201
|
Tan C, Liu H, Ren J, Ye X, Feng H, Liu Z. Single-molecule real-time sequencing facilitates the analysis of transcripts and splice isoforms of anthers in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC PLANT BIOLOGY 2019; 19:517. [PMID: 31771515 PMCID: PMC6880451 DOI: 10.1186/s12870-019-2133-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/12/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Anther development has been extensively studied at the transcriptional level, but a systematic analysis of full-length transcripts on a genome-wide scale has not yet been published. Here, the Pacific Biosciences (PacBio) Sequel platform and next-generation sequencing (NGS) technology were combined to generate full-length sequences and completed structures of transcripts in anthers of Chinese cabbage. RESULTS Using single-molecule real-time sequencing (SMRT), a total of 1,098,119 circular consensus sequences (CCSs) were generated with a mean length of 2664 bp. More than 75% of the CCSs were considered full-length non-chimeric (FLNC) reads. After error correction, 725,731 high-quality FLNC reads were estimated to carry 51,501 isoforms from 19,503 loci, consisting of 38,992 novel isoforms from known genes and 3691 novel isoforms from novel genes. Of the novel isoforms, we identified 407 long non-coding RNAs (lncRNAs) and 37,549 open reading frames (ORFs). Furthermore, a total of 453,270 alternative splicing (AS) events were identified and the majority of AS models in anther were determined to be approximate exon skipping (XSKIP) events. Of the key genes regulated during anther development, AS events were mainly identified in the genes SERK1, CALS5, NEF1, and CESA1/3. Additionally, we identified 104 fusion transcripts and 5806 genes that had alternative polyadenylation (APA). CONCLUSIONS Our work demonstrated the transcriptome diversity and complexity of anther development in Chinese cabbage. The findings provide a basis for further genome annotation and transcriptome research in Chinese cabbage.
Collapse
Affiliation(s)
- Chong Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Hongxin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Xueling Ye
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China.
| |
Collapse
|
202
|
Zhang H, Li X, Yu H, Zhang Y, Li M, Wang H, Wang D, Wang H, Fu Q, Liu M, Ji C, Ma L, Tang J, Li S, Miao J, Zheng H, Yi H. A High-Quality Melon Genome Assembly Provides Insights into Genetic Basis of Fruit Trait Improvement. iScience 2019; 22:16-27. [PMID: 31739171 PMCID: PMC6864349 DOI: 10.1016/j.isci.2019.10.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 01/28/2023] Open
Abstract
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. Provides a high-quality assembly for melon genome Explains a considerable proportion of epidermis thickness Melons in China are introduced from different routes Haplotypes of alleles associated with agronomic traits enable efficient breeding
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Yongbing Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Haojie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Dengming Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Huaisong Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiushi Fu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Changmian Ji
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Song Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Jianshun Miao
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101200, China.
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| |
Collapse
|
203
|
Genome-wide association mapping of date palm fruit traits. Nat Commun 2019; 10:4680. [PMID: 31615981 PMCID: PMC6794320 DOI: 10.1038/s41467-019-12604-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Date palms (Phoenix dactylifera) are an important fruit crop of arid regions of the Middle East and North Africa. Despite its importance, few genomic resources exist for date palms, hampering evolutionary genomic studies of this perennial species. Here we report an improved long-read genome assembly for P. dactylifera that is 772.3 Mb in length, with contig N50 of 897.2 Kb, and use this to perform genome-wide association studies (GWAS) of the sex determining region and 21 fruit traits. We find a fruit color GWAS at the R2R3-MYB transcription factor VIRESCENS gene and identify functional alleles that include a retrotransposon insertion and start codon mutation. We also find a GWAS peak for sugar composition spanning deletion polymorphisms in multiple linked invertase genes. MYB transcription factors and invertase are implicated in fruit color and sugar composition in other crops, demonstrating the importance of parallel evolution in the evolutionary diversification of domesticated species. Date palm is an important fruit crop in the Middle East and North Africa. Here, the authors report an improved genome assembly of this species and perform GWAS mapping of sex determining region and 21 fruit traits using high density SNP data generated from re-sequencing of the mapping population.
Collapse
|
204
|
McClure KA, Gong Y, Song J, Vinqvist-Tymchuk M, Campbell Palmer L, Fan L, Burgher-MacLellan K, Zhang Z, Celton JM, Forney CF, Migicovsky Z, Myles S. Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. HORTICULTURE RESEARCH 2019; 6:107. [PMID: 31645962 PMCID: PMC6804656 DOI: 10.1038/s41438-019-0190-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 05/03/2023]
Abstract
Apples are a nutritious food source with significant amounts of polyphenols that contribute to human health and wellbeing, primarily as dietary antioxidants. Although numerous pre- and post-harvest factors can affect the composition of polyphenols in apples, genetics is presumed to play a major role because polyphenol concentration varies dramatically among apple cultivars. Here we investigated the genetic architecture of apple polyphenols by combining high performance liquid chromatography (HPLC) data with ~100,000 single nucleotide polymorphisms (SNPs) from two diverse apple populations. We found that polyphenols can vary in concentration by up to two orders of magnitude across cultivars, and that this dramatic variation was often predictable using genetic markers and frequently controlled by a small number of large effect genetic loci. Using GWAS, we identified candidate genes for the production of quercitrin, epicatechin, catechin, chlorogenic acid, 4-O-caffeoylquinic acid and procyanidins B1, B2, and C1. Our observation that a relatively simple genetic architecture underlies the dramatic variation of key polyphenols in apples suggests that breeders may be able to improve the nutritional value of apples through marker-assisted breeding or gene editing.
Collapse
Affiliation(s)
- Kendra A. McClure
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - YuiHui Gong
- College of Horticulture, South China Agriculture University, Guangzhou, 510642 China
| | - Jun Song
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - Melinda Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - Leslie Campbell Palmer
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - Karen Burgher-MacLellan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - ZhaoQi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, 510642 China
| | - Jean-Marc Celton
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Charles F. Forney
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5 Canada
| | - Zoë Migicovsky
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Sean Myles
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| |
Collapse
|
205
|
Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, Brinkkemper O, Kirleis W, Schlumbaum A, Roldán-Ruiz I. A Multifaceted Overview of Apple Tree Domestication. TRENDS IN PLANT SCIENCE 2019; 24:770-782. [PMID: 31296442 DOI: 10.1016/j.tplants.2019.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/19/2023]
Abstract
The apple is an iconic tree and a major fruit crop worldwide. It is also a model species for the study of the evolutionary processes and genomic basis underlying the domestication of clonally propagated perennial crops. Multidisciplinary approaches from across Eurasia have documented the pace and process of cultivation of this remarkable crop. While population genetics and genomics have revealed the overall domestication history of apple across Eurasia, untangling the evolutionary processes involved, archeobotany has helped to document the transition from gathering and using apples to the practice of cultivation. Further studies integrating archeogenetic and archeogenomic approaches will bring new insights about key traits involved in apple domestication. Such knowledge has potential to boost innovation in present-day apple breeding.
Collapse
Affiliation(s)
- Amandine Cornille
- Génétique Quantitative et Evolution- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Ferran Antolín
- Integrative Prehistory and Archeological Science (IPNA/IPAS), Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| | - Elena Garcia
- Department of Horticulture, University of Arkansas, Fayetteville, AR, USA
| | - Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, via Edmund Mach 1, 38010 San Michele all'Adige, TN, Italy
| | - Alice Fietta
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, via Edmund Mach 1, 38010 San Michele all'Adige, TN, Italy
| | - Otto Brinkkemper
- Cultural Heritage Agency, PO Box 1600, 3800 BP Amersfoort, The Netherlands
| | - Wiebke Kirleis
- Institute for Prehistoric and Protohistoric Archeology/Graduate School Human Development in Landscapes, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Angela Schlumbaum
- Integrative Prehistory and Archeological Science (IPNA/IPAS), Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium; Ghent University, Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
206
|
Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM. An Improved Melon Reference Genome With Single-Molecule Sequencing Uncovers a Recent Burst of Transposable Elements With Potential Impact on Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1815. [PMID: 32076428 PMCID: PMC7006604 DOI: 10.3389/fpls.2019.01815] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The published melon (Cucumis melo L.) reference genome assembly (v3.6.1) has still 41.6 Mb (Megabases) of sequences unassigned to pseudo-chromosomes and about 57 Mb of gaps. Although different approaches have been undertaken to improve the melon genome assembly in recent years, the high percentage of repeats (~40%) and limitations due to read length have made it difficult to resolve gaps and scaffold's misassignments to pseudomolecules, especially in the heterochromatic regions. Taking advantage of the PacBio single- molecule real-time (SMRT) sequencing technology, an improvement of the melon genome was achieved. About 90% of the gaps were filled and the unassigned sequences were drastically reduced. A lift-over of the latest annotation v4.0 allowed to re-collocate protein-coding genes belonging to the unassigned sequences to the pseudomolecules. A direct proof of the improvement reached in the new melon assembly was highlighted looking at the improved annotation of the transposable element fraction. By screening the new assembly, we discovered many young (inserted less than 2Mya), polymorphic LTR-retrotransposons that were not captured in the previous reference genome. These elements sit mostly in the pericentromeric regions, but some of them are inserted in the upstream region of genes suggesting that they can have regulatory potential. This improved reference genome will provide an invaluable tool for identifying new gene or transposon variants associated with important phenotypes.
Collapse
Affiliation(s)
- Raúl Castanera
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Valentino Ruggieri
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
- *Correspondence: Jordi Garcia-Mas, ; Josep M. Casacuberta,
| | - Josep M. Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- *Correspondence: Jordi Garcia-Mas, ; Josep M. Casacuberta,
| |
Collapse
|
207
|
Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L. Genome sequences of horticultural plants: past, present, and future. HORTICULTURE RESEARCH 2019; 6:112. [PMID: 31645966 PMCID: PMC6804536 DOI: 10.1038/s41438-019-0195-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 05/18/2023]
Abstract
Horticultural plants play various and critical roles for humans by providing fruits, vegetables, materials for beverages, and herbal medicines and by acting as ornamentals. They have also shaped human art, culture, and environments and thereby have influenced the lifestyles of humans. With the advent of sequencing technologies, there has been a dramatic increase in the number of sequenced genomes of horticultural plant species in the past decade. The genomes of horticultural plants are highly diverse and complex, often with a high degree of heterozygosity and a high ploidy due to their long and complex history of evolution and domestication. Here we summarize the advances in the genome sequencing of horticultural plants, the reconstruction of pan-genomes, and the development of horticultural genome databases. We also discuss past, present, and future studies related to genome sequencing, data storage, data quality, data sharing, and data visualization to provide practical guidance for genomic studies of horticultural plants. Finally, we propose a horticultural plant genome project as well as the roadmap and technical details toward three goals of the project.
Collapse
Affiliation(s)
- Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yunfeng Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaojiang Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Junhao Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Lan Mo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Xingtan Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103 USA
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology and Quality Science and Processing Technology in Special Starch, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Crop Science, Fuzhou, China
| |
Collapse
|
208
|
Da L, Liu Y, Yang J, Tian T, She J, Ma X, Xu W, Su Z. AppleMDO: A Multi-Dimensional Omics Database for Apple Co-Expression Networks and Chromatin States. FRONTIERS IN PLANT SCIENCE 2019; 10:1333. [PMID: 31695717 PMCID: PMC6817610 DOI: 10.3389/fpls.2019.01333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/17/2023]
Abstract
As an economically important crop, apple is one of the most cultivated fruit trees in temperate regions worldwide. Recently, a large number of high-quality transcriptomic and epigenomic datasets for apple were made available to the public, which could be helpful in inferring gene regulatory relationships and thus predicting gene function at the genome level. Through integration of the available apple genomic, transcriptomic, and epigenomic datasets, we constructed co-expression networks, identified functional modules, and predicted chromatin states. A total of 112 RNA-seq datasets were integrated to construct a global network and a conditional network (tissue-preferential network). Furthermore, a total of 1,076 functional modules with closely related gene sets were identified to assess the modularity of biological networks and further subjected to functional enrichment analysis. The results showed that the function of many modules was related to development, secondary metabolism, hormone response, and transcriptional regulation. Transcriptional regulation is closely related to epigenetic marks on chromatin. A total of 20 epigenomic datasets, which included ChIP-seq, DNase-seq, and DNA methylation analysis datasets, were integrated and used to classify chromatin states. Based on the ChromHMM algorithm, the genome was divided into 620,122 fragments, which were classified into 24 states according to the combination of epigenetic marks and enriched-feature regions. Finally, through the collaborative analysis of different omics datasets, the online database AppleMDO (http://bioinformatics.cau.edu.cn/AppleMDO/) was established for cross-referencing and the exploration of possible novel functions of apple genes. In addition, gene annotation information and functional support toolkits were also provided. Our database might be convenient for researchers to develop insights into the function of genes related to important agronomic traits and might serve as a reference for other fruit trees.
Collapse
|