201
|
Blandini F, Cilia R, Cerri S, Pezzoli G, Schapira AHV, Mullin S, Lanciego JL. Glucocerebrosidase mutations and synucleinopathies: Toward a model of precision medicine. Mov Disord 2018; 34:9-21. [PMID: 30589955 DOI: 10.1002/mds.27583] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Glucocerebrosidase is a lysosomal enzyme. The characterization of a direct link between mutations in the gene coding for glucocerebrosidase (GBA1) with the development of Parkinson's disease and dementia with Lewy bodies has heightened interest in this enzyme. Although the mechanisms through which glucocerebrosidase regulates the homeostasis of α-synuclein remains poorly understood, the identification of reduced glucocerebrosidase activity in the brains of patients with PD and dementia with Lewy bodies has paved the way for the development of novel therapeutic strategies directed at enhancing glucocerebrosidase activity and reducing α-synuclein burden, thereby slowing down or even preventing neuronal death. Here we reviewed the current literature relating to the mechanisms underlying the cross talk between glucocerebrosidase and α-synuclein, the GBA1 mutation-associated clinical phenotypes, and ongoing therapeutic approaches targeting glucocerebrosidase. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Cilia
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Hampstead, UK
| | - Stephen Mullin
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Hampstead, UK.,Institute of Translational and Stratified Medicine, Plymouth University Peninsula School of Medicine, Plymouth, UK
| | - José L Lanciego
- Programa de Neurociencias, Fundación para la Investigación Médica Aplicada (FIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
202
|
Barichella M, Severgnini M, Cilia R, Cassani E, Bolliri C, Caronni S, Ferri V, Cancello R, Ceccarani C, Faierman S, Pinelli G, De Bellis G, Zecca L, Cereda E, Consolandi C, Pezzoli G. Unraveling gut microbiota in Parkinson's disease and atypical parkinsonism. Mov Disord 2018; 34:396-405. [PMID: 30576008 DOI: 10.1002/mds.27581] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although several studies have suggested that abnormalities in gut microbiota may play a critical role in the pathogenesis of PD, data are still extremely heterogeneous. METHODS 16S gene ribosomal RNA sequencing was performed on fecal samples of 350 individuals, subdivided into idiopathic PD (n = 193, of whom 39 were drug naïve) stratified by disease duration, PSP (n = 22), MSA (n = 22), and healthy controls (HC; n = 113). Several confounders were taken into account, including dietary habits. RESULTS Despite the fact that unadjusted comparison of PD and HC showed several differences in relative taxa abundances, the significant results were greatly reduced after adjusting for confounders. Although most of these differences were associated with disease duration, lower abundance in Lachnospiraceae was the only difference between de novo PD and HC (remaining lower across almost all PD duration strata). Decreased Lachnospiraceae and increased Lactobacillaceae and Christensenellaceae were associated with a worse clinical profile, including higher frequencies of cognitive impairment, gait disturbances, and postural instability. When compared with HC, MSA and PSP patients shared the changes in PD, with a few exceptions: in MSA, Lachnospiraceae were not lower, and Prevotellaceae were reduced; in PSP, Lactobacillaceae were similar, and Streptococcaceae were reduced. CONCLUSIONS Gut microbiota may be an environmental modulator of the pathogenesis of PD and contribute to the interindividual variability of clinical features. Data are influenced by PD duration and several confounders that need to be taken into account in future studies. Prospective studies in de novo PD patients are needed to elucidate the net effect of dysbiosis on the progression of the disease. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michela Barichella
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies (IBT), Italian National Research Council (CNR), Milan, Italy
| | - Roberto Cilia
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Erica Cassani
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Carlotta Bolliri
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Serena Caronni
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Valentina Ferri
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Raffaella Cancello
- IRCCS Istituto Auxologico Italiano, Obesity Research Laboratory, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies (IBT), Italian National Research Council (CNR), Milan, Italy.,Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - Samanta Faierman
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| | - Giovanna Pinelli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy.,Department of Parkinson Disease Rehabilitation, Moriggia-Pelascini Hospital, Gravedona ed Uniti, Fondazione Europea Ricerca Biomedica (FERB), Gravedona, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies (IBT), Italian National Research Council (CNR), Milan, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies (IBT), Italian National Research Council (CNR), Milan, Italy.,Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY USA
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies (IBT), Italian National Research Council (CNR), Milan, Italy
| | - Gianni Pezzoli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
203
|
Del Rey NLG, Quiroga-Varela A, Garbayo E, Carballo-Carbajal I, Fernández-Santiago R, Monje MHG, Trigo-Damas I, Blanco-Prieto MJ, Blesa J. Advances in Parkinson's Disease: 200 Years Later. Front Neuroanat 2018; 12:113. [PMID: 30618654 PMCID: PMC6306622 DOI: 10.3389/fnana.2018.00113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
When James Parkinson described the classical symptoms of the disease he could hardly foresee the evolution of our understanding over the next two hundred years. Nowadays, Parkinson’s disease is considered a complex multifactorial disease in which genetic factors, either causative or susceptibility variants, unknown environmental cues, and the potential interaction of both could ultimately trigger the pathology. Noteworthy advances have been made in different fields from the clinical phenotype to the decoding of some potential neuropathological features, among which are the fields of genetics, drug discovery or biomaterials for drug delivery, which, though recent in origin, have evolved swiftly to become the basis of research into the disease today. In this review, we highlight some of the key advances in the field over the past two centuries and discuss the current challenges focusing on exciting new research developments likely to come in the next few years. Also, the importance of pre-motor symptoms and early diagnosis in the search for more effective therapeutic options is discussed.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Quiroga-Varela
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Elisa Garbayo
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Iria Carballo-Carbajal
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Laboratory of Parkinson Disease and other Neurodegenerative Movement Disorders, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mariana H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María J Blanco-Prieto
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
204
|
Loiodice S, Wing Young H, Rion B, Méot B, Montagne P, Denibaud AS, Viel R, Drieu La Rochelle C. Implication of nigral dopaminergic lesion and repeated L-dopa exposure in neuropsychiatric symptoms of Parkinson's disease. Behav Brain Res 2018; 360:120-127. [PMID: 30521934 DOI: 10.1016/j.bbr.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022]
Abstract
This study aims to investigate the contribution of nigral dopaminergic (DA) cell loss, repeated exposure to DA medication and the combination of both to the development of neuropsychiatric symptoms observed in Parkinson's disease (PD). A bilateral 6-OHDA lesion of the substantia nigra pars compacta (SNc) was performed in rats. A set of animals was repeatedly administered with L-dopa (20 mg/kg/day) and benserazide (5 mg/kg/day) over 10 days starting from day 11 post-lesion. Behavioural testing was performed in week 3 post-lesion: novel object recognition (NOR), elevated plus maze (EPM) social interaction (SI) tests, and amphetamine-induced hyperlocomotion (AIH). Immunohistochemical analysis revealed a significant partial lesion (48%) in 6-OHDA versus sham rats. This lesion was not associated with motor impairment. However, lesioned rats displayed a significant deficit in the NOR, which was reversed by acute treatment with l-dopa/benserazide (12.5 mg/kg and 15 mg/kg respectively). Lesioned rats also displayed a deficit in the EPM which was not reversed by acute treatment with l-dopa. No difference was observed in the SI test or in the AIH assay. In all assays, no effect of chronic l-dopa exposure was observed. This study provides new insights into the neuropathophysiology associated with neuropsychiatric symptoms of PD. Our data strongly emphasises a not previously clearly identified critical role in cognition for the SNc. The results suggest that DA pathways were less directly involved in lesion-induced anxiety-like behaviour. We did not report any effect of chronic l-dopa exposure in the context of partial nigral cell loss.
Collapse
Affiliation(s)
- Simon Loiodice
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France.
| | - Harry Wing Young
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France
| | - Bertrand Rion
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France
| | - Benoît Méot
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France
| | - Pierre Montagne
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France
| | | | - Roselyne Viel
- Plate-Forme H2P2, Université de Rennes 1, Biosit, 2 Av. du Prof. Léon Bernard, 35043, Rennes, France
| | | |
Collapse
|
205
|
Hughes KC, Gao X, Baker JM, Stephen C, Kim IY, Valeri L, Schwarzschild MA, Ascherio A. Non-motor features of Parkinson's disease in a nested case-control study of US men. J Neurol Neurosurg Psychiatry 2018; 89:1288-1295. [PMID: 30076266 DOI: 10.1136/jnnp-2018-318275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 06/18/2018] [Indexed: 11/04/2022]
Abstract
BACKGROUND Several non-motor features may individually contribute to identify prodromal Parkinson's disease (PD), but little is known on how they interact. METHODS We conducted a case-control study nested within the Health Professionals Follow-up Study in a large cohort of men age 40-75 at recruitment in 1986. Cases (n=120) had confirmed PD, were<85 in January 2012, returned a 2012 questionnaire with questions on probable rapid eye movement sleep behaviour disorder (RBD) and constipation sent to all cohort participants and completed in 2014 the Brief Smell Identification Test and a questionnaire assessing parkinsonism and other non-motor PD features (including depressive symptoms, excessive daytime sleepiness, impaired colour vision and body pain). Controls (n=6479) met the same criteria as cases, except for the PD diagnosis. RESULTS Concurrent constipation, probable RBD and hyposmia were present in 29.3% of cases and 1.1% of controls, yielding an age-adjusted OR of 160(95%CI 72.8to353) for three features versus none. The odds of PD increased exponentially with additional non-motor features (OR for 6-7 features versus none: 1325; 95%CI333to5279). Among men without PD, the number of non-motor features was associated with odds of parkinsonism (OR for 6-7 features versus none: 89; 95%CI21.2to375). We estimated that in a population with a prodromal PD prevalence of 2%, concurrent constipation, probable RBD and hyposmia would have a maximum sensitivity of 29% and a positive predictive value (PPV) of 35%. The PPV could increase up to 70% by including additional features, but with sharply decreased sensitivity. CONCLUSIONS Concurrent constipation, probable RBD and hyposmia are strongly associated with PD. Because these features often precede motor symptoms and their co-occurrence could provide an efficient method for early PD identification.
Collapse
Affiliation(s)
- Katherine C Hughes
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xiang Gao
- Department of Nutritional Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jessica M Baker
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher Stephen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Iris Y Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Linda Valeri
- Laboratory of Psychiatric Biostatistics, McLean Hospital, Belmont, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
206
|
Albrecht F, Ballarini T, Neumann J, Schroeter ML. FDG-PET hypometabolism is more sensitive than MRI atrophy in Parkinson's disease: A whole-brain multimodal imaging meta-analysis. Neuroimage Clin 2018; 21:101594. [PMID: 30514656 PMCID: PMC6413303 DOI: 10.1016/j.nicl.2018.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 11/25/2022]
Abstract
Recently, revised diagnostic criteria for Parkinson's disease (PD) were introduced (Postuma et al., 2015). Yet, except for well-established dopaminergic imaging, validated imaging biomarkers for PD are still missing, though they could improve diagnostic accuracy. We conducted systematic meta-analyses to identify PD-specific markers in whole-brain structural magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) and diffusion tensor imaging (DTI) studies. Overall, 74 studies were identified including 2323 patients and 1767 healthy controls. Studies were first grouped according to imaging modalities (MRI 50; PET 14; DTI 10) and then into subcohorts based on clinical phenotypes. To ensure reliable results, we combined established meta-analytical algorithms - anatomical likelihood estimation and seed-based D mapping - and cross-validated them in a conjunction analysis. Glucose hypometabolism was found using FDG-PET extensively in bilateral inferior parietal cortex and left caudate nucleus with both meta-analytic methods. This hypometabolism pattern was confirmed in subcohort analyses and related to cognitive deficits (inferior parietal cortex) and motor symptoms (caudate nucleus). Structural MRI showed only small focal gray matter atrophy in the middle occipital gyrus that was not confirmed in subcohort analyses. DTI revealed fractional anisotropy reductions in the cingulate bundle near the orbital and anterior cingulate gyri in PD. Our results suggest that FDG-PET reliably identifies consistent functional brain abnormalities in PD, whereas structural MRI and DTI show only focal alterations and rather inconsistent results. In conclusion, FDG-PET hypometabolism outperforms structural MRI in PD, although both imaging methods do not offer disease-specific imaging biomarkers for PD.
Collapse
Affiliation(s)
- Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany; Department of Medical Engineering and Biotechnology, University of Applied Science, Jena, Germany.
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig & FTLD Consortium Germany, Leipzig, Germany.
| |
Collapse
|
207
|
Dall’Antonia I, Šonka K, Dušek P. Olfaction and Colour Vision: What Can They Tell Us about Parkinson’s Disease? Prague Med Rep 2018; 119:85-96. [DOI: 10.14712/23362936.2018.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder with the pathological accumulation of alpha synuclein in the brain and peripheral nerve tissue. Early stages of synucleinopathies, often present clinically with rapid eye movement (REM) sleep disorder (RBD). Clinical markers that indicate early progression from RBD to manifest synucleinopathies include abnormal dopamine transporter (DAT) imaging, motor and non-motor symptoms. Despite the high diagnostic strength of DAT imaging and motor abnormalities, they are not the earliest biomarkers. Non-motor signs of neurodegeneration such as colour vision and olfaction abnormalities are detectable by clinical examination as early as 20 years before disease onset. Detailed analysis of olfactory and colour vision dysfunction can provide valuable information regarding brain pathologies, further specifying clinical phenotypes, and giving clues to underlying pathophysiological mechanisms in Parkinson’s disease and related disorders.
Collapse
|
208
|
Abstract
Even before the success of combined positron emission tomography and computed tomography (PET/CT), the neuroimaging community was conceiving the idea to integrate the positron emission tomography (PET), with very high molecular quantitative data but low spatial resolution, and magnetic resonance imaging (MRI), with high spatial resolution. Several technical limitations have delayed the use of a hybrid scanner in neuroimaging studies, including the full integration of the PET detector ring within the MRI system, the optimization of data acquisition, and the implementation of reliable methods for PET attenuation, motion correction, and joint image reconstruction. To be valid and useful in clinical and research settings, this instrument should be able to simultaneously acquire PET and MRI, and generate quantitative parametric PET images comparable to PET-CT. While post hoc co-registration of combined PET and MRI data acquired separately became the most reliable technique for the generation of "fused" PET-MRI images, only hybrid PET-MRI approach allows merging these measurements naturally and correlating them in a temporal manner. Furthermore, hybrid PET-MRI represents the most accurate tool to investigate in vivo the interplay between molecular and functional aspects of brain pathophysiology. Hybrid PET-MRI technology is still in the early stages in the movement disorders field, due to the limited availability of scanners with integrated optimized methodological models. This technology is ideally suited to investigate interactions between resting-state functional/arterial spin labeling MRI and [18F]FDG PET glucose metabolism in the evaluation of the brain "hubs" particularly vulnerable to neurodegeneration, areas with a high degree of connectivity and associated with an efficient synaptic neurotransmission. In Parkinson's disease, hybrid PET-MRI is also the ideal instrument to deeper explore the relationship between resting-state functional MRI and dopamine release at [11C]raclopride PET challenge, in the identification of early drug-naïve Parkinson's disease patients at higher risk of motor complications and in the evaluation of the efficacy of novel neuroprotective treatment able to restore at the same time the altered resting state and the release of dopamine. In this chapter, we discuss the key methodological aspects of hybrid PET-MRI; the evidence in movement disorders of the key resting-state functional and perfusion MRI; [18F]FDG PET and [11C]raclopride PET challenge studies; the potential advantages of using hybrid PET-MRI to investigate the pathophysiology of movement disorders and neurodegenerative diseases. Future directions of hybrid PET-MRI will be discussed alongside with up-to-date technological innovations on hybrid systems.
Collapse
|
209
|
Sanjari Moghaddam H, Dolatshahi M, Salardini E, Aarabi MH. Association of olfaction dysfunction with brain microstructure in prodromal Parkinson disease. Neurol Sci 2018; 40:283-291. [DOI: 10.1007/s10072-018-3629-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023]
|
210
|
The association between restless legs syndrome and premotor symptoms of Parkinson's disease. J Neurol Sci 2018; 394:41-44. [DOI: 10.1016/j.jns.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
|
211
|
Graham SF, Rey NL, Ugur Z, Yilmaz A, Sherman E, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P. Metabolomic Profiling of Bile Acids in an Experimental Model of Prodromal Parkinson's Disease. Metabolites 2018; 8:metabo8040071. [PMID: 30384419 PMCID: PMC6316593 DOI: 10.3390/metabo8040071] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
For people with Parkinson’s disease (PD), considered the most common neurodegenerative disease behind Alzheimer’s disease, accurate diagnosis is dependent on many factors; however, misdiagnosis is extremely common in the prodromal phases of the disease, when treatment is thought to be most effective. Currently, there are no robust biomarkers that aid in the early diagnosis of PD. Following previously reported work by our group, we accurately measured the concentrations of 18 bile acids in the serum of a prodromal mouse model of PD. We identified three bile acids at significantly different concentrations (p < 0.05) when mice representing a prodromal PD model were compared with controls. These include ω-murichoclic acid (MCAo), tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA). All were down-regulated in prodromal PD mice with TUDCA and UDCA at significantly lower levels (17-fold and 14-fold decrease, respectively). Using the concentration of three bile acids combined with logistic regression, we can discriminate between prodromal PD mice from control mice with high accuracy (AUC (95% CI) = 0.906 (0.777–1.000)) following cross validation. Our study highlights the need to investigate bile acids as potential biomarkers that predict PD and possibly reflect the progression of manifest PD.
Collapse
Affiliation(s)
- Stewart F Graham
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Zafer Ugur
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Ali Yilmaz
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Eric Sherman
- University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael Maddens
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Ray O Bahado-Singh
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Lindsay K Meyerdirk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
212
|
Cova I, Priori A. Diagnostic biomarkers for Parkinson's disease at a glance: where are we? J Neural Transm (Vienna) 2018; 125:1417-1432. [PMID: 30145631 PMCID: PMC6132920 DOI: 10.1007/s00702-018-1910-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder whose aetiology remains unclear: degeneration involves several neurotransmission systems, resulting in a heterogeneous disease characterized by motor and non-motor symptoms. PD causes progressive disability that responds only to symptomatic therapies. Future advances include neuroprotective strategies for use in at-risk populations before the clinical onset of disease, hence the continuing need to identify reliable biomarkers that can facilitate the clinical diagnosis of PD. In this evaluative review, we summarize information on potential diagnostic biomarkers for use in the clinical and preclinical stages of PD.
Collapse
Affiliation(s)
- Ilaria Cova
- Neurology Unit, L. Sacco University Hospital, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan and ASST Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
213
|
Hinkle JT, Perepezko K, Mills KA, Mari Z, Butala A, Dawson TM, Pantelyat A, Rosenthal LS, Pontone GM. Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord 2018; 55:8-14. [PMID: 30146185 PMCID: PMC6291234 DOI: 10.1016/j.parkreldis.2018.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/22/2018] [Accepted: 08/17/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Constipation is a prodromal feature of Parkinson's disease (PD) and the gastrointestinal (GI) tract is implicated in the pathogenesis of PD. However, no studies have demonstrated ante-mortem relationships between nigrostriatal dysfunction and GI dysautonomia in PD. METHODS The Scale for Outcomes in Parkinson's disease for Autonomic Symptoms (SCOPA-AUT) assesses dysautonomia in the multi-center Parkinson's Progression Marker Initiative (PPMI). We used linear mixed-effects models and reliable change indices (RCIs) to examine longitudinal associations between dysautonomia and dopamine transporter (DAT) striatal binding ratios (SBRs) measured by single-photon emission computerized tomography in PPMI participants over four years (n = 397 at baseline). RESULTS Adjusted mixed-models of longitudinal data showed that constipation-but not orthostatic hypotension or urinary dysfunction-was associated with reduced SBR in both caudate (P < 0.001) and putamen (P = 0.040). In both regions, SBR reductions between baseline and 4-year follow-up were significant and measurable (P < 0.0001), with larger decline and variance in the caudate nucleus. Four-year change in caudate-but not putaminal-SBR was significantly associated with RCI-indicated progression of GI dysautonomia (P = 0.031), but not other types of dysautonomia. These associations remained after adjusting for the use of medications or supplements to control constipation. Consistent with prior PPMI reports, motor impairment progression was not associated with SBR reduction. CONCLUSIONS GI dysautonomia correlates with reductions in DAT availability; constipation is most closely associated with caudate-DAT reduction. Worsening GI-dysautonomia and reduced bowel movements may accompany advancing nigral degeneration or changes in nigrostriatal dopamine function.
Collapse
Affiliation(s)
- Jared T Hinkle
- Medical Scientist Training Program, USA; Department of Psychiatry and Behavioral Sciences, USA; Solomon H. Snyder Department of Neuroscience, USA.
| | | | - Kelly A Mills
- Morris K. Udall Parkinson's Disease Research Center, USA; Department of Neurology, USA
| | - Zoltan Mari
- Morris K. Udall Parkinson's Disease Research Center, USA; Department of Neurology, USA; Cleveland Clinic Lou Ruvo Center for Brain Health, Movement Disorders Program, Las Vegas, NV, USA
| | - Ankur Butala
- Department of Psychiatry and Behavioral Sciences, USA; Morris K. Udall Parkinson's Disease Research Center, USA; Department of Neurology, USA
| | - Ted M Dawson
- Solomon H. Snyder Department of Neuroscience, USA; Morris K. Udall Parkinson's Disease Research Center, USA; Department of Neurology, USA; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexander Pantelyat
- Morris K. Udall Parkinson's Disease Research Center, USA; Department of Neurology, USA
| | - Liana S Rosenthal
- Morris K. Udall Parkinson's Disease Research Center, USA; Department of Neurology, USA
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, USA; Morris K. Udall Parkinson's Disease Research Center, USA
| |
Collapse
|
214
|
Signature of Aberrantly Expressed microRNAs in the Striatum of Rotenone-Induced Parkinsonian Rats. Neurochem Res 2018; 43:2132-2140. [DOI: 10.1007/s11064-018-2638-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/25/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
|
215
|
Xhima K, Nabbouh F, Hynynen K, Aubert I, Tandon A. Noninvasive delivery of an α-synuclein gene silencing vector with magnetic resonance-guided focused ultrasound. Mov Disord 2018; 33:1567-1579. [PMID: 30264465 DOI: 10.1002/mds.101] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The characteristic progression of Lewy pathology in Parkinson's disease likely involves intercellular exchange and the accumulation of misfolded α-synuclein amplified by a prion-like self-templating mechanism. Silencing of the α-synuclein gene could provide long-lasting disease-modifying benefits by reducing the requisite substrate for the spreading aggregation. OBJECTIVES As a result of the poor penetration of viral vectors across the blood-brain barrier, gene therapy for central nervous system disorders requires direct injections into the affected brain regions, and invasiveness is further increased by the need for bilateral delivery to multiple brain regions. Here we test a noninvasive approach by combining low-intensity magnetic resonance-guided focused ultrasound and intravenous microbubbles that can transiently increase the access of brain impermeant therapeutic macromolecules to targeted brain regions. METHODS Transgenic mice expressing human α-synuclein were subjected to magnetic resonance-guided focused ultrasound targeted to 4 brain regions (hippocampus, substantia nigra, olfactory bulb, and dorsal motor nucleus) in tandem with intravenous microbubbles and an adeno-associated virus serotype 9 vector bearing a short hairpin RNA sequence targeting the α-synuclein gene. RESULTS One month following treatment, α-synuclein immunoreactivity was decreased in targeted brain regions, whereas other neuronal markers such as synaptophysin or tyrosine hydroxylase were unchanged, and cell death and glial activation remained at basal levels. CONCLUSIONS These results demonstrate that magnetic resonance-guided focused ultrasound can effectively, noninvasively, and simultaneously deliver viral vectors targeting α-synuclein to multiple brain areas. Importantly, this approach may be useful to alter the progression of Lewy pathology along selected neuronal pathways, particularly as prodromal PD markers improve early diagnoses. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kristiana Xhima
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fadl Nabbouh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
216
|
Ashraf-Ganjouei A, Majd A, Javinani A, Aarabi MH. Autonomic dysfunction and white matter microstructural changes in drug-naïve patients with Parkinson's disease. PeerJ 2018; 6:e5539. [PMID: 30225168 PMCID: PMC6139241 DOI: 10.7717/peerj.5539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Autonomic dysfunction (AD) is one of the non-motor features of Parkinson's disease (PD). Some symptoms tend to occur in the early stages of PD. AD also has a great impact on patient's quality of life. In this study, we aimed to discover the association between AD (Scales for Outcomes in Parkinson's disease-Autonomic, SCOPA-AUT) and microstructural changes in white matter tracts in drug-naïve early PD patients to elucidate the central effects of autonomic nervous system impairments. METHOD In total, this study included 85 subjects with PD recruited from the Parkinson's Progression Markers Initiative (PPMI) database. Among the 85 PD patients, 38 were in Hoehn & Yahr stage 1 (HY1PD) and 47 were in stage 2 (HY2PD). Diffusion magnetic resonance imaging (DMRI) data were reconstructed in the MNI space using q-space diffeomorphic reconstruction to obtain the spin distribution function. The spin distribution function (SDF) values were used in DMRI connectometry analysis. We investigated through diffusion MRI connectometry the structural correlates of white matter tracts with SCOPA-AUT subscores and total score. RESULTS Connectometry analysis also revealed positive association with white matter density in bilateral corticospinal tract in HY1PD patients and negative association in genu of corpus callosum (CC) and, bilateral cingulum in both groups. In addition, there were associations between gastrointestinal, sexual, thermoregulatory and urinary items and structural brain connectivity in PD. CONCLUSION Our study reveals positive correlation, suggesting neural compensations in early PD. Cingulum and CC tracts have well-known roles in PD pathology, compatible with our findings that bring new insights to specific areas of AD and its role in central nervous system (CNS) neurodegeneration, paving the way for using prodromal makers in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
| | - Alireza Majd
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Javinani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
217
|
Yousaf T, Pagano G, Wilson H, Politis M. Neuroimaging of Sleep Disturbances in Movement Disorders. Front Neurol 2018; 9:767. [PMID: 30323786 PMCID: PMC6141751 DOI: 10.3389/fneur.2018.00767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
Sleep dysfunction is recognized as a distinct clinical manifestation in movement disorders, often reported early on in the disease course. Excessive daytime sleepiness, rapid eye movement sleep behavior disorder and restless leg syndrome, amidst several others, are common sleep disturbances that often result in significant morbidity. In this article, we review the spectrum of sleep abnormalities across atypical Parkinsonian disorders including multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), as well as Parkinson's disease (PD) and Huntington's disease (HD). We also explore the current concepts on the neurobiological underpinnings of sleep disorders, including the role of dopaminergic and non-dopaminergic pathways, by evaluating the molecular, structural and functional neuroimaging evidence based on several novel techniques including magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Based on the current state of research, we suggest that neuroimaging is an invaluable tool for assessing structural and functional correlates of sleep disturbances, harboring the ability to shed light on the sleep problems attached to the limited treatment options available today. As our understanding of the pathophysiology of sleep and wake disruption heightens, novel therapeutic approaches are certain to transpire.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
218
|
Microstructural changes in patients with Parkinson disease and REM sleep behavior disorder: depressive symptoms versus non-depressed. Acta Neurol Belg 2018; 118:415-421. [PMID: 29442234 DOI: 10.1007/s13760-018-0896-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Search for Parkinson's disease (PD) progression biomarkers has led to the identification of both motor and non-motor symptoms relevant of prodromal PD that could be eye-opening to the spreading underlying Lewy body pathogenesis. One most robust predictor of PD is the REM sleep behavior disorder (RBD), and one most common early non-motor symptom of PD is depression. With RBD, frequently coexisting with clinical depression and both predicting dopamine transmission dysfunction, we aimed to survey structural associates of depressive symptoms in early PD patients with comorbid RBD. Through diffusion MRI connectometry, we tracked fiber differences comparing DWI images obtained from 14 patients with depressive symptoms and 18 without depression from a group with comorbid RBD and PD. DWI images and patients were recruited from the Parkinson's Progression Markers Initiative database. PD-RBD patients with depressive symptoms showed pathways with significantly reduced connectivity in the right cingulum, left and right fornix, left inferior longitudinal fasciculus, right corticospinal tract, left middle cerebellar peduncle and genu of corpus callosum (FDR = 0.0228). Diffusivity alteration of the mentioned fibers in depressed, early PD patients with RBD might reflect underlying PD pathology and serve as common structural DWI signatures for early PD diagnosis.
Collapse
|
219
|
Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers 2018; 4:19. [PMID: 30166532 DOI: 10.1038/s41572-018-0016-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia that is characterized by loss of muscle atonia during REM sleep (known as REM sleep without atonia, or RSWA) and abnormal behaviours occurring during REM sleep, often as dream enactments that can cause injury. RBD is categorized as either idiopathic RBD or symptomatic (also known as secondary) RBD; the latter is associated with antidepressant use or with neurological diseases, especially α-synucleinopathies (such as Parkinson disease, dementia with Lewy bodies and multiple system atrophy) but also narcolepsy type 1. A clinical history of dream enactment or complex motor behaviours together with the presence of muscle activity during REM sleep confirmed by video polysomnography are mandatory for a definite RBD diagnosis. Management involves clonazepam and/or melatonin and counselling and aims to suppress unpleasant dreams and behaviours and improve bedpartner quality of life. RSWA and RBD are now recognized as manifestations of an α-synucleinopathy; most older adults with idiopathic RBD will eventually develop an overt neurodegenerative syndrome. In the future, studies will likely evaluate neuroprotective therapies in patients with idiopathic RBD to prevent or delay α-synucleinopathy-related motor and cognitive decline.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France. .,INSERM, U1061, Montpellier, France, Université Montpellier, Montpellier, France.
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Alex Iranzo
- Neurology Service, Multidisciplinary Sleep Unit, Hospital Clinic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Pierre-Herve Luppi
- UMR 5292 CNRS/U1028 INSERM, Center of Research in Neuroscience of Lyon (CRNL), SLEEP Team, Université Claude Bernard Lyon I, Faculté de Médecine RTH Laennec, Lyon, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Jacques Montplaisir
- Department of Psychiatry, Université de Montréal, Québec, Canada and Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Quebec, Canada
| | - Bradley Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
220
|
Postuma RB, Poewe W, Litvan I, Lewis S, Lang AE, Halliday G, Goetz CG, Chan P, Slow E, Seppi K, Schaffer E, Rios-Romenets S, Mi T, Maetzler C, Li Y, Heim B, Bledsoe IO, Berg D. Validation of the MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 2018; 33:1601-1608. [PMID: 30145797 DOI: 10.1002/mds.27362] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/22/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In 2015, the International Parkinson and Movement Disorder Society published clinical diagnostic criteria for Parkinson's disease. These criteria aimed to codify/reproduce the expert clinical diagnostic process and to help standardize diagnosis in research and clinical settings. Their accuracy compared with expert clinical diagnosis has not been tested. The objectives of this study were to validate the International Parkinson and Movement Disorder Society diagnostic criteria against a gold standard of expert clinical diagnosis, and to compare concordance/accuracy of the International Parkinson and Movement Disorder Society criteria to 1988 United Kingdom Brain Bank criteria. METHODS From 8 centers, we recruited 626 parkinsonism patients (434 PD, 192 non-PD). An expert neurologist diagnosed each patient as having PD or non-PD, regardless of International Parkinson and Movement Disorder Society criteria (gold standard, clinical diagnosis). Then a second neurologist evaluated the presence/absence of each individual item from the International Parkinson and Movement Disorder Society criteria. The overall accuracy/concordance rate, sensitivity, and specificity of the International Parkinson and Movement Disorder Society criteria compared with the expert gold standard were calculated. RESULTS Of 434 patients diagnosed with PD, 94.5% met the International Parkinson and Movement Disorder Society criteria for probable PD (5.5% false-negative rate). Of 192 non-PD patients, 88.5% were identified as non-PD by the criteria (11.5% false-positive rate). The overall accuracy for probable PD was 92.6%. In addition, 59.3% of PD patients and only 1.6% of non-PD patients met the International Parkinson and Movement Disorder Society criteria for clinically established PD. In comparison, United Kingdom Brain Bank criteria had lower sensitivity (89.2%, P = 0.008), specificity (79.2%, P = 0.018), and overall accuracy (86.4%, P < 0.001). Diagnostic accuracy did not differ according to age or sex. Specificity improved as disease duration increased. CONCLUSIONS The International Parkinson and Movement Disorder Society criteria demonstrated high sensitivity and specificity compared with the gold standard, expert diagnosis, with sensitivity and specificity both higher than United Kingdom Brain Bank criteria. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Irene Litvan
- Department of Neurosciences, UC San Diego, La Jolla, California, USA
| | - Simon Lewis
- Brain and Mind Centre, Sydney Medical School, Camperdown, Australia
| | - Anthony E Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Glenda Halliday
- Brain and Mind Centre, Sydney Medical School, Camperdown, Australia
| | | | - Piu Chan
- Department of Neurobiology and Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Elizabeth Slow
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Eva Schaffer
- Klinik für Neurologie, UKSH, Campus Kiel, Christian-Albrechts-Universität, Kiel, Germany
| | | | - Taomian Mi
- Department of Neurobiology and Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Corina Maetzler
- Klinik für Neurologie, UKSH, Campus Kiel, Christian-Albrechts-Universität, Kiel, Germany
| | - Yuan Li
- Department of Neurobiology and Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Beatrice Heim
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Daniela Berg
- Klinik für Neurologie, UKSH, Campus Kiel, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
221
|
Sieurin J, Andel R, Tillander A, Valdes EG, Pedersen NL, Wirdefeldt K. Occupational stress and risk for Parkinson's disease: A nationwide cohort study. Mov Disord 2018; 33:1456-1464. [PMID: 30145813 PMCID: PMC6220861 DOI: 10.1002/mds.27439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/04/2018] [Accepted: 04/27/2018] [Indexed: 12/03/2022] Open
Abstract
Background: Stress has been suggested as a contributing factor in the etiology of Parkinson's Disease (PD), but epidemiological evidence is sparse. Objective: The objective of this study was to explore the association between occupational stress according to the job demands‐control model and the risk for PD. Methods: We conducted a population‐based cohort study with 2,544,748 Swedes born 1920 to 1950 who had an occupation reported in the population and housing censuses in 1980 or, if missing, in 1970. Job demands and control were measured using a job‐exposure matrix. Incident PD cases were identified using Swedish national health registers from 1987 to 2010. Data were analyzed with Cox regression with age as the underlying time scale, adjusting for sex, education, and chronic obstructive pulmonary disease as a proxy for smoking. Results: During a mean follow‐up time of 21.3 years, 21,544 incident PD cases were identified. High demands were associated with increased PD risk among men, most evident in men with high education. High control was associated with increased PD risk among the low educated. This association was more pronounced in women. High‐strain jobs (high demands and low control) was only associated with increased PDrisk among men with high education, whereas active jobs (high demands and high control) were associated with increased PD risk among men with low education. Interpretation: High job demands appear to increase PD risk in men, especially in men with high education, whereas high job control increases PD risk among low educated, more strongly in women. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johanna Sieurin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, Florida, USA.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Annika Tillander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elise G Valdes
- School of Aging Studies, University of South Florida, Tampa, Florida, USA.,Relias Learning, Cary, North Carolina, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
222
|
Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:439-467. [PMID: 30314606 DOI: 10.1016/bs.irn.2018.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional MRI (fMRI) has been widely used to study abnormal patterns of brain connectivity at rest and activation during a variety of tasks in patients with idiopathic Parkinson's disease (PD). fMRI studies in PD have led to a better understanding of many aspects of the disease including both motor and non-motor symptoms. Although its translation into clinical practice is still at an early stage, fMRI measures hold promise for multiple clinical applications in PD, including the early detection, predicting future change in clinical status, and as a marker of alterations in brain physiology related to neurotherapeutic agents and neurorehabilitative strategies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Sarasso Elisabetta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
223
|
Kim A, Nigmatullina R, Zalyalova Z, Soshnikova N, Krasnov A, Vorobyeva N, Georgieva S, Kudrin V, Narkevich V, Ugrumov M. Upgraded Methodology for the Development of Early Diagnosis of Parkinson's Disease Based on Searching Blood Markers in Patients and Experimental Models. Mol Neurobiol 2018; 56:3437-3450. [PMID: 30128652 DOI: 10.1007/s12035-018-1315-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Numerous attempts to develop an early diagnosis of Parkinson's disease (PD) by searching biomarkers in biological fluids were unsuccessful. The drawback of this methodology is searching markers in patients at the clinical stage without guarantee that they are also characteristic of either preclinical stage or prodromal stage (preclinical-prodromal stage). We attempted to upgrade this methodology by selecting only markers that are found both in patients and in PD animal models. HPLC and RT-PCR were used to estimate the concentration of amino acids, catecholamines/metabolites in plasma and gene expression in lymphocytes in 36 untreated early-stage PD patients and 52 controls, and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice at modeling the clinical ("symptomatic") stage and preclinical-prodromal ("presymptomatic") stage of PD. It was shown that among 13 blood markers found in patients, 7 markers are characteristic of parkinsonian symptomatic mice and 3 markers of both symptomatic and presymptomatic mice. According to our suggestion, the detection of the same marker in patients and symptomatic animals indicates adequate reproduction of pathogenesis along the corresponding metabolic pathway, whereas the detection of the same marker in presymptomatic animals indicates its specificity for preclinical-prodromal stage. This means that the minority of markers found in patients-decreased concentration of L-3,4-dihydroxyphenylalanine (L-DOPA) and dihydroxyphenylacetic acid (DOPAC) and increased dopamine D3 receptor gene expression-are specific for preclinical-prodromal stage and are suitable for early diagnosis of PD. Thus, we upgraded a current methodology for development of early diagnosis of PD by searching blood markers not only in patients but also in parkinsonian animals.
Collapse
Affiliation(s)
- Alexander Kim
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Razina Nigmatullina
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - Zuleikha Zalyalova
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
- Kazan Hospital for War Veterans, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Alexey Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Michael Ugrumov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
- National Research University Higher School of Economics, Moscow, Russia.
| |
Collapse
|
224
|
Haghshomar M, Dolatshahi M, Ghazi Sherbaf F, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Disruption of Inferior Longitudinal Fasciculus Microstructure in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Front Neurol 2018; 9:598. [PMID: 30093877 PMCID: PMC6070770 DOI: 10.3389/fneur.2018.00598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder accompanied by a series of pathological mechanisms which contribute to a variety of motor and non-motor symptoms. Recently, there has been an increasing interest in structural diffusion tensor imaging (DTI) in PD which has shed light on our understanding of structural abnormalities underlying PD symptoms or its associations with pathological mechanisms. One of the white matter tracts shown to be disrupted in PD with a possible contribution to some PD symptoms is the inferior longitudinal fasciculus (ILF). On the whole, lower ILF integrity contributes to thought disorders, impaired visual emotions, cognitive impairments such as semantic fluency deficits, and mood disorders. This review outlines the microstructural changes in ILF associated with systemic inflammation and various PD symptoms like cognitive decline, facial emotion recognition deficit, depression, color discrimination deficit, olfactory dysfunction, and tremor genesis. However, few studies have investigated DTI correlates of each symptom and larger studies with standardized imaging protocols are required to extend these preliminary findings and lead to more promising results.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
225
|
Rees RN, Acharya AP, Schrag A, Noyce AJ. An early diagnosis is not the same as a timely diagnosis of Parkinson's disease. F1000Res 2018; 7. [PMID: 30079229 PMCID: PMC6053699 DOI: 10.12688/f1000research.14528.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease is a common neurodegenerative condition that has significant costs to the individual patient and to society. The pathology starts up to a decade before symptoms are severe enough to allow a diagnosis using current criteria. Although the search for disease-modifying treatment continues, it is vital to understand what the right time is for diagnosis. Diagnosis of Parkinson’s disease is based on the classic clinical criteria, but the presence of other clinical features and disease biomarkers may allow earlier diagnosis, at least in a research setting. In this review, we identify the benefits of an early diagnosis, including before the classic clinical features occur. However, picking the right point for a “timely” diagnosis will vary depending on the preferences of the individual patient, efficacy (or existence) of disease-modifying treatment, and the ability for health systems to provide support and management for individuals at every stage of the disease. Good evidence for the quality-of-life benefits of existing symptomatic treatment supports the argument for earlier diagnosis at a time when symptoms are already present. This argument would be significantly bolstered by the development of disease-modifying treatments. Benefits of early diagnosis and treatment would affect not only the individual (and their families) but also the wider society and the research community. Ultimately, however, shared decision-making and the principles of autonomy, beneficence, and non-maleficence will need to be applied on an individual basis when considering a “timely” diagnosis.
Collapse
Affiliation(s)
- Richard Nathaniel Rees
- Department of Clinical Neuroscience, Institute of Neurology, UCL Hampstead Campus, London, UK
| | - Anita Prema Acharya
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anette Schrag
- Department of Clinical Neuroscience, Institute of Neurology, UCL Hampstead Campus, London, UK
| | - Alastair John Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
226
|
Ghazi Sherbaf F, Rostam Abadi Y, Mojtahed Zadeh M, Ashraf-Ganjouei A, Sanjari Moghaddam H, Aarabi MH. Microstructural Changes in Patients With Parkinson's Disease Comorbid With REM Sleep Behaviour Disorder and Depressive Symptoms. Front Neurol 2018; 9:441. [PMID: 29997561 PMCID: PMC6028696 DOI: 10.3389/fneur.2018.00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The diagnosis of Parkinson's disease (PD) is currently anchored on clinical motor symptoms, which appear more than 20 years after initiation of the neurotoxicity. Extra-nigral involvement in the onset of PD with probable nonmotor manifestations before the development of motor signs, lead us to the preclinical (asymptomatic) or prodromal stages of the disease (various nonmotor or subtle motor signs). REM sleep behavior disorder (RBD) and depression are established prodromal clinical markers of PD and predict worse motor and cognitive outcomes. Nevertheless, taken by themselves, these markers are not yet claimed to be practical in identifying high-risk individuals. Combining promising markers may be helpful in a reliable diagnosis of early PD. Therefore, we aimed to detect neural correlates of RBD and depression in 93 treatment-naïve and non-demented early PD by means of diffusion MRI connectometry. Comparing four groups of PD patients with or without comorbid RBD and/or depressive symptoms with each other and with 31 healthy controls, we found that these two non-motor symptoms are associated with lower connectivity in several white matter tracts including the cerebellar peduncles, corpus callosum and long association fibers such as cingulum, fornix, and inferior longitudinal fasciculus. For the first time, we were able to detect the involvement of short association fibers (U-fibers) in PD neurodegenerative process. Longitudinal studies on larger sample groups are needed to further investigate the reported associations.
Collapse
|
227
|
Getz SJ, Levin B. Cognitive and Neuropsychiatric Features of Early Parkinson's Disease. Arch Clin Neuropsychol 2018; 32:769-785. [PMID: 29077803 DOI: 10.1093/arclin/acx091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
The clinical definition of Parkinson's disease (PD) is based on cardinal motor features including bradykinesia as well as an additional symptom of tremor, postural instability, or rigidity. Evidence from neuropathological, imaging, and clinical research suggests a premotor, early phase of PD pathology. Further understanding of the earliest biomarkers of PD is crucial for the development of neuroprotective, disease modifying, cognitive, and psychiatric interventions. Recent research has explored early non-motor markers of PD pathology. This issue is especially timely as the International Parkinson and Movement Disorder Society has recently provided a research definition for prodromal PD which includes combinations of prodromal markers and risk factors aimed at identifying target populations for disease-prevention trials. In this review of early PD, we will outline early non-motor symptoms, early cognitive and neuropsychiatric features, neuropsychological assessment strategies, emerging evidence for early biomarkers, and treatment recommendations.
Collapse
Affiliation(s)
- Sarah J Getz
- Department of Neurology, Division of Neuropsychology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie Levin
- Department of Neurology, Division of Neuropsychology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
228
|
Skorvanek M, Feketeova E, Kurtis MM, Rusz J, Sonka K. Accuracy of Rating Scales and Clinical Measures for Screening of Rapid Eye Movement Sleep Behavior Disorder and for Predicting Conversion to Parkinson's Disease and Other Synucleinopathies. Front Neurol 2018; 9:376. [PMID: 29887829 PMCID: PMC5980959 DOI: 10.3389/fneur.2018.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by repeated episodes of REM sleep-related vocalizations and/or complex motor behaviors. Definite diagnosis of RBD is based on history and polysomnography, both of which are less accessible due to the lack of trained specialists and high cost. While RBD may be associated with disorders like narcolepsy, focal brain lesions, and encephalitis, idiopathic RBD (iRBD) may convert to Parkinson's disease (PD) and other synucleinopathies in more than 80% of patients and it is to date the most specific clinical prodromal marker of PD. Identification of individuals at high risk for development of PD is becoming one of the most important topics for current PD-related research as well as for future treatment trials targeting prodromal PD. Furthermore, concomitant clinical symptoms, such as subtle motor impairment, hyposmia, autonomic dysfunction, or cognitive difficulties, in subjects with iRBD may herald its phenoconversion to clinically manifest parkinsonism. The assessment of these motor and non-motor symptoms in iRBD may increase the sensitivity and specificity in identifying prodromal PD subjects. This review evaluates the diagnostic accuracy of individual rating scales and validated single items for screening of RBD and the role and accuracy of available clinical, electrophysiological, imaging, and tissue biomarkers in predicting the phenoconversion from iRBD to clinically manifest synucleinopathies.
Collapse
Affiliation(s)
- Matej Skorvanek
- Department of Neurology, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovakia
| | - Eva Feketeova
- Department of Neurology, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovakia
| | - Monica M. Kurtis
- Movement Disorders Unit, Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | - Jan Rusz
- Department of Neurology, Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Karel Sonka
- Department of Neurology, Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
229
|
Heldmann M, Heeren J, Klein C, Rauch L, Hagenah J, Münte TF, Kasten M, Brüggemann N. Neuroimaging abnormalities in individuals exhibiting Parkinson's disease risk markers. Mov Disord 2018; 33:1412-1422. [PMID: 29756356 DOI: 10.1002/mds.27313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The concept of prodromal Parkinson's disease (PD) involves variable combinations of nonmotor features and subtle motor abnormalities as a result of ongoing neurodegeneration in the brain stem including substantia nigra (SN) and abnormal findings upon transcranial sonography and nuclear imaging. Except for nuclear imaging, the predictive value of risk markers for the conversion to overt PD is low. OBJECTIVE The objective of this study was to determine whether PD risk markers are associated with changes in brain structure and to what extent cognitive changes are risk markers for PD. METHODS Diffusion-weighted imaging, voxel-based morphometry, and cortical thickness analysis was performed in 29 individuals with hyposmia and/or an increased SN hyperechogenicity (SN+) upon transcranial sonography and 28 controls without these 2 risk markers. Classical parkinsonian signs were an exclusion criterion. All of the participants underwent a neuropsychological test battery addressing executive functions, learning ability, and verbal fluency. RESULTS In the PD risk group, diffusion-weighted imaging mean diffusivity was increased in 4 left hemisphere clusters (posterior thalamus, inferior longitudinal fasciculus, fornix, corticospinal tract). A negative relationship of mean diffusivity and smell function was present for the posterior thalamus and the corticospinal tract. There was a significant correlation of mean diffusivity values and SN+ in all clusters. Neither voxel-based morphometry nor cortical thickness analysis revealed any group differences. No relevant group differences were observed for cognitive tests included. CONCLUSION PD-free individuals with PD risk markers show microstructural changes of the white matter, including areas relevant for motor and limbic processes. In addition, our study provides for the first time a neuroanatomical correlate for SN hyperechogenicity. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Janna Heeren
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Linus Rauch
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Johann Hagenah
- Department of Neurology, Westküstenklinikum Heide, Heide, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
230
|
Gross A, Racette BA, Camacho-Soto A, Dube U, Searles Nielsen S. Use of medical care biases associations between Parkinson disease and other medical conditions. Neurology 2018; 90:e2155-e2165. [PMID: 29743207 DOI: 10.1212/wnl.0000000000005678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/30/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine how use of medical care biases the well-established associations between Parkinson disease (PD) and smoking, smoking-related cancers, and selected positively associated comorbidities. METHODS We conducted a population-based, case-control study of 89,790 incident PD cases and 118,095 randomly selected controls, all Medicare beneficiaries aged 66 to 90 years. We ascertained PD and other medical conditions using ICD-9-CM codes from comprehensive claims data for the 5 years before PD diagnosis/reference. We used logistic regression to estimate age-, sex-, and race-adjusted odds ratios (ORs) between PD and each other medical condition of interest. We then examined the effect of also adjusting for selected geographic- or individual-level indicators of use of care. RESULTS Models without adjustment for use of care and those that adjusted for geographic-level indicators produced similar ORs. However, adjustment for individual-level indicators consistently decreased ORs: Relative to ORs without adjustment for use of care, all ORs were between 8% and 58% lower, depending on the medical condition and the individual-level indicator of use of care added to the model. ORs decreased regardless of whether the established association is known to be positive or inverse. Most notably, smoking and smoking-related cancers were positively associated with PD without adjustment for use of care, but appropriately became inversely associated with PD with adjustment for use of care. CONCLUSION Use of care should be considered when evaluating associations between PD and other medical conditions to ensure that positive associations are not attributable to bias and that inverse associations are not masked.
Collapse
Affiliation(s)
- Anat Gross
- From the Department of Neurology (A.G., B.A.R., A.C.-S., U.D., S.S.N.), Washington University School of Medicine, St. Louis, MO; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Brad A Racette
- From the Department of Neurology (A.G., B.A.R., A.C.-S., U.D., S.S.N.), Washington University School of Medicine, St. Louis, MO; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Alejandra Camacho-Soto
- From the Department of Neurology (A.G., B.A.R., A.C.-S., U.D., S.S.N.), Washington University School of Medicine, St. Louis, MO; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Umber Dube
- From the Department of Neurology (A.G., B.A.R., A.C.-S., U.D., S.S.N.), Washington University School of Medicine, St. Louis, MO; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Susan Searles Nielsen
- From the Department of Neurology (A.G., B.A.R., A.C.-S., U.D., S.S.N.), Washington University School of Medicine, St. Louis, MO; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
| |
Collapse
|
231
|
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is the second most common neurodegenerative disorder. Sleep dysfunction is one of the most common non-motor manifestations of PD that has gained significant interest over the past two decades due to its impact on the daily lives of PD patients, poorly understood mechanisms, and limited treatment options. In this review, we discuss the most common sleep disorders in PD and present recent investigations that have broadened our understanding of the epidemiology, clinical manifestations, diagnosis, and treatment of disturbed sleep and alertness in PD. RESENT FINDINGS The etiology of impaired sleep-wake cycles in PD is multifactorial. Sleep dysfunction in PD encompasses insomnia, REM sleep behavior disorder, sleep-disordered breathing, restless legs syndrome, and circadian dysregulation. Despite the high prevalence of sleep dysfunction in PD, evidence supporting the efficacy of treatment strategies is limited. We are at the opportune time to advance our understanding of sleep dysfunction in PD, which will hopefully lead to mechanisms-driven interventions for better sleep and allow us to approach sleep as a modifiable therapeutic target for other non-motor and motor manifestations in PD.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Movement Disorders Unit, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA. .,MGH Neurological Clinical Research Institute, 165 Cambridge Street, Suite 600, Boston, MA, 02446, USA.
| |
Collapse
|
232
|
Liu JB, Leng JL, Zhang XJ, Wang ZX, Duan ZW, Mao CJ, Liu CF. Investigation of non-motor symptoms in first-degree relatives of patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 52:62-68. [PMID: 29606605 DOI: 10.1016/j.parkreldis.2018.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Non-motor symptoms (NMS) are important prodromal characteristics of Parkinson's disease (PD). However, the incidence of NMS in first-degree relatives, such as siblings of PD patients, is still unknown. METHODS A total of 98 PD patients of the Affiliated Hospital of Yangzhou University were recruited; 210 siblings of these patients were included in a first-degree relatives (FDR) group and 250 healthy individuals were included in a control group. Various scales were used to assess NMS, including depression, anxiety, cognitive function, sleep status, constipation, daytime sleepiness, Rapid-Eye-Movement Sleep Behavior Disorder (RBD), and Restless Legs Syndrome (RLS). RESULTS NMS were more common in the PD group than the control group. The incidence of anxiety (OR = 3.434, 95%CI: 2.058-5.731, P < 0.001), depression (OR = 2.438, 95%CI: 1.289-4.609, P = 0.005), and RBD (OR = 4.120, 95%CI: 1.897-8.945, P < 0.001) was higher in the FDR group than the control group. There were non-significant differences in constipation, cognitive impairment, sleep disorder, daytime sleepiness, and RLS between the two groups. The incidence of RLS in FDR of PD with an age of onset <60 years was higher than in the controls (OR = 2.273, 95%CI: 1.107-4.667, P = 0.023). CONCLUSIONS Siblings of PD are more likely to suffer from anxiety, depression and RBD than the general population. RLS is more common in siblings of PD with onset age<60 than in the general population. It is speculated that PD patients and their siblings have common pathogenic genetic factors and early living environment for neurodegeneration.
Collapse
Affiliation(s)
- Jiang-Bing Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Jun-Ling Leng
- Emergency Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin-Jiang Zhang
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Zhao-Xia Wang
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Zuo-Wei Duan
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Cheng-Jie Mao
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
233
|
Neuroimaging in Parkinson's disease: focus on substantia nigra and nigro-striatal projection. Curr Opin Neurol 2018; 30:416-426. [PMID: 28537985 DOI: 10.1097/wco.0000000000000463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The diagnosis of Parkinson disease is based on clinical features; however, unmet need is an imaging signature for Parkinson disease and the early differential diagnosis with atypical parkinsonisms. A summary of the molecular imaging and MRI recent evidences for Parkinson disease diagnosis will be presented in this review. RECENT FINDINGS The nigro-striatal dysfunction explored by dopamine transporter imaging is not a mandatory diagnostic criterion for Parkinson disease, recent evidence supported its utility as in-vivo proof of degenerative parkinsonisms, and there might be compensatory mechanisms leading to an early overestimation. The visualization of abnormalities in substantia nigra by MRI has been recently described as sensitive and specific tool for Parkinson disease diagnosis, even in preclinical conditions, whereas it is not useful for distinguishing between Parkinson disease and atypical parkinsonisms. The relationship between the nigral anatomical changes, evaluated as structural alterations or neuromelanin signal decrease and the dopaminergic nigro-striatal function needs to be further clarified. SUMMARY With the hopeful advent of potential neuroprotective drugs for PD, it is crucial to have imaging measures that are able to detect at risk subjects. Moreover it is desirable to increase the knowledge about which measure better predicts the probability and the time of clinical conversion to PD.
Collapse
|
234
|
Rizzi N, Brunialti E, Cerri S, Cermisoni G, Levandis G, Cesari N, Maggi A, Blandini F, Ciana P. In vivo imaging of early signs of dopaminergic neuronal death in an animal model of Parkinson's disease. Neurobiol Dis 2018; 114:74-84. [PMID: 29486298 DOI: 10.1016/j.nbd.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/02/2018] [Accepted: 02/21/2018] [Indexed: 12/23/2022] Open
Abstract
The Parkinson's disease (PD) evolves over an extended period of time with the onset occurring long before clinical signs begin to manifest. Characterization of the molecular events underlying the PD onset is instrumental for the development of diagnostic markers and preventive treatments, progress in this field is hindered by technical limitations. We applied an imaging approach to demonstrate the activation of Nrf2 transcription factor as a hallmark of neurodegeneration in neurotoxin-driven models of PD. In dopaminergic SK-N-BE neuroblastoma cells, Nrf2 activation was detected in cells committed to die as proven by time lapse microscopy; in the substantia nigra pars compacta area of the mouse brain, the Nrf2 activation preceded dopaminergic neurodegeneration as demonstrated by in vivo and ex vivo optical imaging, a finding confirmed by co-localization experiments carried out by immunohistochemistry. Collectively, our results identify the Nrf2 signaling as an early marker of neurodegeneration, anticipating dopaminergic neurodegeneration and motor deficits.
Collapse
Affiliation(s)
- Nicoletta Rizzi
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Electra Brunialti
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Pavia, Italy
| | - Greta Cermisoni
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Pavia, Italy
| | - Nicoletta Cesari
- Centro Clinico-Veterinario e Zootecnico-Sperimentale d'Ateneo, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Adriana Maggi
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Pavia, Italy
| | - Paolo Ciana
- Center of Excellence for Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
235
|
Arnerić SP, Kern VD, Stephenson DT. Regulatory-accepted drug development tools are needed to accelerate innovative CNS disease treatments. Biochem Pharmacol 2018; 151:291-306. [PMID: 29410157 DOI: 10.1016/j.bcp.2018.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Central Nervous System (CNS) diseases represent one of the most challenging therapeutic areas for successful drug approvals. Developing quantitative biomarkers as Drug Development Tools (DDTs) can catalyze the path to innovative treatments, and improve the chances of drug approvals. Drug development and healthcare management requires sensitive, reliable, validated, and regulatory accepted biomarkers and endpoints. This review highlights the regulatory paths and considerations for developing DDTs required to advance biomarker and endpoint use in clinical development (e.g., consensus CDISC [Clinical Data Interchange Standards Consortium] data standards, precompetitive sharing of anonymized patient-level data, and continual alignment with regulators). Summarized is the current landscape of biomarkers in a range of CNS diseases including Alzheimer disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorders, Depression, Huntington's disease, Multiple Sclerosis and Traumatic Brain Injury. Advancing DDTs for these devastating diseases that are both validated and qualified will require an integrated, cross-consortium approach to accelerate the delivery of innovative CNS therapeutics.
Collapse
Affiliation(s)
- Stephen P Arnerić
- Critical Path for Alzheimer's Disease, Crititcal Path Institute, United States.
| | - Volker D Kern
- Critical Path for Alzheimer's Disease, Crititcal Path Institute, United States
| | | |
Collapse
|
236
|
Munoz DG, Fujioka S. Caffeine and Parkinson disease: A possible diagnostic and pathogenic breakthrough. Neurology 2018; 90:205-206. [PMID: 29298853 DOI: 10.1212/wnl.0000000000004898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- David G Munoz
- From the Department of Laboratory Medicine and Pathobiology (D.G.M.), University of Toronto, Canada; and Department of Neurology (S.F.), Fukuoka University, Japan.
| | - Shinsuke Fujioka
- From the Department of Laboratory Medicine and Pathobiology (D.G.M.), University of Toronto, Canada; and Department of Neurology (S.F.), Fukuoka University, Japan
| |
Collapse
|
237
|
Fujimaki M, Saiki S, Li Y, Kaga N, Taka H, Hatano T, Ishikawa KI, Oji Y, Mori A, Okuzumi A, Koinuma T, Ueno SI, Imamichi Y, Ueno T, Miura Y, Funayama M, Hattori N. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018; 90:e404-e411. [PMID: 29298852 PMCID: PMC5791797 DOI: 10.1212/wnl.0000000000004888] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate the kinetics and metabolism of caffeine in serum from patients with Parkinson disease (PD) and controls using liquid chromatography–mass spectrometry. Methods Levels of caffeine and its 11 metabolites in serum from 108 patients with PD and 31 age-matched healthy controls were examined by liquid chromatography–mass spectrometry. Mutations in caffeine-associated genes were screened by direct sequencing. Results Serum levels of caffeine and 9 of its downstream metabolites were significantly decreased even in patients with early PD, unrelated to total caffeine intake or disease severity. No significant genetic variations in CYP1A2 or CYP2E1, encoding cytochrome P450 enzymes primarily involved in metabolizing caffeine in humans, were detected compared with controls. Likewise, caffeine concentrations in patients with PD with motor complications were significantly decreased compared with those without motor complications. No associations between disease severity and single nucleotide variants of the ADORA2A gene encoding adenosine 2A receptor were detected, implying a dissociation of receptor sensitivity changes and phenotype. The profile of serum caffeine and metabolite levels was identified as a potential diagnostic biomarker by receiver operating characteristic curve analysis. Conclusion Absolute lower levels of caffeine and caffeine metabolite profiles are promising diagnostic biomarkers for early PD. This is consistent with the neuroprotective effect of caffeine previously revealed by epidemiologic and experimental studies. Classification of evidence This study provides Class III evidence that decreased serum levels of caffeine and its metabolites identify patients with PD.
Collapse
Affiliation(s)
- Motoki Fujimaki
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan.
| | - Yuanzhe Li
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Kaga
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Hikari Taka
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yutaka Oji
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Akio Mori
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Ayami Okuzumi
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Koinuma
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
238
|
Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration - an update. Nat Rev Neurol 2018; 14:40-55. [PMID: 29170501 DOI: 10.1038/nrneurol.2017.157] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
So-called idiopathic rapid eye movement (REM) sleep behaviour disorder (RBD), formerly seen as a rare parasomnia, is now recognized as the prodromal stage of an α-synucleinopathy. Given the very high risk that patients with idiopathic RBD have of developing α-synucleinopathies, such as Parkinson disease (PD), PD dementia, dementia with Lewy bodies or multiple system atrophy, and the outstandingly high specificity and very long interval between the onset of idiopathic RBD and the clinical manifestations of α-synucleinopathies, the prodromal phase of this disorder represents a unique opportunity for potentially disease-modifying intervention. This Review provides an update on classic and novel biomarkers of α-synuclein-related neurodegeneration in patients with idiopathic RBD, focusing on advances in imaging and neurophysiological, cognitive, autonomic, tissue-specific and other biomarkers. We discuss the strengths, potential weaknesses and suitability of these biomarkers for identifying RBD and neurodegeneration, with an emphasis on predicting progression to overt α-synucleinopathy. The role of video polysomnography in providing quantifiable and potentially treatment-responsive biomarkers of neurodegeneration is highlighted. In light of all these advances, and the now understood role of idiopathic RBD as an early manifestation of α-synuclein disease, we call for idiopathic RBD to be reconceptualized as isolated RBD.
Collapse
Affiliation(s)
- Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts 02114, USA
| |
Collapse
|
239
|
Ghazi Sherbaf F, Mohajer B, Ashraf-Ganjouei A, Mojtahed Zadeh M, Javinani A, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Serum Insulin-Like Growth Factor-1 in Parkinson's Disease; Study of Cerebrospinal Fluid Biomarkers and White Matter Microstructure. Front Endocrinol (Lausanne) 2018; 9:608. [PMID: 30450079 PMCID: PMC6224341 DOI: 10.3389/fendo.2018.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Growing evidence shows that impaired signaling of Insulin-like Growth Factor-1 (IGF-1) is associated with neurodegenerative disorders, such as Parkinson's disease (PD). However, there is still controversy regarding its proinflammatory or neuroprotective function. In an attempt to elucidate the contribution of IGF-1 in PD, we aimed to discover the relation between serum IGF-1 levels in drug-naïve early PD patients and cerebrospinal fluid (CSF) biomarkers as well as microstructural changes in brain white matter. Methods: The association between quartiles of serum IGF-1 levels and CSF biomarkers (α-synuclein, dopamine, amyloid-β1-42, total tau, and phosphorylated tau) was investigated using adjusted regression models in 404 drug-naïve early PD patients with only mild motor manifestations and 188 age- and sex-matched healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). By using region of interest analysis and connectometry approach, we tracked the white matter microstructural integrity and diffusivity patterns in a subgroup of study participants with available diffusion MRI data to investigate the association between subcomponents of neural pathways with serum IGF-1 levels. Results: PD patients had higher levels of IGF-1 compared to HC, although not statistically significant (mean difference: 3.60, P = 0.44). However, after adjustment for possible confounders and correction for False Discovery Rate (FDR), IGF-1 was negatively correlated with CSF α-synuclein, total and phosphorylated tau levels only in PD subjects. The imaging analysis proved a significant negative correlation (FDR corrected P-value = 0.013) between continuous levels of serum IGF-1 in patients with PD and the connectivity, but not integrity, in following fibers while controlling for age, sex, body mass index, depressive symptoms, education years, cognitive status and disease duration: middle cerebellar peduncle, cingulum, genu and splenium of the corpus callosum. No significant association was found between brain white matter microstructral measures or CSF markers of healthy controls and levels of IGF-1. Conclusion: Altered connectivity in specific white matter structures, mainly involved in cognitive and motor deterioration, in association with higher serum IGF-1 levels might propose IGF-1 as a potential associate of worse outcome in response to higher burden of α-synucleinopathy and tauopathy in PD.
Collapse
Affiliation(s)
| | - Bahram Mohajer
- Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Javinani
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
- *Correspondence: Mehdi Shirin Shandiz
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Mohammad Hadi Aarabi
| |
Collapse
|
240
|
Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 2018; 64:240-255. [PMID: 28595911 PMCID: PMC5736468 DOI: 10.1016/j.neuro.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
241
|
Parkinson’s Disease: Contemporary Concepts and Clinical Management. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
242
|
Ubeda-Bañon I, Flores-Cuadrado A, Saiz-Sanchez D, Martinez-Marcos A. Differential Effects of Parkinson's Disease on Interneuron Subtypes within the Human Anterior Olfactory Nucleus. Front Neuroanat 2017; 11:113. [PMID: 29259548 PMCID: PMC5723292 DOI: 10.3389/fnana.2017.00113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Synucleinopathies (including α-synucleinopathies), which include Parkinson's disease (PD), manifest themsevles early on (stage 1) in the olfactory system; preferentially in the anterior olfactory nucleus (AON). In particular, the non-motor, early manifestations of PD include hyposmia, which is the partial loss of the sense of smell. The neural basis of hyposmia in PD, however, is poorly understood; but the AON appears to be a key structure in the disease's progression. We analyzed whether α-synuclein was involved in the differential interneuron vulnerability associated with PD in the retrobulbar, cortical anterior and cortical posterior divisions of the AON. First, we determined the expression of the calcium binding interneuron markers, calretinin, calbindin and parvalbumin, as well as non-calcium binding interneuron marker, somatostatin, in neuronal cell bodies alone (cells/mm2) and in neuronal cell bodies and neurites (% of area fraction) of post-mortem tissue from PD cases and age-matched controls (n = 4 for each) by immunofluorescent confocal microscopy. Results indicated that parvalbumin expression was upregulated in neuronal cell bodies throughout the anterior olfactory nucleus of PD cases compared with controls. Furthermore, there was increased calbindin, calretinin and parvalbumin expression in the cell bodies and neurites of neurons in the retrobulbar division and also increased parvalbumin expression in the neurites of neurons in the cortical division; calretinin expression was also increased in neuronal cell bodies and neurites in the cortical posterior division. Second, we analyzed the co-localization of the above markers with α-synuclein, with results indicating that α-synuclein co-localized with the calcium-binding proteins, but only partially with somatostatin. Taken together, these results indicate differential expression levels among different neural markers in the divisions of the AON in PD cases and point to several possibilities, among them: possible neuroprotective mechanisms of calcium-binding proteins against α-synuclein; and the differential involvement of somatostatin in α-synuclein-positive cell bodies and neurites.
Collapse
Affiliation(s)
- Isabel Ubeda-Bañon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
243
|
Shi J, Tian J, Li T, Qin B, Fan D, Ni J, Wei M, Zhang X, Liu N, Liu J, Li Y, Liu W, Wang Y. Efficacy and safety of SQJZ herbal mixtures on nonmotor symptoms in Parkinson disease patients: Protocol for a randomized, double-blind, placebo-controlled trial. Medicine (Baltimore) 2017; 96:e8824. [PMID: 29390272 PMCID: PMC5815684 DOI: 10.1097/md.0000000000008824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND As a multisystemic neurodegenerative disorder, Parkinson disease (PD) has a broad spectrum of symptoms including motor and nonmotor symptoms (NMS). As shown in studies, NMS can also impact patient's quality of life, and many of them often go untreated. Chinese herbal medicines with multiconstituent may alleviate NMS in PD patients. This research is carried out to assess the efficacy and safety of a Chinese herbal formula for NMS, with its Chinese name acronym of SQJZ. METHODS/DESIGN It will be a multicenter, randomized, double-blind, placebo-controlled trial. Idiopathic PD with a Hoehn and Yahr scale score ≤4, aged 18 to 80 years, will be involved. About 240 patients will be randomly assigned to either SQJZ or placebo in a 2:1 ratio. There is a 2-week run-in period before the randomization, and the follow-up will be 24 weeks, including 12-week treatment period, with visit once every 4 weeks and 12-week washout follow-up. All participants are asked to maintain the regular medication schedule. SQJZ formula will consist of Chinese herbs with effects for insomnia, constipation, anxiety, and so on. The primary outcome will be measured using NMS scale, and secondary outcomes will include unified PD rating scale, PD sleep scale, the Parkinson fatigue scale, the constipation severity instrument, and PD Questionnaire-39. The primary efficacy analysis will be based on the intention-to-treat method, and mixed-model repeated-measures analyses will be used. DISCUSSION The findings from this research might provide evidence of the efficacy and safety of SQJZ Chinese herbal formula for treating NMS in PD patients. The results will sustain the broader use of SQJZ formula in PD.
Collapse
Affiliation(s)
- Jing Shi
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Jinzhou Tian
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Ting Li
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | | | | | - Jingnian Ni
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Mingqing Wei
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Xuekai Zhang
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Na Liu
- Peking University Third Hospital
| | - Jianping Liu
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine
| | - Yumeng Li
- Institute of Neurodegenerative Diseases at Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Weiwei Liu
- Consulting Center of Biomedical Statistics, The Academy of Military Medical Sciences
| | - Yongyan Wang
- Institute of Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
244
|
Wen MC, Heng HS, Hsu JL, Xu Z, Liew GM, Au WL, Chan LL, Tan LC, Tan EK. Structural connectome alterations in prodromal and de novo Parkinson's disease patients. Parkinsonism Relat Disord 2017; 45:21-27. [PMID: 28964628 DOI: 10.1016/j.parkreldis.2017.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Accepted: 09/20/2017] [Indexed: 11/25/2022]
|
245
|
Fengler S, Liepelt-Scarfone I, Brockmann K, Schäffer E, Berg D, Kalbe E. Cognitive changes in prodromal Parkinson's disease: A review. Mov Disord 2017; 32:1655-1666. [PMID: 28980730 DOI: 10.1002/mds.27135] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
Although other nonmotor phenomena representing possible prodromal symptoms of Parkinson's disease have been described in some detail, the occurrence and characteristics of cognitive decline in this early phase of the disease are less well understood. The aim of this review is to summarize the current state of research on cognitive changes in prodromal PD. Only a small number of longitudinal studies have been conducted that examined cognitive function in individuals with a subsequent PD diagnosis. However, when we consider data from at-risk groups, the evidence suggests that cognitive decline may occur in a substantial number of individuals who have the potential for developing PD. In terms of specific cognitive domains, executive function in particular and, less frequently, memory scores are reduced. Prospective longitudinal studies are thus needed to clarify whether cognitive, and specifically executive, decline might be added to the prodromal nonmotor symptom complex that may precede motor manifestations of PD by years and may help to update the risk scores used for early identification of PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophie Fengler
- Department of Medical Psychology ǀ Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne, Cologne, Germany.,Psychological Gerontology, Institute of Gerontology, University of Vechta, Vechta, Germany
| | - Inga Liepelt-Scarfone
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Eva Schäffer
- Department of Neurology, Christian-Albrechts-University, Kiel, Kiel, Germany
| | - Daniela Berg
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology, Christian-Albrechts-University, Kiel, Kiel, Germany
| | - Elke Kalbe
- Department of Medical Psychology ǀ Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne, Cologne, Germany.,Psychological Gerontology, Institute of Gerontology, University of Vechta, Vechta, Germany
| |
Collapse
|
246
|
Meng Y, Suppiah S, Mithani K, Solomon B, Schwartz ML, Lipsman N. Current and emerging brain applications of MR-guided focused ultrasound. J Ther Ultrasound 2017; 5:26. [PMID: 29034095 PMCID: PMC5629772 DOI: 10.1186/s40349-017-0105-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
MRI guided focused ultrasound is an emerging technique that uses acoustic energy to noninvasively treat intracranial disorders. At high frequencies, it can be used to raise tissue temperatures and ablate discrete brain targets with sub-millimeter accuracy. This application is currently under investigation for a broad range of clinical applications, including brain tumors, movement disorders, and psychiatric conditions. At low frequencies MRI guided focused ultrasound can be used to modulate neuronal activity and in conjunction with injected microbubbles, can open the blood-brain barrier to enhance the delivery of therapeutic compounds. The last decade has seen dramatic advances in the science of MRI guided focused ultrasound, helping elucidate both its mechanisms and potential in pre-clinical models, and its translational promise across myriad clinical applications. This review provides an update of current and emerging MRI guided focused ultrasound applications for intracranial disorders and describes future directions and challenges for the field.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada
| | - Karim Mithani
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Benjamin Solomon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| |
Collapse
|
247
|
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298:225-235. [PMID: 28987463 DOI: 10.1016/j.expneurol.2017.10.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
Starting two decades ago with the discoveries of genetic links between alpha-synuclein and Parkinson's disease risk and the identification of aggregated alpha-synuclein as the main protein constituent of Lewy pathology, alpha-synuclein has emerged as the major therapeutic target in Parkinson's disease and related synucleinopathies. Following the suggestion that alpha-synuclein pathology gradually spreads through the nervous system following a stereotypic pattern and the discovery that aggregated forms of alpha-synuclein can propagate pathology from one cell to another, and thereby probably aggravate existing deficits as well as generate additional symptoms, the idea that alpha-synuclein is a viable therapeutic target gained further support. In this review we describe current challenges and possibilities with alpha-synuclein as a therapeutic target. We briefly highlight gaps in the knowledge of the role of alpha-synuclein in disease, and propose that a deeper understanding of the pathobiology of alpha-synuclein can lead to improved therapeutic strategies. We describe several treatment approaches that are currently being tested in advanced animal experiments or already are in clinical trials. We have divided them into approaches that reduce alpha-synuclein production; inhibit alpha-synuclein aggregation inside cells; promote its degradation either inside or outside cells; and reduce its uptake by neighbouring cells following release from already affected neurons. Finally, we briefly discuss challenges related to the clinical testing of alpha-synuclein therapies, for example difficulties in monitoring target engagement and the need for relatively large trials of long duration. We conclude that alpha-synuclein remains one of the most compelling therapeutic targets for Parkinson's disease, and related synucleinopathies, and that the multitude of approaches being tested provides hope for the future.
Collapse
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Kuldip D Dave
- The Michael J Fox Foundation, New York, NY 10017, USA
| | - Jeffrey H Kordower
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
248
|
Chauhan R, Chen KF, Kent BA, Crowther DC. Central and peripheral circadian clocks and their role in Alzheimer's disease. Dis Model Mech 2017; 10:1187-1199. [PMID: 28993311 PMCID: PMC5665458 DOI: 10.1242/dmm.030627] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Molecular and cellular oscillations constitute an internal clock that tracks the time of day and permits organisms to optimize their behaviour and metabolism to suit the daily demands they face. The workings of this internal clock become impaired with age. In this review, we discuss whether such age-related impairments in the circadian clock interact with age-related neurodegenerative disorders, such as Alzheimer's disease. Findings from mouse and fly models of Alzheimer's disease have accelerated our understanding of the interaction between neurodegeneration and circadian biology. These models show that neurodegeneration likely impairs circadian rhythms either by damaging the central clock or by blocking its communication with other brain areas and with peripheral tissues. The consequent sleep and metabolic deficits could enhance the susceptibility of the brain to further degenerative processes. Thus, circadian dysfunction might be both a cause and an effect of neurodegeneration. We also discuss the primary role of light in the entrainment of the central clock and describe important, alternative time signals, such as food, that play a role in entraining central and peripheral circadian clocks. Finally, we propose how these recent insights could inform efforts to develop novel therapeutic approaches to re-entrain arrhythmic individuals with neurodegenerative disease.
Collapse
Affiliation(s)
- Ruchi Chauhan
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Ko-Fan Chen
- Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Brianne A Kent
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Damian C Crowther
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| |
Collapse
|
249
|
Fuchs H, Aguilar-Pimentel JA, Amarie OV, Becker L, Calzada-Wack J, Cho YL, Garrett L, Hölter SM, Irmler M, Kistler M, Kraiger M, Mayer-Kuckuk P, Moreth K, Rathkolb B, Rozman J, da Silva Buttkus P, Treise I, Zimprich A, Gampe K, Hutterer C, Stöger C, Leuchtenberger S, Maier H, Miller M, Scheideler A, Wu M, Beckers J, Bekeredjian R, Brielmeier M, Busch DH, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Stöger T, Wolf E, Wurst W, Yildirim AÖ, Zimmer A, Gailus-Durner V, Hrabě de Angelis M. Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. Behav Brain Res 2017; 352:187-196. [PMID: 28966146 DOI: 10.1016/j.bbr.2017.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas. For hypothesis-driven phenotypic analyses, there are thirteen additional pipelines with focus on neurological and behavioral disorders, metabolic dysfunction, respiratory system malfunctions, immune-system disorders and imaging techniques. In this article, we give an overview of the pipelines and describe the scientific rationale behind the different test combinations.
Collapse
Affiliation(s)
- Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Oana V Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Yi-Li Cho
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Irmler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Kistler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Patricia da Silva Buttkus
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Kristine Gampe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Christine Hutterer
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Stöger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Holger Maier
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Angelika Scheideler
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Moya Wu
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University Munich, EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University Munich, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany; German Center for Vertigo and Balance Disorders, 81377 Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000 Odense C, Denmark
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, Ingolstädter-Landstr., 85764 Neuherberg, Germany
| | - Tobias Stöger
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany; Chair of Developmental Genetics, Technische Universität München Freising-Weihenstephan, c/o Helmholtz Zentrum München Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, D-85764 Neuherberg, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.
| |
Collapse
|
250
|
Matar E, Lewis SJ. REM sleep behaviour disorder: not just a bad dream. Med J Aust 2017; 207:262-268. [PMID: 28899330 DOI: 10.5694/mja17.00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/17/2017] [Indexed: 02/04/2023]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia characterised by the loss of the normal atonia during the REM stage of sleep, resulting in overt motor behaviours that usually represent the enactment of dreams. Patients will seek medical attention due to sleep-related injuries or unpleasant dream content. Idiopathic RBD which occurs independently of any other disease occurs in up to 2% of the older population. Meanwhile, secondary RBD is very common in association with certain neurodegenerative conditions. RBD can also occur in the context of antidepressant use, obstructive sleep apnoea and narcolepsy. RBD can be diagnosed with a simple screening question followed by confirmation with polysomnography to exclude potential mimics. Treatment for RBD is effective and involves treatment of underlying causes, modification of the sleep environment, and pharmacotherapy with either clonazepam or melatonin. An important finding in the past decade is the recognition that almost all patients with idiopathic RBD will ultimately go on to develop Parkinson disease or dementia with Lewy bodies. This suggests that idiopathic RBD represents a prodromal phase of these conditions. Physicians should be aware of the risk of phenoconversion. They should educate idiopathic RBD patients to recognise the symptoms of these conditions and refer as appropriate for further testing and enrolment into research trials focused on neuroprotective measures.
Collapse
Affiliation(s)
- Elie Matar
- Brain and Mind Centre, University of Sydney, Sydney, NSW
| | - Simon Jg Lewis
- Brain and Mind Centre, University of Sydney, Sydney, NSW
| |
Collapse
|