: 12/24/2022]
Abstract
The Arabidopsis thaliana genome contains more than 30 genes encoding SET-domain proteins that are thought to be epigenetic regulators of gene expression and chromatin structure. SET-domain proteins can be divided into subgroups, and members of the Polycomb group (PcG) and trithorax group (trxG) have been shown to be important regulators of development. Both in animals and plants some of these proteins are components of multimeric protein complexes. Here, we have analyzed the Arabidopsis trxG protein ASHR3 which has a SET domain and pre- and post-SET domains similar to that of Ash1 in Drosophila. In addition to the SET domain, a divergent PHD finger is found in the N-terminus of the ASHR3 protein. As expected from SET-domain proteins involved in transcriptional activation, ASHR3 (coupled to GFP) localizes to euchromatin. A yeast two-hybrid screening revealed that the ASHR3 protein interacts with the putative basic helix-loop-helix (bHLH) transcription factor ABORTED MICROSPORES (AMS), which is involved in anther and stamen development in Arabidopsis. Deletion mapping indicated that both the PHD finger and the SET domain mediate the interaction between the two proteins. Overexpression of ASHR3 led in general to growth arrest, and specifically to degenerated anthers and male sterility. Expression analyses demonstrated that ASHR3 like AMS is expressed in the anther and in stamen filaments. We therefore propose that AMS can target ASHR3 to chromatin and regulate genes involved in stamen development and function.
Collapse
Affiliation(s)
- Tage Thorstensen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
207
|
Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 2007; 28:1348-60. [PMID: 18070919 DOI: 10.1128/mcb.01607-07] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Histone lysines can be mono-, di-, or trimethylated, providing an ample magnitude of epigenetic information for transcription regulation. In fungi, SET2 is the sole methyltransferase responsible for mono-, di-, and trimethylation of H3K36. Here we show that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases. The SET2 homologs SDG8 and SDG26 each can methylate oligonucleosomes in vitro, and both proteins are localized in the nucleus. While the previously reported loss-of-function sdg8 mutants have an early-flowering phenotype, the loss-of-function sdg26 mutants show a late-flowering phenotype. Consistently, several MADS-box flowering repressors are down-regulated by sdg8 but up-regulated by sdg26. The sdg8 but not the sdg26 mutant plants show a dramatically reduced level of both di- and trimethyl-H3K36 and an increased level of monomethyl-H3K36. SDG8 is thus specifically required for di- and trimethylation of H3K36. Our results further establish that H3K36 di- and tri- but not monomethylation correlates with transcription activation. Finally, we show that SDG8 and VIP4, which encodes a component of the PAF1 complex, act independently and synergistically in transcription regulation. Together our results reveal that the deposition of H3K36 methylation is finely regulated, possibly to cope with the complex regulation of growth and development in higher eukaryotes.
Collapse
|
208
|
Proveniers M, Rutjens B, Brand M, Smeekens S. The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:899-913. [PMID: 17908157 DOI: 10.1111/j.1365-313x.2007.03285.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Floral induction is controlled by a plethora of genes acting in different pathways that either repress or promote floral transition at the shoot apical meristem (SAM). During vegetative development high levels of floral repressors maintain the Arabidopsis SAM as incompetent to respond to promoting factors. Among these repressors, FLOWERING LOCUS C (FLC) is the most prominent. The processes underlying downregulation of FLC in response to environmental and developmental signals have been elucidated in considerable detail. However, the basal induction of FLC and its upregulation by FRIGIDA (FRI) are still poorly understood. Here we report the functional characterization of the ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1) gene. A function of ATH1 in floral repression is suggested by a gradual downregulation of ATH1 in the SAM prior to floral transition. Further evidence for such a function of ATH1 is provided by the vernalization-sensitive late flowering of plants that constitutively express ATH1. Analysis of lines that differ in FRI and/or FLC allele strength show that this late flowering is caused by upregulation of FLC as a result of synergism between ATH1 overexpression and FRI. Lack of ATH1, however, results in attenuated FLC levels independently of FRI, suggesting that ATH1 acts as a general activator of FLC expression. This is further corroborated by a reduction of FLC-mediated late flowering in fca-1 and fve-1 autonomous pathway backgrounds when combined with ath1. Since other floral repressors of the FLC clade are not significantly affected by ATH1, we conclude that ATH1 controls floral competency as a specific activator of FLC expression.
Collapse
Affiliation(s)
- Marcel Proveniers
- Molecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
209
|
Pfluger J, Wagner D. Histone modifications and dynamic regulation of genome accessibility in plants. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:645-52. [PMID: 17884714 PMCID: PMC2140274 DOI: 10.1016/j.pbi.2007.07.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 05/17/2023]
Abstract
In all eukaryotes chromatin physically restricts the accessibility of the genome to regulatory proteins such as transcription factors. Plant model systems have been instrumental in demonstrating that this restriction is dynamic and changes during development and in response to exogenous cues. Among the multiple epigenetic mechanisms that alter chromatin to regulate gene expression, histone modifications play a major role. Recent studies in Arabidopsis have provided the first genome-wide histone modification maps, revealed important biological roles for histone modifications, and advanced our understanding of stimulus-dependent changes in histone modifications.
Collapse
|
210
|
Liu S, Yu Y, Ruan Y, Meyer D, Wolff M, Xu L, Wang N, Steinmetz A, Shen WH. Plant SET- and RING-associated domain proteins in heterochromatinization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:914-26. [PMID: 17892444 DOI: 10.1111/j.1365-313x.2007.03286.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The heterochromatin of many eukaryotes is marked by both histone H3 lysine 9 (H3K9) methylation and DNA cytosine methylation. Several studies have revealed links between these two epigenetic markers. The molecular mechanisms involved in establishment of these links, however, remain largely unknown. In plants, H3K9 methylation is primarily carried out by a highly conserved family of proteins that contain SET and SRA (SET- and RING-associated) domains. Here, we show that the SRA-SET domain H3K9 methyltransferase NtSET1, as well as LIKE HETEROCHROMATIN PROTEIN1, binds heterochromatin DNA repeats. In the yeast two-hybrid assay, NtSET1 binds the DNA methylcytosine-binding protein VARIANT IN METHYLATION1 (VIM1), which contains conserved PHD, SRA and RING domains. This binding requires either the N-terminus of NtSET1 containing the SRA domain or the C-terminus of NtSET1 containing the SET domain and the PHD domain of VIM1. Consistent with a role in the establishment/maintenance of chromatin structure during cell division, VIM1 transcripts are abundant in actively dividing cells and the VIM1 protein is localized in the nucleus. While null vim1 mutant plants show a normal growth phenotype, transgenic Arabidopsis plants over-expressing VIM1 show inhibition in root growth and delay in flowering. We propose that SRA-SET domain H3K9 methyltransferases associate with the PHD-SRA-RING domain protein VIM1, mutually reinforcing H3K9 and DNA methylation in heterochromatinization.
Collapse
Affiliation(s)
- Shiming Liu
- Institut de Biologie Moléculaire des Plantes (IBMP), Laboratoire Propre du CNRS (UPR 2357) Conventionné Avec l'Université Louis Pasteur Strasbourg 1, 12 rue du Général Zimmer, 67084 Strasbourg cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep 2007; 8:1190-5. [PMID: 18007657 DOI: 10.1038/sj.embor.7401111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 11/08/2022] Open
Abstract
In plants, histone H3 lysine methyltransferases are important in gene silencing and developmental regulation; however, the roles of histone H4 methylation in plant development remain unclear. Recent studies found a type II histone arginine methyltransferase, AtPRTM5, which is involved in promoting growth and flowering. Here, we purified a dimerized plant-specific histone H4 methyltransferase, plant histone arginine methyltransferase 10 (PHRMT10), from cauliflower. Arabidopsis thaliana protein arginine methyltransferase 10 (AtPRMT10)--the Arabidopsis homologue of PHRMT10--was shown to be a type I PRMT, which preferentially asymmetrically methylated histone H4R3 in vitro. Genetic disruption of AtPRMT10 resulted in late flowering by upregulating FLOWERING LOCUS C (FLC) transcript levels. In addition, we show that AtPRMT10 functions genetically separate from AtPRMT5, but that each acts to fine-tune expression of FLC. This work adds an extra layer of complexity to flowering-time regulation and also sheds light on the importance of asymmetric arginine methylation in plant development.
Collapse
|
212
|
Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. PLANT METHODS 2007; 3:11. [PMID: 17892552 PMCID: PMC2077865 DOI: 10.1186/1746-4811-3-11] [Citation(s) in RCA: 403] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/24/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Chromatin remodeling, histone modifications and other chromatin-related processes play a crucial role in gene regulation. A very useful technique to study these processes is chromatin immunoprecipitation (ChIP). ChIP is widely used for a few model systems, including Arabidopsis, but establishment of the technique for other organisms is still remarkably challenging. Furthermore, quantitative analysis of the precipitated material and normalization of the data is often underestimated, negatively affecting data quality. RESULTS We developed a robust ChIP protocol, using maize (Zea mays) as a model system, and present a general strategy to systematically optimize this protocol for any type of tissue. We propose endogenous controls for active and for repressed chromatin, and discuss various other controls that are essential for successful ChIP experiments. We experienced that the use of quantitative PCR (QPCR) is crucial for obtaining high quality ChIP data and we explain why. The method of data normalization has a major impact on the quality of ChIP analyses. Therefore, we analyzed different normalization strategies, resulting in a thorough discussion of the advantages and drawbacks of the various approaches. CONCLUSION Here we provide a robust ChIP protocol and strategy to optimize the protocol for any type of tissue; we argue that quantitative real-time PCR (QPCR) is the best method to analyze the precipitates, and present comprehensive insights into data normalization.
Collapse
Affiliation(s)
- Max Haring
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Sascha Offermann
- Institute for Biology I, Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Tanja Danker
- Institute for Biology I, Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Ina Horst
- Institute for Biology I, Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | | | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| |
Collapse
|
213
|
Stabell M, Larsson J, Aalen RB, Lambertsson A. Drosophila dSet2 functions in H3-K36 methylation and is required for development. Biochem Biophys Res Commun 2007; 359:784-789. [PMID: 17560546 DOI: 10.1016/j.bbrc.2007.05.189] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 05/28/2007] [Indexed: 11/28/2022]
Abstract
Lysine methylation has important functions in biological processes that range from heterochromatin formation to transcription regulation. Here, we demonstrate that Drosophila dSet2 encodes a developmentally essential histone H3 lysine 36 (K36) methyltransferase. Larvae subjected to RNA interference-mediated (RNAi) suppression of dSet2 lack dSet2 expression and H3-K36 methylation, indicating that dSet2 is the sole enzyme responsible for this modification in Drosophila melanogaster. dSet2 RNAi blocks puparium formation and adult development, and causes partial (blister) separation of the dorsal and ventral wing epithelia, defects suggesting a failure of the ecdysone-controlled genetic program. A transheterozygous EcR null mutation/dSet2 RNAi combination produces a complete (balloon) separation of the wing surfaces, revealing a genetic interaction between EcR and dSet2. Using immunoprecipitation, we demonstrate that dSet2 associates with the hyperphosphorylated form of RNA polymerase II (RNAPII).
Collapse
Affiliation(s)
- Marianne Stabell
- Institute of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, NO-0316 Oslo, Norway
| | | | | | | |
Collapse
|
214
|
Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007; 9:804-12. [PMID: 17589499 DOI: 10.1038/ncb1608] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 05/30/2007] [Indexed: 12/11/2022]
Abstract
Nuclear receptor-binding SET domain protein 1 (NSD1) prototype is a family of mammalian histone methyltransferases (NSD1, NSD2/MMSET/WHSC1, NSD3/WHSC1L1) that are essential in development and are mutated in human acute myeloid leukemia (AML), overgrowth syndromes, multiple myeloma and lung cancers. In AML, the recurring t(5;11)(q35;p15.5) translocation fuses NSD1 to nucleoporin-98 (NUP98). Here, we present the first characterization of the transforming properties and molecular mechanisms of NUP98-NSD1. We demonstrate that NUP98-NSD1 induces AML in vivo, sustains self-renewal of myeloid stem cells in vitro, and enforces expression of the HoxA7, HoxA9, HoxA10 and Meis1 proto-oncogenes. Mechanistically, NUP98-NSD1 binds genomic elements adjacent to HoxA7 and HoxA9, maintains histone H3 Lys 36 (H3K36) methylation and histone acetylation, and prevents EZH2-mediated transcriptional repression of the Hox-A locus during differentiation. Deletion of the NUP98 FG-repeat domain, or mutations in NSD1 that inactivate the H3K36 methyltransferase activity or that prevent binding of NUP98-NSD1 to the Hox-A locus precluded both Hox-A gene activation and myeloid progenitor immortalization. We propose that NUP98-NSD1 prevents EZH2-mediated repression of Hox-A locus genes by colocalizing H3K36 methylation and histone acetylation at regulatory DNA elements. This report is the first to link deregulated H3K36 methylation to tumorigenesis and to link NSD1 to transcriptional regulation of the Hox-A locus.
Collapse
MESH Headings
- Acetylation
- Acute Disease
- Amino Acid Sequence
- Animals
- Cell Transformation, Neoplastic
- Cells, Cultured
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Histone Methyltransferases
- Histone-Lysine N-Methyltransferase
- Histones/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Methylation
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Myeloid Progenitor Cells/physiology
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/physiology
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Spectrophotometry, Atomic
- Transcriptional Activation
- Translocation, Genetic
Collapse
Affiliation(s)
- Gang G Wang
- Department of Pathology, University of California at San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
215
|
Choi K, Park C, Lee J, Oh M, Noh B, Lee I. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 2007; 134:1931-41. [PMID: 17470967 DOI: 10.1242/dev.001891] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWR1 complex (SWR1C) in yeast catalyzes the replacement of nucleosomal H2A with the H2AZ variant, which ensures full activation of underlying genes. We compared the phenotype of mutants in the homologs of SWR1C components in Arabidopsis thaliana. Mutations in Arabidopsis SWC6(AtSWC6), SUPPRESSOR OF FRIGIDA 3 (SUF3) and PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1), homologs of SWC6, ARP6 and SWR1, respectively, caused similar developmental defects, including leaf serration, weak apical dominance,flowers with extra petals and early flowering by reduction in expression of FLOWERING LOCUS C (FLC), a strong floral repressor. Chromatin immunoprecipitation assays showed that AtSWC6 and SUF3 bind to the proximal region of the FLC promoter, and protoplast transfection assays showed that AtSWC6 colocalizes with SUF3. Protein interaction analyses suggested the formation of a complex between PIE1, SUF3, AtSWC6 and AtSWC2. In addition, H2AZ, a substrate of SWR1C, interacts with both PIE1 and AtSWC2. Finally, knockdown of the H2AZ genes by RNA interference or artificial microRNA caused a phenotype similar to that of atswc6 or suf3. Our results strongly support the presence of an SWR1C-like complex in Arabidopsis that ensures proper development, including floral repression through full activation of FLC.
Collapse
Affiliation(s)
- Kyuha Choi
- National Research Laboratory of Plant Developmental Genetics, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
216
|
Krichevsky A, Kozlovsky SV, Gutgarts H, Citovsky V. Arabidopsis co-repressor complexes containing polyamine oxidase-like proteins and plant-specific histone methyltransferases. PLANT SIGNALING & BEHAVIOR 2007; 2:174-7. [PMID: 19704688 PMCID: PMC2634049 DOI: 10.4161/psb.2.3.3726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/18/2006] [Indexed: 05/18/2023]
Abstract
Regulation of genes by repression of transcription represents a virtually universal mechanism that underlies such diverse biological processes as restriction of expression of neuronal genes to neurons in mammals, and control of flowering in plants. However, while the molecular mechanisms of transcriptional gene silencing in animal systems are being intensively studied, our understanding of these processes in plants is very sparse and, because plants often utilize unique strategies to establish and maintain chromatin states, only limited use can be made of information available on epigenetic modifications in nonplant systems.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology; State University of New York; Stony Brook, New York USA
| | | | | | | |
Collapse
|
217
|
Zhu Y, Dong A, Shen WH. Chromatin remodeling in Arabidopsis root growth. PLANT SIGNALING & BEHAVIOR 2007; 2:160-2. [PMID: 19704743 PMCID: PMC2634044 DOI: 10.4161/psb.2.3.3687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 05/12/2023]
Abstract
The basic structural unit of chromatin is the nucleosome, which consists of 146 bp of DNA wrapped around the histone octamer constituted by two molecules each of histones H2A, H2B, H3 and H4. Nucleosome assembly/disassembly/reassembly processes occur primarily during DNA replication and also during transcription, DNA repair and recombination. Several chromatin-remodeling factors had been previously shown to have pleiotropic roles in different processes of plant growth and development. We have recently demonstrated that the Arabidopsis NRP1 and NRP2 genes encode H2A/H2B chaperones and are required for the maintenance of post-embryonic root growth. The nrp1-1nrp2-1 double mutant plants specifically showed a short-root phenotype in normal growth conditions. They were also hypersensitive to DNA damage and showed release of transcriptional gene silencing. We propose that NRP1 and NRP2 act as histone H2A/H2B chaperones in nucleosome assembly, playing critical roles for a correct genome transcription in the maintenance of root growth.
Collapse
Affiliation(s)
- Yan Zhu
- Institut de Biologie Moléculaire des Plantes; Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur; Strasbourg Cédex, France
- Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai, China
| | - Aiwu Dong
- Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes; Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur; Strasbourg Cédex, France
| |
Collapse
|
218
|
Pien S, Grossniklaus U. Polycomb group and trithorax group proteins in Arabidopsis. ACTA ACUST UNITED AC 2007; 1769:375-82. [PMID: 17363079 DOI: 10.1016/j.bbaexp.2007.01.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 12/17/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins form molecular modules of a cellular memory mechanism that maintains gene expression states established by other regulators. In general, PcG proteins are responsible for maintaining a repressed expression state, whereas trxG proteins act in opposition to maintain an active expression state. This mechanism, first discovered in Drosophila and subsequently in mammals, has more recently been studied in plants. The characterization of several Polycomb Repressive Complex 2 (PRC2) components in Arabidopsis thaliana constituted a first breakthrough, revealing key roles of PcG proteins in the control of crucial plant developmental processes. Interestingly, the recent identification of plant homologues of the Drosophila trithorax protein suggests a conservation of both the PcG and trxG gene regulatory system in plants. Here, we review the current evidence for the role of PcG and trxG proteins in the control of plant development, their biochemical functions, their interplay in maintaining stable expression states of their target genes, and point out future directions which may help our understanding of PcG and trxG function in plants.
Collapse
Affiliation(s)
- Stéphane Pien
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | |
Collapse
|
219
|
Ng DWK, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC. Plant SET domain-containing proteins: structure, function and regulation. ACTA ACUST UNITED AC 2007; 1769:316-29. [PMID: 17512990 PMCID: PMC2794661 DOI: 10.1016/j.bbaexp.2007.04.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/01/2023]
Abstract
Modification of the histone proteins that form the core around which chromosomal DNA is looped has profound epigenetic effects on the accessibility of the associated DNA for transcription, replication and repair. The SET domain is now recognized as generally having methyltransferase activity targeted to specific lysine residues of histone H3 or H4. There is considerable sequence conservation within the SET domain and within its flanking regions. Previous reviews have shown that SET proteins from Arabidopsis and maize fall into five classes according to their sequence and domain architectures. These classes generally reflect specificity for a particular substrate. SET proteins from rice were found to fall into similar groupings, strengthening the merit of the approach taken. Two additional classes, VI and VII, were established that include proteins with truncated/interrupted SET domains. Diverse mechanisms are involved in shaping the function and regulation of SET proteins. These include protein-protein interactions through both intra- and inter-molecular associations that are important in plant developmental processes, such as flowering time control and embryogenesis. Alternative splicing that can result in the generation of two to several different transcript isoforms is now known to be widespread. An exciting and tantalizing question is whether, or how, this alternative splicing affects gene function. For example, it is conceivable that one isoform may debilitate methyltransferase function whereas the other may enhance it, providing an opportunity for differential regulation. The review concludes with the speculation that modulation of SET protein function is mediated by antisense or sense-antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy C. Hall
- Corresponding author. Tel: 1-979-845-7728; fax: 1-979-862-4098,
| |
Collapse
|
220
|
Wang X, Zhang Y, Ma Q, Zhang Z, Xue Y, Bao S, Chong K. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J 2007; 26:1934-41. [PMID: 17363895 PMCID: PMC1847673 DOI: 10.1038/sj.emboj.7601647] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 02/20/2007] [Indexed: 11/09/2022] Open
Abstract
Plant flowering is a crucial developmental transition from the vegetative to reproductive phase and is properly timed by a number of intrinsic and environmental cues. Genetic studies have identified that chromatin modification influences the expression of FLOWERING LOCUS C (FLC), a MADS-box transcription factor that controls flowering time. Histone deacetylation and methylation at H3K9 and H3K27 are associated with repression of FLC; in contrast, methylation at H3K4 and H3K36 activates FLC expression. However, little is known about the functions of histone arginine methylation in plants. Here, we report that Arabidopsis Shk1 binding protein 1 (SKB1) catalyzes histone H4R3 symmetric dimethylation (H4R3sme2). SKB1 lesion results in upregulation of FLC and late flowering under both long and short days, but late flowering is reversed by vernalization and gibberellin treatments. An skb1-1flc-3 double mutant blocks late-flowering phenotype, which suggests that SKB1 promotes flowering by suppressing FLC transcription. SKB1 binds to the FLC promoter, and disruption of SKB1 results in reduced H4R3sme2, especially in the promoter of FLC chromatin. Thus, SKB1-mediated H4R3sme2 is a novel histone mark required for repression of FLC expression and flowering time control.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ya Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qibin Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhaoliang Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongbiao Xue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Centre, Beijing, China
| | - Shilai Bao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China. Tel.: +86 10 64889350; Fax: +86 10 64889350; E-mail:
| | - Kang Chong
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Centre, Beijing, China
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China. Tel.: +86 10 62836517; Fax: +86 10 82594821; E-mail:
| |
Collapse
|
221
|
Schmitz RJ, Amasino RM. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. ACTA ACUST UNITED AC 2007; 1769:269-75. [PMID: 17383745 DOI: 10.1016/j.bbaexp.2007.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 02/02/2007] [Accepted: 02/16/2007] [Indexed: 01/15/2023]
Abstract
The transition from vegetative to reproductive development is a highly regulated process that, in many plant species, is sensitive to environmental cues that provide seasonal information to initiate flowering during optimal times of the year. One environmental cue is the cold of winter. Winter annuals and biennials typically require prolonged exposure to the cold of winter to flower rapidly in the spring. This process by which flowering is promoted by cold exposure is known as vernalization. The winter-annual habit of Arabidopsis thaliana is established by the ability of FRIGIDA to promote high levels of expression of the potent floral repressor FLOWERING LOCUS C (FLC). In Arabidopsis, vernalization results in the silencing of FLC in a mitotically stable (i.e., epigenetic) manner that is maintained for the remainder of the plant life cycle. The repressed "off" state of FLC has features characteristic of facultative heterochromatin. Upon passing to the next generation, the "off" state of FLC is reset to the "on" state. The environmental induction and mitotic stability of vernalization-mediated FLC repression as well as the subsequent resetting in the next generation provides a system for studying several aspects of epigenetic control of gene expression.
Collapse
Affiliation(s)
- Robert J Schmitz
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
222
|
March-Díaz R, García-Domínguez M, Florencio FJ, Reyes JC. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. PLANT PHYSIOLOGY 2007; 143:893-901. [PMID: 17142478 PMCID: PMC1803727 DOI: 10.1104/pp.106.092270] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The SWR1/SRCAP complex is a chromatin-remodeling complex that has been shown to be involved in substitution of histone H2A by the histone variant H2A.Z in yeast (Saccharomyces cerevisiae) and animals. Here, we identify and characterize SERRATED LEAVES AND EARLY FLOWERING (SEF), an Arabidopsis (Arabidopsis thaliana) homolog of the yeast SWC6 protein, a conserved subunit of the SWR1/SRCAP complex. SEF loss-of-function mutants present a pleiotropic phenotype characterized by serrated leaves, frequent absence of inflorescence internodes, bushy aspect, and flowers with altered number and size of organs. sef plants flower earlier than wild-type plants both under inductive and noninductive photoperiods. This correlates with strong reduction of FLOWERING LOCUS C and MADS-AFFECTING FLOWERING4 transcript levels and up-regulation of FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene expression. The sef phenotype is similar to that of the photoperiod-independent early flowering1 (pie1) and the actin-related protein 6 (arp6) mutants. PIE1 and ARP6 proteins are also homologs of SWR1/SRCAP complex subunits. Analysis of sef pie1 double mutants demonstrates genetic interaction between these two genes. We also show physical interactions between SEF, ARP6, and PIE1 proteins. Taken together, our data indicate that SEF, ARP6, and PIE1 might form a molecular complex in Arabidopsis related to the SWR1/SRCAP complex identified in other eukaryotes.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Seville, Spain
| | | | | | | |
Collapse
|
223
|
Kim SY, Michaels SD. SUPPRESSOR OF FRI 4encodes a nuclear-localized protein that is required for delayed flowering in winter-annualArabidopsis. Development 2006; 133:4699-707. [PMID: 17079264 DOI: 10.1242/dev.02684] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The floral inhibitor FLOWERING LOCUS C (FLC) is a crucial regulator of flowering time in Arabidopsis, and is positively regulated by the FRIGIDA (FRI) gene in late-flowering winter-annual accessions. In rapid-cycling accessions, FLC expression is suppressed by the autonomous floral-promotion pathway (AP); thus AP mutants contain high levels of FLC and are late flowering. Previous work has shown that the upregulation of FLC in FRI- or AP-mutant backgrounds is correlated to an increase in histone H3 lysine 4 (H3K4)trimethylation at the FLC locus. This increase in trimethylation requires a PAF1-like complex and EARLY FLOWERING IN SHORT DAYS(EFS), a putative histone H3 methyltransferase. We have identified a putative zinc-finger-containing transcription factor, SUF4, that is required for the upregulation of FLC by FRI. suf4 mutations strongly suppress the late-flowering phenotype of FRI, but only weakly suppress AP mutants. As with mutants in efs or the PAF1-like complex, suf4 mutants show reduced H3K4 trimethylation at FLC. An interesting distinction between the phenotypes of suf4 mutants and mutants in efs or the PAF1-like complex is observed in the expression of genes that are adjacent to FLC or FLC-like genes. In efs and PAF1-like-complex mutants, the expression of FLC, FLC-like genes and adjacent genes is suppressed. In suf4 mutants, however, only FLC expression is suppressed. These data are consistent with a model in which SUF4 may act to specifically recruit EFS and the PAF1-like complex to the FLC locus.
Collapse
Affiliation(s)
- Sang Yeol Kim
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
224
|
Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V. C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 2006; 303:259-69. [PMID: 17224141 PMCID: PMC1831845 DOI: 10.1016/j.ydbio.2006.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/20/2006] [Accepted: 11/06/2006] [Indexed: 01/29/2023]
Abstract
Histone modification represents a universal mechanism for regulation of eukaryotic gene expression underlying diverse biological processes from neuronal gene expression in mammals to control of flowering in plants. In animal cells, these chromatin modifications are effected by well-defined multiprotein complexes containing specific histone-modifying activities. In plants, information about the composition of such co-repressor complexes is just beginning to emerge. Here, we report that two Arabidopsis thaliana factors, a SWIRM domain polyamine oxidase protein, AtSWP1, and a plant-specific C2H2 zinc finger-SET domain protein, AtCZS, interact with each other in plant cells and repress expression of a negative regulator of flowering, FLOWERING LOCUS C (FLC) via an autonomous, vernalization-independent pathway. Loss-of-function of either AtSWP1 or AtCZS results in reduced dimethylation of lysine 9 and lysine 27 of histone H3 and hyperacetylation of histone H4 within the FLC locus, in elevated FLC mRNA levels, and in moderately delayed flowering. Thus, AtSWP1 and AtCZS represent two main components of a co-repressor complex that fine tunes flowering and is unique to plants.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Kim S, Choi K, Park C, Hwang HJ, Lee I. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. THE PLANT CELL 2006; 18:2985-98. [PMID: 17138694 PMCID: PMC1693938 DOI: 10.1105/tpc.106.045179] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
FLOWERING LOCUS C (FLC), a strong floral repressor, is one of the central regulators of flowering in Arabidopsis thaliana. The expression of FLC is increased by FRIGIDA (FRI) but decreased by vernalization, a long period of cold exposure that accelerates flowering. Although many aspects of FLC regulation have been reported, it is not known how FLC is transcriptionally activated by FRI at the molecular level. We isolated suppressor of FRIGIDA4 (suf4), a mutant that flowers early as a result of low FLC expression. SUF4 encodes a nuclear-localized protein with two C2H2-type zinc finger motifs and a Pro-rich domain. SUF4 protein interacts with FRI and FRIGIDA-LIKE1 (FRL1), two genes for which single mutations have the same phenotype as suf4. SUF4 also bound to the promoter of FLC in a chromatin immunoprecipitation assay, suggesting that SUF4 acts as a transcriptional activator of FLC after forming a complex with FRI and FRL1. In addition, suf4 suppresses luminidependens (ld), a late-flowering mutation that causes an increase of FLC, and SUF4 protein directly interacts with LD. Thus, we propose that LD binds to SUF4 to suppress its activity in the absence of FRI.
Collapse
Affiliation(s)
- Sanghee Kim
- National Research Laboratory of Plant Developmental Genetics, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
226
|
Thorstensen T, Fischer A, Sandvik SV, Johnsen SS, Grini PE, Reuter G, Aalen RB. The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Res 2006; 34:5461-5470. [PMID: 17020925 PMCID: PMC1636477 DOI: 10.1093/nar/gkl687] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/04/2006] [Accepted: 09/07/2006] [Indexed: 11/26/2022] Open
Abstract
Proteins containing the evolutionarily conserved SET domain are involved in regulation of eukaryotic gene expression and chromatin structure through their histone lysine methyltransferase (HMTase) activity. The Drosophila SU(VAR)3-9 protein and related proteins of other organisms have been associated with gene repression and heterochromatinization. In Arabidopsis there are 10 SUVH and 5 SUVR genes encoding proteins similar to SU(VAR)3-9, and 4 SUVH proteins have been shown to control heterochromatic silencing by its HMTase activity and by directing DNA methylation. The SUVR proteins differ from the SUVH proteins in their domain structure, and we show that the closely related SUVR1, SUVR2 and SUVR4 proteins contain a novel domain at their N-terminus, and a SUVR specific region preceding the SET domain. Green fluorescent protein (GFP)-fusions of these SUVR proteins preferably localize to the nucleolus, suggesting involvement in regulation of rRNA expression, in contrast to other SET-domain proteins studied so far. A novel HMTase specificity was demonstrated for SUVR4, in that monomethylated histone H3K9 is its preferred substrate in vitro.
Collapse
Affiliation(s)
- Tage Thorstensen
- Department of Molecular Biosciences, University of OsloP.O. Box 1041 Blindern, N-0316 Oslo, Norway
- Institute of Genetics, Biologicum, Martin Luther University HalleHalle, Germany
| | - Andreas Fischer
- Institute of Genetics, Biologicum, Martin Luther University HalleHalle, Germany
| | - Silje V. Sandvik
- Department of Molecular Biosciences, University of OsloP.O. Box 1041 Blindern, N-0316 Oslo, Norway
- Institute of Genetics, Biologicum, Martin Luther University HalleHalle, Germany
| | - Sylvia S. Johnsen
- Department of Molecular Biosciences, University of OsloP.O. Box 1041 Blindern, N-0316 Oslo, Norway
- Institute of Genetics, Biologicum, Martin Luther University HalleHalle, Germany
| | - Paul E. Grini
- Department of Molecular Biosciences, University of OsloP.O. Box 1041 Blindern, N-0316 Oslo, Norway
- Institute of Genetics, Biologicum, Martin Luther University HalleHalle, Germany
| | - Gunter Reuter
- Institute of Genetics, Biologicum, Martin Luther University HalleHalle, Germany
| | - Reidunn B. Aalen
- To whom correspondence should be addressed. Tel: +47 22857297; Fax: +47 22856041;
| |
Collapse
|
227
|
Washio K, Morikawa M. Common mechanisms regulating expression of rice aleurone genes that contribute to the primary response for gibberellin. ACTA ACUST UNITED AC 2006; 1759:478-90. [PMID: 17052766 DOI: 10.1016/j.bbaexp.2006.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 12/17/2022]
Abstract
During germination of cereal seeds, aleurone cells respond to gibberellins (GA) by synthesizing and secreting hydrolytic enzymes that mobilize the reserved nutrients. It has been shown that products of early GA response genes, like a transcription factor GAMyb, act as key molecules leading to this regulation. Pivotal roles of GAMyb on expression of hydrolase genes have been well documented, whereas regulation of GAMyb expression itself remains obscure. In order to understand virtual mechanisms of the GA-mediated expression of genes, it is important to know how GA control expression of early GA response genes. Using an aleurone transient expression system of rice (Oryza sativa L.), we examined GA responsive domains of early GA response genes in the aleurone, such as GAMyb and OsDof3. The upstream promoter could not confer GA response. Extensive analyses revealed the presence of enhancer-like activities in a large first intron. In Arabidopsis, intron enhancers have been identified in MADS-box homeotic genes, AGAMOUS (AG) and FLOWERING LOCUS C (FLC), in which large introns should not only confer proper gene expressions, but also associate with gene silencing by covalent modifications of both DNA and histone. These evidences prompt us to assign that chromatin-based control might be important for initial GA action. Based on this assumption, we have identified DNA methylation of the GAMyb locus in germinated rice seeds.
Collapse
Affiliation(s)
- Kenji Washio
- Group of Environmental Molecular Biology, Section of Environmental Bioscience, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | |
Collapse
|
228
|
Abstract
Plants rely heavily on environmental cues to control the timing of developmental transitions. We are beginning to better understand what determines the timing of two of these transitions, the switch from juvenile to adult vegetative development and the transition to flowering. In this review, we discuss how RNA silencing mechanisms may influence the juvenile-to-adult vegetative switch. We also describe the discovery and regulation of a component of "florigen," the mobile flowering promotion signal that is involved in the transition to flowering. Parallel themes are beginning to emerge from a molecular comparison of these two developmental transitions.
Collapse
Affiliation(s)
- Isabel Bäurle
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | |
Collapse
|
229
|
Guyomarc'h S, Benhamed M, Lemonnier G, Renou JP, Zhou DX, Delarue M. MGOUN3: evidence for chromatin-mediated regulation of FLC expression. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:2111-9. [PMID: 16728410 DOI: 10.1093/jxb/erj169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The MGOUN3(MGO3)/BRUSHY1(BRU1)/TONSOKU(TSK) gene of Arabidopsis thaliana encodes a nuclear leucine-glycine-asparagine (LGN) domain protein that may be implicated in chromatin dynamics and genome maintenance. Mutants with defects in MGO3 display a fasciated stem and disorganized meristem structures. The transition to flowering was examined in mgo3 mutants and it was found that, under short days, the mutants flowered significantly earlier than the wild-type plants. Study of flowering-time associated gene expression showed that the floral transition inhibitor gene FLC was under-expressed in the mutant background. Ectopic expression of the flower-specific genes AGAMOUS (AG), PISTILLATA (PI), and SEPALLATA3 (SEP3) in mgo3 vegetative organs was also detected. Western blot and chromatin immunoprecipitation experiments suggested that histone H3 acetylation may be altered in the mgo3 background. Together, these data suggest that MGO3 is required for the correct transition to flowering and that this may be mediated by histone acetylation and associated changes in FLC expression.
Collapse
Affiliation(s)
- Soazig Guyomarc'h
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Bât. 630. Université Paris XI, Orsay, France
| | | | | | | | | | | |
Collapse
|