201
|
Han SK, Song JD, Noh YS, Noh B. Role of plant CBP/p300-like genes in the regulation of flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:103-14. [PMID: 17144897 DOI: 10.1111/j.1365-313x.2006.02939.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CREB-binding protein (CBP) and its homolog p300 possess histone acetyltransferase activity and function as key transcriptional co-activators in the regulation of gene expression that controls differentiation and development in animals. However, the role of CBP/p300-like genes in plants has not yet been elucidated. Here, we show that Arabidopsis CBP/p300-like genes promote flowering by affecting the expression of a major floral repressor FLOWERING LOCUS C (FLC). Although animal CBP and p300 generally function as co-activators, Arabidopsis CBP/p300-like proteins are required for the negative regulation of FLC. This CBP/p300-mediated FLC repression may involve reversible protein acetylation independent of histone modification within FLC chromatin.
Collapse
Affiliation(s)
- Soon-Ki Han
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Korea
| | | | | | | |
Collapse
|
202
|
Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H, Effgen S, Vreugdenhil D, Koornneef M. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 2006; 175:891-905. [PMID: 17179089 PMCID: PMC1800614 DOI: 10.1534/genetics.106.066423] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we introduce the development of a genomewide coverage near-isogenic line (NIL) population of Arabidopsis thaliana, by introgressing genomic regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler) genetic background. We have empirically compared the QTL mapping power of this new population with an already existing RIL population derived from the same parents. For that, we analyzed and mapped QTL affecting six developmental traits with different heritability. Overall, in the NIL population smaller-effect QTL than in the RIL population could be detected although the localization resolution was lower. Furthermore, we estimated the effect of population size and of the number of replicates on the detection power of QTL affecting the developmental traits. In general, population size is more important than the number of replicates to increase the mapping power of RILs, whereas for NILs several replicates are absolutely required. These analyses are expected to facilitate experimental design for QTL mapping using these two common types of segregating populations.
Collapse
Affiliation(s)
- Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, NL-6703 BD, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Kim SY, Michaels SD. SUPPRESSOR OF FRI 4encodes a nuclear-localized protein that is required for delayed flowering in winter-annualArabidopsis. Development 2006; 133:4699-707. [PMID: 17079264 DOI: 10.1242/dev.02684] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The floral inhibitor FLOWERING LOCUS C (FLC) is a crucial regulator of flowering time in Arabidopsis, and is positively regulated by the FRIGIDA (FRI) gene in late-flowering winter-annual accessions. In rapid-cycling accessions, FLC expression is suppressed by the autonomous floral-promotion pathway (AP); thus AP mutants contain high levels of FLC and are late flowering. Previous work has shown that the upregulation of FLC in FRI- or AP-mutant backgrounds is correlated to an increase in histone H3 lysine 4 (H3K4)trimethylation at the FLC locus. This increase in trimethylation requires a PAF1-like complex and EARLY FLOWERING IN SHORT DAYS(EFS), a putative histone H3 methyltransferase. We have identified a putative zinc-finger-containing transcription factor, SUF4, that is required for the upregulation of FLC by FRI. suf4 mutations strongly suppress the late-flowering phenotype of FRI, but only weakly suppress AP mutants. As with mutants in efs or the PAF1-like complex, suf4 mutants show reduced H3K4 trimethylation at FLC. An interesting distinction between the phenotypes of suf4 mutants and mutants in efs or the PAF1-like complex is observed in the expression of genes that are adjacent to FLC or FLC-like genes. In efs and PAF1-like-complex mutants, the expression of FLC, FLC-like genes and adjacent genes is suppressed. In suf4 mutants, however, only FLC expression is suppressed. These data are consistent with a model in which SUF4 may act to specifically recruit EFS and the PAF1-like complex to the FLC locus.
Collapse
Affiliation(s)
- Sang Yeol Kim
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
204
|
Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet 2006; 3:e4. [PMID: 17238287 PMCID: PMC1779303 DOI: 10.1371/journal.pgen.0030004] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/22/2006] [Indexed: 01/04/2023] Open
Abstract
A potentially serious disadvantage of association mapping is the fact that marker-trait associations may arise from confounding population structure as well as from linkage to causative polymorphisms. Using genome-wide marker data, we have previously demonstrated that the problem can be severe in a global sample of 95 Arabidopsis thaliana accessions, and that established methods for controlling for population structure are generally insufficient. Here, we use the same sample together with a number of flowering-related phenotypes and data-perturbation simulations to evaluate a wider range of methods for controlling for population structure. We find that, in terms of reducing the false-positive rate while maintaining statistical power, a recently introduced mixed-model approach that takes genome-wide differences in relatedness into account via estimated pairwise kinship coefficients generally performs best. By combining the association results with results from linkage mapping in F2 crosses, we identify one previously known true positive and several promising new associations, but also demonstrate the existence of both false positives and false negatives. Our results illustrate the potential of genome-wide association scans as a tool for dissecting the genetics of natural variation, while at the same time highlighting the pitfalls. The importance of study design is clear; our study is severely under-powered both in terms of sample size and marker density. Our results also provide a striking demonstration of confounding by population structure. While statistical methods can be used to ameliorate this problem, they cannot always be effective and are certainly not a substitute for independent evidence, such as that obtained via crosses or transgenic experiments. Ultimately, association mapping is a powerful tool for identifying a list of candidates that is short enough to permit further genetic study. There is currently tremendous interest in using association mapping to find the genes responsible for natural variation, particularly for human disease. In association mapping, researchers seek to identify regions of the genome where individuals who are phenotypically similar (e.g., they all have the same disease) are also unusually closely related. A potentially serious problem is that spurious correlations may arise if the population is structured so that members of a subgroup tend to be much more closely related. We have previously demonstrated that this problem can be severe in Arabidopsis thaliana, and that established statistical methods for controlling for population structure are insufficient. Here, we evaluate a broader range of methods. We find that a recently introduced mixed-model approach generally performs best. By combining the association results with results from linkage mapping in F2 crosses, we identify one previously known true positive and several promising new associations, but also demonstrate the existence of both false positives and false negatives. Our results illustrate the potential of genome-wide association scans as a tool for dissecting the genetics of natural variation, while at the same time highlighting the pitfalls.
Collapse
Affiliation(s)
- Keyan Zhao
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - María José Aranzana
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Sung Kim
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Clare Lister
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Chikako Shindo
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Chunlao Tang
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Christopher Toomajian
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Honggang Zheng
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Paul Marjoram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Magnus Nordborg
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
205
|
Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V. C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 2006; 303:259-69. [PMID: 17224141 PMCID: PMC1831845 DOI: 10.1016/j.ydbio.2006.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/20/2006] [Accepted: 11/06/2006] [Indexed: 01/29/2023]
Abstract
Histone modification represents a universal mechanism for regulation of eukaryotic gene expression underlying diverse biological processes from neuronal gene expression in mammals to control of flowering in plants. In animal cells, these chromatin modifications are effected by well-defined multiprotein complexes containing specific histone-modifying activities. In plants, information about the composition of such co-repressor complexes is just beginning to emerge. Here, we report that two Arabidopsis thaliana factors, a SWIRM domain polyamine oxidase protein, AtSWP1, and a plant-specific C2H2 zinc finger-SET domain protein, AtCZS, interact with each other in plant cells and repress expression of a negative regulator of flowering, FLOWERING LOCUS C (FLC) via an autonomous, vernalization-independent pathway. Loss-of-function of either AtSWP1 or AtCZS results in reduced dimethylation of lysine 9 and lysine 27 of histone H3 and hyperacetylation of histone H4 within the FLC locus, in elevated FLC mRNA levels, and in moderately delayed flowering. Thus, AtSWP1 and AtCZS represent two main components of a co-repressor complex that fine tunes flowering and is unique to plants.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Kim S, Choi K, Park C, Hwang HJ, Lee I. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. THE PLANT CELL 2006; 18:2985-98. [PMID: 17138694 PMCID: PMC1693938 DOI: 10.1105/tpc.106.045179] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
FLOWERING LOCUS C (FLC), a strong floral repressor, is one of the central regulators of flowering in Arabidopsis thaliana. The expression of FLC is increased by FRIGIDA (FRI) but decreased by vernalization, a long period of cold exposure that accelerates flowering. Although many aspects of FLC regulation have been reported, it is not known how FLC is transcriptionally activated by FRI at the molecular level. We isolated suppressor of FRIGIDA4 (suf4), a mutant that flowers early as a result of low FLC expression. SUF4 encodes a nuclear-localized protein with two C2H2-type zinc finger motifs and a Pro-rich domain. SUF4 protein interacts with FRI and FRIGIDA-LIKE1 (FRL1), two genes for which single mutations have the same phenotype as suf4. SUF4 also bound to the promoter of FLC in a chromatin immunoprecipitation assay, suggesting that SUF4 acts as a transcriptional activator of FLC after forming a complex with FRI and FRL1. In addition, suf4 suppresses luminidependens (ld), a late-flowering mutation that causes an increase of FLC, and SUF4 protein directly interacts with LD. Thus, we propose that LD binds to SUF4 to suppress its activity in the absence of FRI.
Collapse
Affiliation(s)
- Sanghee Kim
- National Research Laboratory of Plant Developmental Genetics, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
207
|
Fong PM, Tian L, Chen ZJ. Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Res 2006; 16:479-88. [PMID: 16699543 PMCID: PMC1986662 DOI: 10.1038/sj.cr.7310059] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Arabidopsis thaliana histone deacetylase 1 (AtHD1 or AtHDA19), a homolog of yeast RPD3, is a global regulator of many physiological and developmental processes in plants. In spite of the genetic evidence for a role of AtHD1 in plant gene regulation and development, the biochemical and cellular properties of AtHD1 are poorly understood. Here we report cellular localization patterns of AtHD1 in vivo and histone deacetylase activity in vitro. The transient and stable expression of a green fluorescent protein (GFP)-tagged AtHD1 in onion cells and in roots, seeds and leaves of the transgenic Arabidopsis, respectively, revealed that AtHD1 is localized in the nucleus presumably in the euchromatic regions and excluded from the nucleolus. The localization patterns of AtHD1 are different from those of AtHD2 and AtHDA6 that are involved in nucleolus formation and silencing of transgenes and repeated DNA elements, respectively. In addition, a histone deacetylase activity assay showed that the recombinant AtHD1 produced in bacteria demonstrated a specific histone deacetylase activity in vitro. The data suggest that AtHD1 is a nuclear protein and possesses histone deacetylase activities responsible for global transcriptional regulation important to plant growth and development.
Collapse
Affiliation(s)
- Paulus M Fong
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lu Tian
- Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
208
|
Schönrock N, Bouveret R, Leroy O, Borghi L, Köhler C, Gruissem W, Hennig L. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev 2006; 20:1667-78. [PMID: 16778081 PMCID: PMC1482485 DOI: 10.1101/gad.377206] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycomb-group (PcG) proteins form a cellular memory by maintaining developmental regulators in a transcriptionally repressed state. We identified a novel flowering gene that is under PcG control in Arabidopsis--the MADS-box gene AGL19. AGL19 expression is maintained at very low levels by the PcG proteins MSI1, CLF, and EMF2, and AGL19 is partly responsible for the early flowering phenotype of clf mutants. AGL19 chromatin is strongly enriched in trimethylation of Lys 27 on histone H3 (H3K27me3) but not in H3K9me2. Repressive H3K27me3 marks were reduced by decreased CLF or MSI1 levels and by prolonged cold, suggesting that the PcG proteins MSI1 and CLF repress AGL19 in the absence of cold. Ectopic expression of AGL19 strongly accelerates flowering, and agl19 mutants have a decreased response to vernalization, the promotion of flowering by prolonged cold. Epistasis analyses revealed that AGL19 works in the poorly characterized FLC-independent vernalization pathway and does not require SOC1 to function. In this pathway, prolonged cold relieves AGL19 from PcG repression by a mechanism that requires VIN3 but not VRN2. Elevated AGL19 levels activate LFY and AP1 and eventually cause flowering.
Collapse
Affiliation(s)
- Nicole Schönrock
- Institute of Plant Sciences and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Center, CH-8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Plants rely heavily on environmental cues to control the timing of developmental transitions. We are beginning to better understand what determines the timing of two of these transitions, the switch from juvenile to adult vegetative development and the transition to flowering. In this review, we discuss how RNA silencing mechanisms may influence the juvenile-to-adult vegetative switch. We also describe the discovery and regulation of a component of "florigen," the mobile flowering promotion signal that is involved in the transition to flowering. Parallel themes are beginning to emerge from a molecular comparison of these two developmental transitions.
Collapse
Affiliation(s)
- Isabel Bäurle
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | |
Collapse
|
210
|
Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. PLANT & CELL PHYSIOLOGY 2006; 47:995-1003. [PMID: 16774928 DOI: 10.1093/pcp/pcj072] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Histone modifications such as methylation and acetylation in the chromatin surrounding a gene are thought to regulate transcriptional activity. In this study, to determine whether dynamic changes occur in histone modification on the loci of stress-responsive genes in plants, we chose rice submergence-inducible ADH1 and PDC1 genes. When submerged, the rice ADH1 and PDC1 genes were activated in a biphasic manner: the first and second inductions occurred after approximately 2 and 12 h of submergence, respectively. Their expression was transcriptionally induced as shown by increased binding of RNA polymerase II to the ADH1 and PDC1 loci during submergence. The Lys4 residues of the histone H3 proteins (H3-K4s) at both the 5'- and 3'-coding regions of ADH1 and PDC1 were found to change from a di-methylated state to a tri-methylated state at the first induction period. On the other hand, acetylation of H3 increased throughout ADH1 and PDC1 genes at the later induction period. The methylation and acetylation levels recovered to the initial levels during re-aeration. Treatment of seedlings with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased acetylation of histones H3 and association of RNA polymerase II on the ADH1 and PDC1 loci, thereby increasing transcript levels of ADH1 and PDC1. Together, these results showed dynamic and reversible changes of histone H3-K4 methylation and H3 acetylation in stress-responsive genes in a higher plant in response to the appearance or disappearance of an environmental stress.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | |
Collapse
|
211
|
Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ. FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC PLANT BIOLOGY 2006; 6:10. [PMID: 16737527 PMCID: PMC1525167 DOI: 10.1186/1471-2229-6-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 05/31/2006] [Indexed: 05/09/2023]
Abstract
BACKGROUND The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. RESULTS Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. CONCLUSION This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programming in other plant species.
Collapse
Affiliation(s)
- Neeraj Salathia
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- Bauer Center for Genomics Research, Harvard University, Cambridge, MA 02138, USA
| | - Seth J Davis
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | | | - Scott D Michaels
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J Millar
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Biological Sciences, Edinburgh University, Edinburgh EH9 3JH, UK
| |
Collapse
|
212
|
Martin-Trillo M, Lázaro A, Poethig RS, Gómez-Mena C, Piñeiro MA, Martinez-Zapater JM, Jarillo JA. EARLY IN SHORT DAYS 1(ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulatesFLCaccumulation inArabidopsis. Development 2006; 133:1241-52. [PMID: 16495307 DOI: 10.1242/dev.02301] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized Arabidopsis esd1 mutations, which cause early flowering independently of photoperiod, moderate increase of hypocotyl length, shortened inflorescence internodes, and altered leaf and flower development. Phenotypic analyses of double mutants with mutations at different loci of the flowering inductive pathways suggest that esd1 abolishes the FLC-mediated late flowering phenotype of plants carrying active alleles of FRI and of mutants of the autonomous pathway. We found that ESD1 is required for the expression of the FLCrepressor to levels that inhibit flowering. However, the effect of esd1 in a flc-3 null genetic background and the downregulation of other members of the FLC-like/MAF gene family in esd1 mutants suggest that flowering inhibition mediated by ESD1 occurs through both FLC-and FLC-like gene-dependent pathways. The ESD1 locus was identified through a map-based cloning approach. ESD1 encodes ARP6, a homolog of the actin-related protein family that shares moderate sequence homology with conventional actins. Using chromatin immunoprecipitation (ChIP) experiments,we have determined that ARP6 is required for both histone acetylation and methylation of the FLC chromatin in Arabidopsis.
Collapse
Affiliation(s)
- Mar Martin-Trillo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, C/ Darwin 3, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
213
|
Bouveret R, Schönrock N, Gruissem W, Hennig L. Regulation of flowering time by Arabidopsis MSI1. Development 2006; 133:1693-702. [PMID: 16554362 DOI: 10.1242/dev.02340] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition to flowering is tightly controlled by endogenous programs and environmental signals. We found that MSI1 is a novel flowering-time gene in Arabidopsis. Both partially complemented msi1 mutants and MSI1 antisense plants were late flowering, whereas ectopic expression of MSI1 accelerated flowering. Physiological experiments revealed that MSI1 is similar to genes from the autonomous promotion of flowering pathway. Expression of most known flowering-time genes did not depend on MSI1, but the induction of SOC1 was delayed in partially complemented msi1 mutants. Delayed activation of SOC1 is often caused by increased expression of the floral repressor FLC. However, MSI1 function is independent of FLC. MSI1 is needed to establish epigenetic H3K4 di-methylation and H3K9 acetylation marks in SOC1 chromatin. The presence of these modifications correlates with the high levels of SOC1 expression that induce flowering in Arabidopsis. Together, the control of flowering time depends on epigenetic mechanisms for the correct expression of not only the floral repressor FLC, but also the floral activator SOC1.
Collapse
Affiliation(s)
- Romaric Bouveret
- Institute of Plant Sciences and Zurich-Basel Plant Science Center, ETH Zurich, LFW E17, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
214
|
Sheldon CC, Finnegan EJ, Dennis ES, Peacock WJ. Quantitative effects of vernalization on FLC and SOC1 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:871-83. [PMID: 16507079 DOI: 10.1111/j.1365-313x.2006.02652.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures.
Collapse
Affiliation(s)
- Candice C Sheldon
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
215
|
Reyes JC. Chromatin modifiers that control plant development. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:21-7. [PMID: 16337828 DOI: 10.1016/j.pbi.2005.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 11/22/2005] [Indexed: 05/05/2023]
Abstract
The different cell types of a multicellular organism express different sets of genes. Although this is one of the oldest paradigms of developmental genetics, how different patterns of gene expression are established and maintained during subsequent cell division is an active topic of research. Chromatin modifiers play an essential role in controlling gene expression and in establishing epigenetic marks that can be inherited. During the past few years, large number of putative chromatin-associated proteins have been uncovered as controllers of meristem organization and activity, phase transition, and gametophyte and embryo development.
Collapse
Affiliation(s)
- José C Reyes
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Américo Vespucio s/n, E-41092 Sevilla, Spain.
| |
Collapse
|
216
|
Guyomarc'h S, Benhamed M, Lemonnier G, Renou JP, Zhou DX, Delarue M. MGOUN3: evidence for chromatin-mediated regulation of FLC expression. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:2111-9. [PMID: 16728410 DOI: 10.1093/jxb/erj169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The MGOUN3(MGO3)/BRUSHY1(BRU1)/TONSOKU(TSK) gene of Arabidopsis thaliana encodes a nuclear leucine-glycine-asparagine (LGN) domain protein that may be implicated in chromatin dynamics and genome maintenance. Mutants with defects in MGO3 display a fasciated stem and disorganized meristem structures. The transition to flowering was examined in mgo3 mutants and it was found that, under short days, the mutants flowered significantly earlier than the wild-type plants. Study of flowering-time associated gene expression showed that the floral transition inhibitor gene FLC was under-expressed in the mutant background. Ectopic expression of the flower-specific genes AGAMOUS (AG), PISTILLATA (PI), and SEPALLATA3 (SEP3) in mgo3 vegetative organs was also detected. Western blot and chromatin immunoprecipitation experiments suggested that histone H3 acetylation may be altered in the mgo3 background. Together, these data suggest that MGO3 is required for the correct transition to flowering and that this may be mediated by histone acetylation and associated changes in FLC expression.
Collapse
Affiliation(s)
- Soazig Guyomarc'h
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Bât. 630. Université Paris XI, Orsay, France
| | | | | | | | | | | |
Collapse
|
217
|
Characterization of a new mutant allele of theArabidopsis Flowering Locus D (FLD) gene that controls the flowering time by repressingFLC. CHINESE SCIENCE BULLETIN-CHINESE 2005. [DOI: 10.1007/bf02899639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
218
|
Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R. Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. THE PLANT CELL 2005; 17:3301-10. [PMID: 16258034 PMCID: PMC1315370 DOI: 10.1105/tpc.105.034645] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expression. Rapid-cycling accessions typically have low levels of FLC expression and therefore do not require vernalization. A screen for mutants in which a winter-annual Arabidopsis is converted to a rapid-cycling type has identified a putative histone H3 methyl transferase that is required for FLC expression. Lesions in this methyl transferase, EARLY FLOWERING IN SHORT DAYS (EFS), result in reduced levels of histone H3 Lys 4 trimethylation in FLC chromatin. EFS is also required for expression of other genes in the FLC clade, such as MADS AFFECTING FLOWERING2 and FLOWERING LOCUS M. The requirement for EFS to permit expression of several FLC clade genes accounts for the ability of efs lesions to suppress delayed flowering due to the presence of FRIGIDA, autonomous pathway mutations, or growth in noninductive photoperiods. efs mutants exhibit pleiotropic phenotypes, indicating that the role of EFS is not limited to the regulation of flowering time.
Collapse
Affiliation(s)
- Sang Yeol Kim
- Department of Biology, Indiana University, Bloomington, 47405, USA
| | | | | | | | | | | |
Collapse
|
219
|
Zhao Z, Yu Y, Meyer D, Wu C, Shen WH. Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 2005; 7:1256-60. [PMID: 16299497 DOI: 10.1038/ncb1329] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 09/28/2005] [Indexed: 11/09/2022]
Abstract
Flowering represents a crucial transition from a vegetative to a reproductive phase of the plant life cycle. Despite extensive studies, the molecular mechanisms controlling flowering remain elusive. Although the enzymes involved are unknown, methylation of histone H3 K9 and K27 correlates with repression of FLOWERING LOCUS C (FLC), an essential transcriptional repressor involved in flowering time control in Arabidopsis thaliana; in contrast, methylation of H3K4 correlates with FLC activation. Here we show that loss-of-function of SET DOMAIN GROUP 8 (SDG 8), which encodes a homologue of the yeast SET2 histone methyltransferase, results in reduced dimethylation of histone H3K36, particularly in chromatin associated with the FLC promoter and the first intron, regions that contain essential cis-elements for transcription. sdg8 mutants display reduced FLC expression and flower early, establishing SDG8-mediated H3K36 methylation as a novel epigenetic memory code required for FLC expression in preventing early flowering. This is the first demonstrated role of H3K36 methylation in eukaryote development.
Collapse
Affiliation(s)
- Zhong Zhao
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), Université Louis Pasteur de Strasbourg (ULP), 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | | | | | | | | |
Collapse
|
220
|
Jean Finnegan E, Kovac KA, Jaligot E, Sheldon CC, James Peacock W, Dennis ES. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:420-32. [PMID: 16236152 DOI: 10.1111/j.1365-313x.2005.02541.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
FLOWERING LOCUS C (FLC), a repressor of flowering, is a major determinant of flowering time in Arabidopsis. FLC expression is repressed by vernalization and in plants with low levels of DNA methylation, resulting in early flowering. This repression is not associated with changes of DNA methylation within the FLC locus in either vernalized plants or plants with low levels of DNA methylation. In both cases, there is a reduction of histone H3 trimethyl-lysine 4 (K4) and acetylation of both histones H3 and H4 around the promoter-translation start of FLC. The expression of the two genes flanking FLC is also repressed in both conditions and repression is associated with decreased histone H3 acetylation. The changes in histone modifications at the FLC gene cluster, which are similar in vernalized plants and in plants with reduced DNA methylation, must arise by different mechanisms. VERNALIZATION 1, VERNALIZATION 2 and VERNALIZATION INSENSITIVE 3 modulate FLC expression in vernalized plants; these proteins play no role in the downregulation of FLC in plants with low levels of DNA methylation. Chimeric FLC::GUS transgenes respond to vernalization but these same transgenes show a position-dependent response to low levels of DNA methylation. In plants with reduced DNA methylation, expression of the five MADS AFFECTING FLOWERING (MAF) genes is repressed, suggesting that DNA methylation alters the expression of a trans-acting regulator common to FLC and members of the related MAF gene family. Our observations suggest that DNA methylation is not part of the vernalization pathway.
Collapse
Affiliation(s)
- E Jean Finnegan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
221
|
Deal RB, Kandasamy MK, McKinney EC, Meagher RB. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. THE PLANT CELL 2005; 17:2633-46. [PMID: 16141450 PMCID: PMC1242262 DOI: 10.1105/tpc.105.035196] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin-related proteins (ARPs) are found in the nuclei of all eukaryotic cells, but their functions are generally understood only in the context of their presence in various yeast and animal chromatin-modifying complexes. Arabidopsis thaliana ARP6 is a clear homolog of other eukaryotic ARP6s, including Saccharomyces cerevisiae ARP6, which was identified as a component of the SWR1 chromatin remodeling complex. We examined the subcellular localization, expression patterns, and loss-of-function phenotypes for this protein and found that Arabidopsis ARP6 is localized to the nucleus during interphase but dispersed away from the chromosomes during cell division. ARP6 expression was observed in all vegetative tissues as well as in a subset of reproductive tissues. Null mutations in ARP6 caused numerous defects, including altered development of the leaf, inflorescence, and flower as well as reduced female fertility and early flowering in both long- and short-day photoperiods. The early flowering of arp6 mutants was associated with reduced expression of the central floral repressor gene FLOWERING LOCUS C (FLC) as well as MADS AFFECTING FLOWERING 4 (MAF4) and MAF5. In addition, arp6 mutations suppress the FLC-mediated late flowering of a FRIGIDA-expressing line, indicating that ARP6 is required for the activation of FLC expression to levels that inhibit flowering. These results indicate that ARP6 acts in the nucleus to regulate plant development, and we propose that it does so through modulation of chromatin structure and the control of gene expression.
Collapse
Affiliation(s)
- Roger B Deal
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
222
|
Choi K, Kim S, Kim SY, Kim M, Hyun Y, Lee H, Choe S, Kim SG, Michaels S, Lee I. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis. THE PLANT CELL 2005; 17:2647-60. [PMID: 16155178 PMCID: PMC1242263 DOI: 10.1105/tpc.105.035485] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Flowering traits in winter annual Arabidopsis thaliana are conferred mainly by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a flowering repressor and is regulated by multiple flowering pathways. We isolated an early-flowering mutant, suppressor of FRIGIDA3 (suf3), which also shows leaf serration, weak apical dominance, and infrequent conversion of the inflorescence shoot to a terminal flower. The suf3 mutation caused a decrease in the transcript level of FLC in both a FRI-containing line and autonomous pathway mutants. However, suf3 showed only a partial reduction of FLC transcript level, although it largely suppressed the late-flowering phenotype. In addition, the suf3 mutation caused acceleration of flowering in both 35S-FLC and a flc null mutant, indicating that SUF3 regulates additional factor(s) for the repression of flowering. SUF3 is highly expressed in the shoot apex, but the expression is not regulated by FRI, autonomous pathway genes, or vernalization. SUF3 encodes the nuclear ACTIN-RELATED PROTEIN6 (ARP6), the homolog of which in yeast is a component of an ATP-dependent chromatin-remodeling SWR1 complex. Our analyses showed that SUF3 regulates FLC expression independent of vernalization, FRI, and an autonomous pathway gene, all of which affect the histone modification of FLC chromatin. Subcellular localization using a green fluorescent protein fusion showed that Arabidopsis ARP6 is located at distinct regions of the nuclear periphery.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Schubert D, Clarenz O, Goodrich J. Epigenetic control of plant development by Polycomb-group proteins. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:553-61. [PMID: 16043386 DOI: 10.1016/j.pbi.2005.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/12/2005] [Indexed: 05/02/2023]
Abstract
Recent genetic studies indicate that the plant Polycomb-group genes play much broader roles in development than was initially apparent from their single mutant phenotypes. At the mechanistic level, evidence is accumulating that their protein products act together in complexes that direct changes in histone methylation patterns. We discuss recent studies that give clues as to how these epigenetic changes are propagated through mitosis, how they are interpreted, and how they might be reset.
Collapse
Affiliation(s)
- Daniel Schubert
- Institute of Molecular Plant Sciences, School of Biology, University of Edinburgh, Daniel Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK.
| | | | | |
Collapse
|
224
|
Samach A, Wigge PA. Ambient temperature perception in plants. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:483-6. [PMID: 16054430 DOI: 10.1016/j.pbi.2005.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/15/2005] [Indexed: 05/03/2023]
Abstract
Since plants are sessile they must be able to sense and rapidly respond to changes in ambient temperature. Key aspects of plant development, including the transition to flowering and the circadian clock, have important inputs from ambient temperature. In the model system Arabidopsis thaliana, molecular candidates for mediating these roles have recently been uncovered, which will be critical for obtaining an understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Alon Samach
- The Robert H Smith Institute for Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
225
|
Sarnowski TJ, Ríos G, Jásik J, Swiezewski S, Kaczanowski S, Li Y, Kwiatkowska A, Pawlikowska K, Koźbiał M, Koźbiał P, Koncz C, Jerzmanowski A. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. THE PLANT CELL 2005; 17:2454-72. [PMID: 16055636 PMCID: PMC1197427 DOI: 10.1105/tpc.105.031203] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four SWI3-like proteins that show remarkable functional diversification. Whereas ATSWI3A and ATSWI3B form homodimers and heterodimers and interact with BSH/SNF5, ATSWI3C, and the flowering regulator FCA, ATSWI3D can only bind ATSWI3B in yeast two-hybrid assays. Mutations of ATSWI3A and ATSWI3B arrest embryo development at the globular stage. By a possible imprinting effect, the atswi3b mutations result in death for approximately half of both macrospores and microspores. Mutations in ATSWI3C cause semidwarf stature, inhibition of root elongation, leaf curling, aberrant stamen development, and reduced fertility. Plants carrying atswi3d mutations display severe dwarfism, alterations in the number and development of flower organs, and complete male and female sterility. These data indicate that, by possible contribution to the combinatorial assembly of different SWI/SNF complexes, the ATSWI3 proteins perform nonredundant regulatory functions that affect embryogenesis and both the vegetative and reproductive phases of plant development.
Collapse
Affiliation(s)
- Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Lee JH, Cho YS, Yoon HS, Suh MC, Moon J, Lee I, Weigel D, Yun CH, Kim JK. Conservation and divergence of FCA function between Arabidopsis and rice. PLANT MOLECULAR BIOLOGY 2005; 58:823-838. [PMID: 16240176 DOI: 10.1007/s11103-005-8105-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 05/29/2005] [Indexed: 05/04/2023]
Abstract
Although several genes have been identified in rice which are functionally equivalent to the flowering time genes in Arabidopsis, primarily genes involved in the photoperiod pathway, little data is available regarding the genes that function in the autonomous pathway in rice. In order to acquire further insight into the control of heading dates in rice, we isolated and conducted an expression analysis on OsFCA, which exhibited 38% sequence homology with Arabidopsis FCA. The N-terminal region of the OsFCA protein appears to be unusually rich in glycine-residues, unlike the N-terminal region found in FCA. However, the genetic structure of OsFCA is, in general, similar to that of FCA. RT-PCR and in silico analyses also showed that alternative splicing and polyadenylation at intron3 were conserved in the genetic expression of OsFCA. We were able to detect alpha, beta, and gamma transcripts, but not the delta transcript, of the OsFCA gene. The beta and gamma transcripts of the OsFCA gene were detected via Northern analysis in the leaves, roots, and flowers of the plant. Flowers in younger stages exhibited higher transcript levels. These data suggest that intron3 may constitute a primary control point in the OsFCA pre-mRNA processing of rice. The overexpression of OsFCA cDNA, driven by the 35S promoter, was shown to partially rescue the late flowering phenotype of the fca mutant, suggesting that the functions of the OsFCA and the FCA are partially overlapped, despite the lack of an apparent FLC homologue in the rice genome. The constitutive expression of OsFCA resulted in no downregulation of FLC, but did result in the weak upregulation of SOC1 in the transgenic Arabidopsis. OsFCA overexpression did not result in a reduction of the gamma transcript levels of FCA in the transgenic Arabidopsis either, thereby suggesting that OsFCA had no effects on the autoregulation of Arabidopsis FCA. All of these results imply conservation and divergence in the functions of FCA between rice and Arabidopsis.
Collapse
Affiliation(s)
- Jeong-Hwan Lee
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea
| | - Young-Sil Cho
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea
| | - Hoon-Seok Yoon
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea
| | - Mi Chung Suh
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, 500-757, Gwangju, Korea
| | - Jihyun Moon
- School of Biological Sciences, Seoul National University, 151-742, Seoul, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, 151-742, Seoul, Korea
| | - Detlef Weigel
- Plant Biology Laboratory, Salk Institute, La Jolla, CA, 92037, USA
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Choong-Hyo Yun
- Genomics Division, National Institute of Agricultural Biotechnology, 441-707, Suwon, Korea
| | - Jeong-Kook Kim
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea.
| |
Collapse
|
227
|
Abstract
Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
228
|
Henderson IR, Liu F, Drea S, Simpson GG, Dean C. An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 2005; 132:3597-607. [PMID: 16033802 DOI: 10.1242/dev.01924] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
229
|
Guyomarc'h S, Bertrand C, Delarue M, Zhou DX. Regulation of meristem activity by chromatin remodelling. TRENDS IN PLANT SCIENCE 2005; 10:332-8. [PMID: 15953752 DOI: 10.1016/j.tplants.2005.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/12/2005] [Accepted: 05/26/2005] [Indexed: 05/03/2023]
Abstract
The continuity and plasticity of plant development rely on the regulation of meristem activity in response to endogenous and environmental signals. Many plant development regulators involved in meristem function are transcription factors or signalling molecules. In the past few years, the role of chromatin remodelling in programming, maintaining or resetting specific gene expression profiles in subsequent cell generations has been shown to be crucial in plant development. Here, we summarize plant chromatin-remodelling factors required to regulate shoot apical meristem activity, particularly its maintenance during organogenesis and transitions between distinct developmental phases.
Collapse
Affiliation(s)
- Soazig Guyomarc'h
- Institut de Biotechnologie des Plantes, CNRS UMR 8618, Université Paris XI, F-91 405 Orsay, France
| | | | | | | |
Collapse
|
230
|
Hennig L, Bouveret R, Gruissem W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 2005; 15:295-302. [PMID: 15953547 DOI: 10.1016/j.tcb.2005.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/04/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
MSI1-like WD40 repeat proteins are subunits of many protein complexes controlling chromatin dynamics. These proteins do not have any catalytic activity, but several recent studies using loss-of-function mutants established specific functions during development. Here, we review the current knowledge of MSI1-like proteins, including their phylogenetic history, expression patterns, biochemical interactions and mutant phenotypes. MSI1-like proteins, which are often targets or partners of tumor-suppressor proteins, are required during cell proliferation and differentiation in flies, nematodes and plants. We discuss the possibility that MSI1-like proteins could function to maintain epigenetic memory during development by targeting silencing complexes to chromatin during nucleosome assembly.
Collapse
Affiliation(s)
- Lars Hennig
- Institute of Plant Sciences, Swiss Federal Institute of Technology and Zürich-Basel Plant Science Center, ETH Center, CH-8092 Zürich.
| | | | | |
Collapse
|
231
|
Winichayakul S, Beswick NL, Dean C, Macknight RC. Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY, are conserved in monocots. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:345-355. [PMID: 32689136 DOI: 10.1071/fp04245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/28/2005] [Indexed: 06/11/2023]
Abstract
The autonomous floral promotion pathway plays a key role in regulating the flowering time of the model dicot Arabidopsis thaliana (L.) Heynh. To investigate whether this pathway is present in monocots, two autonomous pathway components, FCA and FY, were isolated from rice (Oryza sativa L.) and ryegrass (Lolium perenne L.). The predicted FCA proteins (OsFCA and LpFCA) are highly conserved over the RNA-binding and WW protein interaction domains, and the FY proteins (OsFY and LpFY) possess highly conserved WD repeats but a less well conserved C-terminal region containing Pro-Pro-Leu-Pro (PPLP) motifs. In Arabidopsis, FCA limits its own production by promoting the polyadenylation of FCA pre-mRNA within intron 3 to form a truncated transcript called FCA-β. The identification of FCA-β transcripts in rice and ryegrass indicates that equivalent mechanisms occur in monocots. FCA's autoregulation and flowering time functions require FCA to interact with the 3' end-processing factor, FY. The FCA WW domain from Arabidopsis, which is thought to recognise PPLP motifs, interacted with ryegrass FY protein in GST-pulldown assays. Together these results suggest that the FCA and FY genes in monocots have similar functions to the dicot flowering-time genes. The cloning of these genes may provide targets for manipulating the flowering time of monocot species.
Collapse
Affiliation(s)
| | - Nicola L Beswick
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
232
|
Simpson GG, Quesada V, Henderson IR, Dijkwel PP, Macknight R, Dean C. RNA processing and Arabidopsis flowering time control. Biochem Soc Trans 2005; 32:565-6. [PMID: 15270676 DOI: 10.1042/bst0320565] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3'-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.
Collapse
Affiliation(s)
- G G Simpson
- Cell and Developmental Biology, John Innes Centre, Norfolk NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
233
|
Doyle MR, Bizzell CM, Keller MR, Michaels SD, Song J, Noh YS, Amasino RM. HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:376-85. [PMID: 15659097 DOI: 10.1111/j.1365-313x.2004.02300.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The HUA2 gene acts as a repressor of floral transition. Lesions in hua2 were identified through a study of natural variation and through two mutant screens. An allele of HUA2 from Landsberg erecta (Ler) contains a premature stop codon and acts as an enhancer of early flowering 4 (elf4) mutants. hua2 single mutants, in the absence of the elf4 lesion, flower earlier than wild type under short days. hua2 mutations partially suppress late flowering in FRIGIDA (FRI )-containing lines, autonomous pathway mutants, and a photoperiod pathway mutant. hua2 mutations suppress late flowering by reducing the expression of several MADS genes that act as floral repressors including FLOWERING LOCUS C (FLC ) and FLOWERING LOCUS M (FLM ).
Collapse
Affiliation(s)
- Mark R Doyle
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706-1544, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Plants undergo a series of profound developmental changes throughout their lifetimes in response to both external environmental factors and internal intrinsic ones. When these changes are abrupt and dramatic, the process is referred to as phase change. Recently, several genes have been discovered that play a role in these developmental transitions. Their sequence and expression patterns shed new light on the mechanisms of phase change, and provide a link between the external and internal factors that control them. Examples of these transitions include changes from juvenile to adult leaf formation, vegetative to inflorescence meristem development, and inflorescence to floral meristem initiation.
Collapse
Affiliation(s)
- George Chuck
- Plant Gene Expression Center, USDA-ARS and UC Berkeley, 800 Buchanan Street, Albany, California 94710, USA.
| | | |
Collapse
|
235
|
Moon J, Lee H, Kim M, Lee I. Analysis of flowering pathway integrators in Arabidopsis. PLANT & CELL PHYSIOLOGY 2005; 46:292-9. [PMID: 15695467 DOI: 10.1093/pcp/pci024] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowering is regulated by an integrated network of several genetic pathways in Arabidopsis. The key genes integrating multiple flowering pathways are FT, SOC1 and LFY. To elucidate the interactions among these integrators, genetic analyses were performed. FT and SOC1 share the common upstream regulators CO, a key component in the long day pathway, and FLC, a flowering repressor integrating autonomous and vernalization pathways. However, the soc1 mutation further delayed the flowering time of long day pathway mutants including ft, demonstrating that SOC1 acts partially independently of FT. Although soc1 did not show an obvious defect in flower meristem determination on its own, it dramatically increased the number of coflorescences in a lfy mutant, which is indicative of a defect in floral initiation. Therefore, double mutant analysis shows that the three integrators have both overlapping and independent functions in the determination of flowering time and floral initiation. The expression analysis showed that FT regulates SOC1 expression, and SOC1 regulates LFY expression, but not vice versa, which is consistent with the fact that FT and LFY have the least overlapping functions among the three integrators. The triple mutation ft soc1 lfy did not block flowering completely under long days, indicating the presence of other integrators. Finally, vernalization accelerated flowering of flc ft soc1 and ft soc1 lfy triple mutants, which shows that the vernalization pathway also has targets other than FLC, FT, SOC1 and LFY. Our genetic analysis reveals the intricate nature of genetic networks for flowering.
Collapse
Affiliation(s)
- Jihyun Moon
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | |
Collapse
|
236
|
Welch SM, Dong Z, Roe JL, Das S. Flowering time control: gene network modelling and the link to quantitative genetics. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ar05155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flowering is a key stage in plant development that initiates grain production and is vulnerable to stress. The genes controlling flowering time in the model plant Arabidopsis thaliana are reviewed. Interactions between these genes have been described previously by qualitative network diagrams. We mathematically relate environmentally dependent transcription, RNA processing, translation, and protein–protein interaction rates to resultant phenotypes. We have developed models (reported elsewhere) based on these concepts that simulate flowering times for novel A. thaliana genotype–environment combinations. Here we draw 12 contrasts between genetic network (GN) models of this type and quantitative genetics (QG), showing that both have equal contributions to make to an ideal theory. Physiological dominance and additivity are examined as emergent properties in the context of feed-forwards networks, an instance of which is the signal-integration portion of the A. thaliana flowering time network. Additivity is seen to be a complex, multi-gene property with contributions from mass balance in transcript production, the feed-forwards structure itself, and downstream promoter reaction thermodynamics. Higher level emergent properties are exemplified by critical short daylength (CSDL), which we relate to gene expression dynamics in rice (Oryza sativa). Next to be discussed are synergies between QG and GN relating to the quantitative trait locus (QTL) mapping of model coefficients. This suggests a new verification test useful in GN model development and in identifying needed updates to existing crop models. Finally, the utility of simple models is evinced by 80 years of QG theory and mathematical ecology.
Collapse
|
237
|
Abstract
The regulation of the FLC locus provides a plant model of how chromatin-modifying systems have emerged as important components in the control of a major developmental switch, the transition to flowering. Genetic and molecular studies have revealed that three systems of FLC regulation (vernalization, FRI and the autonomous pathway) all influence the state of FLC chromatin. Histone H3 trimethylation at lysine 4 and histone acetylation are associated with active FLC expression, whereas histone deacetylation and histone H3 dimethylation at lysines 9 and 27 are involved in FLC repression. These chromatin modifications provide an additional level of regulation of gene expression beyond that of the transcription factors that recruit RNA polymerase to target genes.
Collapse
Affiliation(s)
- Yuehui He
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
238
|
Sung S, Amasino RM. Remembering winter: toward a molecular understanding of vernalization. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:491-508. [PMID: 15862105 DOI: 10.1146/annurev.arplant.56.032604.144307] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exposure to the prolonged cold of winter is an important environmental cue that favors flowering in the spring in many types of plants. The process by which exposure to cold promotes flowering is known as vernalization. In Arabidopsis and certain cereals, the block to flowering in plants that have not been vernalized is due to the expression of flowering repressors. The promotion of flowering is due to the cold-mediated suppression of these repressors. Recent work has demonstrated that covalent modifications of histones in the chromatin of target loci are part of the molecular mechanism by which certain repressors are silenced during vernalization.
Collapse
Affiliation(s)
- Sibum Sung
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
239
|
He Y, Doyle MR, Amasino RM. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 2004; 18:2774-84. [PMID: 15520273 PMCID: PMC528897 DOI: 10.1101/gad.1244504] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The winter-annual habit (which typically involves a requirement for exposure to the cold of winter to flower in the spring) in Arabidopsis thaliana is mainly due to the repression of flowering by relatively high levels of FLC expression. Exposure to prolonged cold attenuates FLC expression through a process known as vernalization and thus permits flowering to occur in the spring. Here we show that the elevated FLC expression characteristic of nonvernalized winter annuals requires two genes, EARLY FLOWERING 7 (ELF7) and EARLY FLOWERING 8 (ELF8), that are homologs of components of the PAF1 complex of Saccharomyces cerevisiae. Furthermore, ELF7 and ELF8 are also required for the expression of other genes in the FLC clade of flowering repressors such as MAF2 and FLM. FLC, FLM, and MAF2 are involved in multiple flowering pathways that account for the broad effects of elf7 and elf8 mutations on flowering behavior. ELF7 and ELF8 are required for the enhancement of histone 3 trimethylation at Lys 4 in FLC chromatin. This modification of FLC chromatin appears to be required to elevate FLC expression to levels that can delay flowering in plants that have not been vernalized. A model of the role of ELF7, ELF8, and other previously described genes in the modification of the chromatin of flowering repressors is presented.
Collapse
Affiliation(s)
- Yuehui He
- Department of Biochemistry and Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
240
|
Simpson GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:570-4. [PMID: 15337100 DOI: 10.1016/j.pbi.2004.07.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mechanisms that mediate the control of flowering time have been accessed through a molecular genetic approach in Arabidopsis. Flowering is regulated by different pathways and, in the past year, all of the known components of the so-called autonomous pathway have been identified. The autonomous pathway comprises a combination of factors involved in RNA processing and epigenetic regulation that downregulate the floral repressor, FLOWERING LOCUS C (FLC). However, components of the autonomous pathway are more widely conserved in plant species other than Arabidopsis than is FLC. Therefore, the broadest lessons we learn from dissecting the function of the autonomous pathway may be in revealing how precision in regulated gene expression is delivered.
Collapse
Affiliation(s)
- Gordon G Simpson
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
241
|
Brunner AM, Nilsson O. Revisiting tree maturation and floral initiation in the poplar functional genomics era. THE NEW PHYTOLOGIST 2004; 164:43-51. [PMID: 33873486 DOI: 10.1111/j.1469-8137.2004.01165.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The recent release of the Populus trichocarpa genome sequence will dramatically enhance the efficiency of functional and comparative genomics research in trees. This provides researchers studying various developmental processes related to the perennial and tree life strategies with a completely new set of tools. Intimately associated with the life strategy of trees are their abilities to maintain juvenile or nonflowering phases for years to decades, and once reproductively competent, to alternate between the production of vegetative and reproductive shoots. Most of what we know about the regulation of the floral transition comes from research on Arabidopsis thaliana, a small, herbaceous, rapid-cycling, annual plant. In this review, we discuss the similarities and differences between Arabidopsis and tree flowering, and how recent findings in Arabidopsis, coupled to comparative and functional genomics in poplars, will help answer the question of how tree maturation and floral initiation is regulated.
Collapse
Affiliation(s)
- Amy M Brunner
- Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752, USA
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
242
|
Tian L, Fong MP, Wang JJ, Wei NE, Jiang H, Doerge RW, Chen ZJ. Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 2004; 169:337-45. [PMID: 15371352 PMCID: PMC1448893 DOI: 10.1534/genetics.104.033142] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone acetylation and deacetylation activate or repress transcription, yet the physiological relevance of reversible changes in chromatin structure and gene expression is poorly understood. We have shown that disrupting the expression of AtHD1 that encodes a putative Arabidopsis thaliana histone deacetylase induces a variety of developmental abnormalities. However, causal effects of the AtHD1 disruption on chromatin structure and gene expression are unknown. Using Arabidopsis spotted oligo-gene microarray analysis, here we report that >7% of the transcriptome was up- or downregulated in A. thaliana plants containing a T-DNA insertion in AtHD1 (athd1-t1), indicating that AtHD1 provides positive and negative control of transcriptional regulation. Remarkably, genes involved in ionic homeostasis and protein synthesis were ectopically expressed, whereas genes in ionic homeostasis, protein transport, and plant hormonal regulation were repressed in athd1-t1 leaves or flowers, suggesting a role of AtHD1 in developmental and environmental regulation of gene expression. Moreover, defective AtHD1 induced site-specific and reversible acetylation changes in H3-Lys9, H4-Lys12, and H4 tetra-lysines (residues 5, 8, 12, and 16) in homozygous recessive and heterozygous plants. Transcriptional activation was locus specific and often associated with specific acetylation sites in the vicinity of promoters, whereas gene repression did not correlate with changes in histone acetylation or correlated directly with H3-Lys9 methylation but not with DNA methylation. The data suggest that histone acetylation and deacetylation are promoter dependent, locus specific, and genetically reversible, which provides a general mechanism for reversible gene regulation responsive to developmental and environmental changes.
Collapse
Affiliation(s)
- Lu Tian
- Intercollegiate Programs in Genetics and Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
The timing of the floral transition has significant consequences for reproductive success in plants. Plants gauge both environmental and endogenous signals before switching to reproductive development. Many temperate species only flower after they have experienced a prolonged period of cold, a process known as vernalization, which aligns flowering with the favourable conditions of spring. Considerable progress has been made in understanding the molecular basis of vernalization in Arabidopsis. A central player in this process is FLC, which blocks flowering by inhibiting genes required to switch the meristem from vegetative to floral development. Recent data shows that many regulators of FLC alter chromatin structure or are involved in RNA processing.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
244
|
Mosquna A, Katz A, Shochat S, Grafi G, Ohad N. Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development. Mol Genet Genomics 2004; 271:651-7. [PMID: 15221456 DOI: 10.1007/s00438-004-1024-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/05/2004] [Indexed: 01/30/2023]
Abstract
Inactivation of the Arabidopsis protein FERTILIZATION INDEPENDENT ENDOSPERM (FIE) induces division of the central cell of the embryo sac, leading to endosperm development in the absence of fertilization. The mechanism whereby FIE regulates this process is unknown. We postulated that activation of central cell division in fie mutant plants might involve the retinoblastoma protein (pRb), a cell cycle regulatory element. Pull-down and surface plasmon resonance assays demonstrated that FIE interacts in-vitro with the pRb homologues from Arabidopsis (AtRb), maize (ZmRb) and human (HuRb). The interaction of FIE with ZmRB and HuRb in the yeast two-hybrid system supports the possibility that a FIE-pRb interaction may occur also in planta. Mutational analysis showed that this interaction does not occur via the LxCxE motif of the FIE protein nor via the pocket B domain of pRb. These results suggest that FIE may inhibit premature division of the central cell of the embryo sac, at least partly, through interaction with pRb, and suppression of pRb-regulated genes.
Collapse
Affiliation(s)
- A Mosquna
- Department of Plant Sciences, Tel-Aviv University, 69978, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
245
|
|
246
|
Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 2004; 36:167-71. [PMID: 14745450 DOI: 10.1038/ng1298] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 01/14/2004] [Indexed: 11/09/2022]
Abstract
Cold induces expression of a number of genes that encode proteins that enhance tolerance to freezing temperatures in plants. A cis-acting element responsive to cold and drought, the C-repeat/dehydration-responsive element (C/DRE), was identified in the Arabidopsis thaliana stress-inducible genes RD29A and COR15a and found in other cold-inducible genes in various plants. C/DRE-binding factor/DRE-binding protein (CBF/DREB) is an essential component of the cold-acclimation response, but the signaling pathways and networks are mostly unknown. Here we used targeted genetic approach to isolate A. thaliana mutants with altered cold-responsive gene expression (acg) and identify ACG1 as a negative regulator of the CBF/DREB pathway. acg1 flowered late and had elevated expression of FLOWERING LOCUS C (FLC), a repressor of flowering encoding a MADS-box protein. We showed that acg1 is a null allele of the autonomous pathway gene FVE. FVE encodes a homolog of the mammalian retinoblastoma-associated protein, a component of a histone deacetylase (HDAC) complex involved in transcriptional repression. We also showed that plants sense intermittent cold stress through FVE and delay flowering with increasing expression of FLC. Dual roles of FVE in regulating the flowering time and the cold response may have an evolutionary advantage for plants by increasing their survival rates.
Collapse
Affiliation(s)
- Hyoun-Joung Kim
- Kumho Life and Environmental Science Laboratory, 1 Oryong-Dong, Puk-Gu, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|