201
|
Schumer M, Cui R, Powell DL, Dresner R, Rosenthal GG, Andolfatto P. High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species. eLife 2014; 3. [PMID: 24898754 PMCID: PMC4080447 DOI: 10.7554/elife.02535] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species.
Collapse
Affiliation(s)
- Molly Schumer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Rongfeng Cui
- Department of Biology, Texas A&M University, College Station, United States
| | - Daniel L Powell
- Department of Biology, Texas A&M University, College Station, United States
| | - Rebecca Dresner
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Gil G Rosenthal
- Department of Biology, Texas A&M University, College Station, United States
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| |
Collapse
|
202
|
Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL, Johnston JS, Buerkle CA, Feder JL, Bast J, Schwander T, Egan SP, Crespi BJ, Nosil P. Stick insect genomes reveal natural selection's role in parallel speciation. Science 2014; 344:738-42. [PMID: 24833390 DOI: 10.1126/science.1252136] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural selection can drive the repeated evolution of reproductive isolation, but the genomic basis of parallel speciation remains poorly understood. We analyzed whole-genome divergence between replicate pairs of stick insect populations that are adapted to different host plants and undergoing parallel speciation. We found thousands of modest-sized genomic regions of accentuated divergence between populations, most of which are unique to individual population pairs. We also detected parallel genomic divergence across population pairs involving an excess of coding genes with specific molecular functions. Regions of parallel genomic divergence in nature exhibited exceptional allele frequency changes between hosts in a field transplant experiment. The results advance understanding of biological diversification by providing convergent observational and experimental evidence for selection's role in driving repeatable genomic divergence.
Collapse
Affiliation(s)
- Víctor Soria-Carrasco
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Aaron A Comeault
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy E Farkas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| | - Jeffrey L Feder
- Department of Biology, Notre Dame University, South Bend, IN 46556, USA
| | - Jens Bast
- J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Scott P Egan
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
205
|
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A. Genomics and the origin of species. Nat Rev Genet 2014; 15:176-92. [PMID: 24535286 DOI: 10.1038/nrg3644] [Citation(s) in RCA: 624] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.
Collapse
Affiliation(s)
- Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Roger K Butlin
- Department of Animal and Plant Sciences, the University of Sheffield, Sheffield S10 2TN, UK; and the Sven Lovén Centre - Tjärnö, University of Gothenburg, S-452 96 Strömstad, Sweden
| | - Irene Keller
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; and the Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| | - Catherine E Wagner
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Janette W Boughman
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Department of Zoology; Ecology, Evolutionary Biology and Behavior Program; BEACON Center, Michigan State University, 203 Natural Sciences, East Lansing, Michigan 48824, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute of Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844-3051, USA
| | - Catherine L Peichel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Glenn-Peter Saetre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO BOX 1066, Blindern, N-0316 Oslo, Norway
| | - Claudia Bank
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ake Brännström
- Integrated Science Laboratory and the Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Fabrice Eroukhmanoff
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO BOX 1066, Blindern, N-0316 Oslo, Norway
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369 USA
| | - Martin C Fischer
- Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| | - Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark. Present address: the Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kay Lucek
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Martine E Maan
- Behavioural Biology Group, Centre for Behaviour and Neurosciences, University of Groningen, PO BOX 11103, 9700 CC Groningen, The Netherlands
| | - David A Marques
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, and the Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Blake Matthews
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Joana I Meier
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, and the Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Markus Möst
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; and the Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA
| | - Etsuko Nonaka
- Integrated Science Laboratory and Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Diana J Rennison
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Julia Schwarzer
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; and Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Eric T Watson
- Department of Biology, The University of Texas at Arlington, 76010-0498 Texas, USA
| | - Anja M Westram
- Department of Animal and Plant Sciences, the University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| |
Collapse
|
213
|
Hough J, Williamson RJ, Wright SI. Patterns of Selection in Plant Genomes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135851] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants show a wide range of variation in mating system, ploidy level, and demographic history, allowing for unique opportunities to investigate the evolutionary and genetic factors affecting genome-wide patterns of positive and negative selection. In this review, we highlight recent progress in our understanding of the extent and nature of selection on plant genomes. We discuss differences in selection as they relate to variation in demography, recombination, mating system, and ploidy. We focus on the population genetic consequences of these factors and argue that, although variation in the magnitude of purifying selection is well documented, quantifying rates of positive selection and disentangling the relative importance of recombination, demography, and ploidy are ongoing challenges. Large-scale comparative studies that examine the relative and joint importance of these processes, combined with explicit models of population history and selection, are key and feasible goals for future work.
Collapse
Affiliation(s)
- Josh Hough
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Robert J. Williamson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| |
Collapse
|