201
|
Iwamoto A, Inoue A, Inoue Y, Yamada K, Tachibana H, Kawahara H. Anti-allergic effect of strawberry extract. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
202
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
203
|
Walford HH, Doherty TA. STAT6 and lung inflammation. JAKSTAT 2013; 2:e25301. [PMID: 24416647 PMCID: PMC3876430 DOI: 10.4161/jkst.25301] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/18/2022] Open
Abstract
Lung inflammation has many etiologies, including diseases of Th2-type immunity, such as asthma and anti-parasitic responses. Inflammatory diseases of the lung involve complex interactions among structural cells (airway epithelium, smooth muscle, and fibroblasts) and immune cells (B and T cells, macrophages, dendritic cells, and innate lymphoid cells). Signal transducer and activator of transcription 6 (STAT6) has been demonstrated to regulate many pathologic features of lung inflammatory responses in animal models including airway eosinophilia, epithelial mucus production, smooth muscle changes, Th2 cell differentiation, and IgE production from B cells. Cytokines IL-4 and IL-13 that are upstream of STAT6 are found elevated in human asthma and clinical trials are underway to therapeutically target the IL-4/IL-13/STAT6 pathway. Additionally, recent work suggests that STAT6 may also regulate lung anti-viral responses and contribute to pulmonary fibrosis. This review will focus on the role of STAT6 in lung diseases and mechanisms by which STAT6 controls immune and structural lung cell function.
Collapse
Affiliation(s)
- Hannah H Walford
- Department of Medicine; University of California, San Diego; La Jolla, CA USA ; Department of Pediatrics; University of California, San Diego; La Jolla, CA USA
| | - Taylor A Doherty
- Department of Medicine; University of California, San Diego; La Jolla, CA USA
| |
Collapse
|
204
|
Tan Y, Li Y, Liu D, Zhong L. Suplatast tosilate ameliorates airway hyperreactivity and inflammation through inhibition of the GATA‑3/IL‑5 signaling pathway in asthmatic rats. Mol Med Rep 2013; 8:161-7. [PMID: 23695442 DOI: 10.3892/mmr.2013.1485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 05/07/2013] [Indexed: 11/06/2022] Open
Abstract
Airway hyperreactivity and inflammation are important factors in the aggravation of lung function. Suplatast tosilate (IPD) is a novel and unique anti‑asthma clinical compound. However, the mechanisms of IPD action in the inhibition of asthma remain to be elucidated. The present study aimed to investigate the role of the GATA binding protein 3 (GATA‑3)/interleukin (IL)‑5 signaling pathway in IPD‑induced inhibition of asthma. Sprague‑Dawley rats were sensitized by intraperitoneal injection with ovalbumin (OVA) to establish an animal model of asthma. IPD was administered continuously (C‑IPD) or at a later stage (L‑IPD). Budesonide (BUD) was used as a positive control. Airway resistance and the expression of genes at the mRNA and protein levels were measured. Morphological changes in lung tissue and the percentage of eosinophils (EOS) in peripheral blood were observed and correlation analysis was performed. The results revealed that sensitization by OVA significantly increased airway resistance and the percentage of EOS in peripheral blood and induced significant inflammatory changes in lung tissue, as demonstrated by thick epithelium, goblet cell hyperplasia and submucosal cell infiltration. In addition, sensitization by OVA was found to markedly upregulate IL‑5 mRNA and protein expression. Airway resistance was found to positively correlate with the expression of IL‑5 in the rat lung tissues. Sensitization by OVA was also observed to markedly enhance GATA‑3 protein expression and GATA‑3 levels were found to positively correlate with airway resistance and IL‑5 levels. Similar to the effect of BUD, treatment with C‑IPD or L‑IPD was found to significantly attenuate OVA‑induced increases in airway resistance and the percentage of EOS in peripheral blood. Notably, treatment with C‑IPD or L‑IPD markedly reduced the OVA-induced expression of IL‑5 and GATA‑3. In the present study, IPD intervention was demonstrated to ameliorate airway hyperreactivity and inflammation and the mechanisms may involve inhibition of the GATA‑3/IL‑5 signaling pathway.
Collapse
Affiliation(s)
- Yupin Tan
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan 410005, PR China
| | | | | | | |
Collapse
|
205
|
Nouri HR, Sankian M, Afsharzadeh D, Varasteh A. Immunotherapy with a recombinant hybrid molecule alleviates allergic responses more efficiently than an allergenic cocktail or pollen extract in a model of chenopodium album allergy. Int Arch Allergy Immunol 2013; 161:325-32. [PMID: 23689669 DOI: 10.1159/000347136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aim of this study is to assess the therapeutic potential of a recombinant hybrid molecule (rHM) alongside an allergenic cocktail from recombinant wild-type allergens as well as pollen extract on Chenopodium album allergy, using a BALB/c mouse model. METHODS The BALB/c mice had already been sensitized to C. album via intraperitoneal injections of alum-adsorbed allergenic cocktail and immunotherapy procedure was followed by subcutaneous injections of the rHM, allergenic cocktail and pollen extract at weekly intervals. Humoral immune responses were determined via measurement of specific antibodies in serum. Splenocytes of immunized mice were stimulated in vitro and then proliferation responses, cytokine secretion and mRNA expression of genes involved in immunotherapy were examined by ELISA and real-time PCR. RESULTS Sensitized mice were identified with high specific IgE against allergenic cocktail when compared with healthy mice. Immunotherapy with the rHM induced the highest ratio of the IgG2a/IgG1 levels compared to allergenic cocktail or C. album pollen extract. The rHM was able to induce proliferative responses as well as the allergenic cocktail in cultured splenocytes. Immunotherapy with the rHM significantly improved secretion of IFN-γ and IL-10, while secretion of IL-13 rapidly diminished. Interestingly, mRNA expression of GATA3 was strongly decreased in rHM-treated mice whereas mRNA expression of T-bet and Foxp3 was significantly increased. CONCLUSION Our results prove that immunotherapy with the rHM effectively controlled allergic responses by shifting from a Th2-like immune response to a Th1-dominated immune response.
Collapse
Affiliation(s)
- Hamid Reza Nouri
- Department of Immunology and Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | | |
Collapse
|
206
|
Kinoshita M, Miyazaki H, Ono S, Seki S. Immunoenhancing therapy with interleukin-18 against bacterial infection in immunocompromised hosts after severe surgical stress. J Leukoc Biol 2013; 93:689-98. [DOI: 10.1189/jlb.1012502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
207
|
Weigert C, Röcken M, Ghoreschi K. Interleukin 4 as a potential drug candidate for psoriasis. Expert Opin Drug Discov 2013; 3:357-68. [PMID: 23480267 DOI: 10.1517/17460441.3.3.357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin 4 (IL-4) is the central cytokine driving the differentiation of naive CD4(+) T helper (TH) cells into anti-inflammatory IL-4-producing TH2 cells. In contrast, IL-12/IL-23 promotes the development of TH1/TH17 immune responses that induce organ-specific autoimmune diseases such as psoriasis or multiple sclerosis. OBJECTIVE We focus on the potential of IL-4 and TH2 induction to treat inflammatory autoimmune diseases. METHODS Here, we summarize the basics for the establishment of the in vitro and in vivo conditions for the generation of TH2 immune responses, followed by various experimental data showing the therapeutic use of IL-4 for the therapy of autoimmune diseases. This data and early experiences with recombinant human IL-4 (rhIL-4) in the therapy of patients with cancer set the basis for the clinical introduction of rhIL-4 in the treatment of patients with psoriasis in a Phase I/II trial. CONCLUSION IL-4 seems to act by inducing an anti-inflammatory phenotype and further clinical trials will explore the promising therapeutic potency of IL-4 in psoriasis during the upcoming era of biologics.
Collapse
Affiliation(s)
- Christina Weigert
- Eberhard Karls University Tübingen, University Medical Center, Department of Dermatology, Liebermeisterstrasse 25, 72076 Tübingen, Germany +49 7071 29 84555 ; +49 7071 29 4405 ;
| | | | | |
Collapse
|
208
|
Caramori G, Casolari P, Adcock I. Role of transcription factors in the pathogenesis of asthma and COPD. ACTA ACUST UNITED AC 2013; 20:21-40. [PMID: 23472830 DOI: 10.3109/15419061.2013.775257] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate CEMICEF; formerly named Centro di Ricerca su Asma e BPCO, Sezione di Malattie dell'Apparato Respiratorio, Università di Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
209
|
Mendonça VRR, Queiroz ATL, Lopes FM, Andrade BB, Barral-Netto M. Networking the host immune response in Plasmodium vivax malaria. Malar J 2013; 12:69. [PMID: 23433077 PMCID: PMC3598348 DOI: 10.1186/1475-2875-12-69] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023] Open
Abstract
Background Plasmodium vivax malaria clinical outcomes are a consequence of the interaction of multiple parasite, environmental and host factors. The host molecular and genetic determinants driving susceptibility to disease severity in this infection are largely unknown. Here, a network analysis of large-scale data from a significant number of individuals with different clinical presentations of P. vivax malaria was performed in an attempt to identify patterns of association between various candidate biomarkers and the clinical outcomes. Methods A retrospective analysis of 530 individuals from the Brazilian Amazon, including P. vivax-infected individuals who developed different clinical outcomes (148 asymptomatic malaria, 187 symptomatic malaria, 13 severe non-lethal malaria, and six severe lethal malaria) as well as 176 non-infected controls, was performed. Plasma levels of liver transaminases, bilirubins, creatinine, fibrinogen, C-reactive protein, superoxide dismutase (SOD)-1, haem oxygenase (HO)-1 and a panel composed by multiple cytokines and chemokines were measured and compared between the different clinical groups using network analysis. Results Non-infected individuals displayed several statistically significant interactions in the networks, including associations between the levels of IL-10 and IL-4 with the chemokine CXCL9. Individuals with asymptomatic malaria displayed multiple significant interactions involving IL-4. Subjects with mild or severe non-lethal malaria displayed substantial loss of interactions in the networks and TNF had significant associations more frequently with other parameters. Cases of lethal P. vivax malaria infection were associated with significant interactions between TNF ALT, HO-1 and SOD-1. Conclusions The findings imply that clinical immunity to P. vivax malaria is associated with multiple significant interactions in the network, mostly involving IL-4, while lethality is linked to a systematic reduction of complexity of these interactions and to an increase in connections between markers linked to haemolysis-induced damage.
Collapse
Affiliation(s)
- Vitor R R Mendonça
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | | | | |
Collapse
|
210
|
Di Zazzo E, De Rosa C, Abbondanza C, Moncharmont B. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation. BIOLOGY 2013; 2:107-41. [PMID: 24832654 PMCID: PMC4009873 DOI: 10.3390/biology2010107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 01/05/2013] [Indexed: 01/03/2023]
Abstract
PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| | - Caterina De Rosa
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Bruno Moncharmont
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| |
Collapse
|
211
|
Lu Y, Bocca S, Anderson S, Wang H, Manhua C, Beydoun H, Oehninger S. Modulation of the expression of the transcription factors T-bet and GATA-3 in immortalized human endometrial stromal cells (HESCs) by sex steroid hormones and cAMP. Reprod Sci 2013; 20:699-709. [PMID: 23308012 DOI: 10.1177/1933719112466297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T-bet and GATA-3 are known to regulate cytokine expression in T lymphocytes, and cytokines have been implicated in endometrial regulation and implantation. Previous work showed that female steroid hormones modulate the expression of T-bet in endometrial epithelial cells, suggesting a mechanism for local immune regulation in the human endometrium. We hypothesized that stromal cells are involved in immune regulation, as they have been shown to exert paracrine effects on other endometrial cells and compartments and also secrete cytokines. The objective of this study was to examine the modulation of the gene expression of T-bet and GATA-3, and of the cytokines interferon γ (IFN-γ) and interleukin 4 (IL-4), by female steroid hormones, in human endometrial stromal cells (HESC) in long-term cultures (30 days) mimicking the normal menstrual cycle. T-bet and GATA-3 messenger RNA (mRNA) expression was detected by real-time polymerase chain reaction, and intracellular protein production was demonstrated by immunoblotting. In addition, secretion of IL-4 and IL-15 was measured by enzyme-linked immunosorbent assay. T-bet and IL-4 mRNA expression increased and GATA-3 decreased under decidualization conditions; IFN-γ was not detected. Secretion of IL-15 increased during decidualization, and IL-15 upregulated T-bet gene expression. In conclusion, gene expression of T-bet and GATA-3 by endometrial stromal cells is under hormonal conditions mimicking decidualization, and the results are consistent with an autocrine regulatory mechanism of IL-15 secretion and T-bet expression.
Collapse
Affiliation(s)
- Yingli Lu
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Norfolk, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Ano S, Morishima Y, Ishii Y, Yoh K, Yageta Y, Ohtsuka S, Matsuyama M, Kawaguchi M, Takahashi S, Hizawa N. Transcription factors GATA-3 and RORγt are important for determining the phenotype of allergic airway inflammation in a murine model of asthma. THE JOURNAL OF IMMUNOLOGY 2013; 190:1056-65. [PMID: 23293351 DOI: 10.4049/jimmunol.1202386] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In refractory asthma, neutrophils, rather than eosinophils, often predominate in the airways. Neutrophilic airway inflammation appears to be resistant to steroids and may be related to the Th17, rather than the Th2, cytokine milieu. However, the role of GATA-3 and RORγt, transcription factors for Th2 and Th17 cell differentiation, respectively, in the pathogenesis of steroid-insensitive asthma remains unclear. To examine the effect of GATA-3- and RORγt-overexpression backgrounds on airway inflammation and steroid sensitivity, we generated two strains of transgenic mice overexpressing GATA-3 or RORγt. Mice were sensitized and challenged with OVA. Some OVA-sensitized/challenged mice were treated with dexamethasone, anti-IL-17 Ab, CXCR2 antagonist, or anti-IL-6R Ab to demonstrate their therapeutic effects on airway inflammation. Although Ag-specific airway inflammation and hyperresponsiveness were induced in each mouse, the phenotype of inflammation showed a distinct difference that was dependent upon the genotype. GATA-3-overexpressing mice exhibited steroid-sensitive eosinophilic inflammation with goblet cell hyperplasia and mucus hyperproduction under Th2-biased conditions, and RORγt-overexpressing mice developed steroid-insensitive neutrophilic inflammation under Th17-biased conditions. The levels of keratinocyte-derived chemokine, MIP-2, IL-6, and other neutrophil chemotaxis-related mediators were significantly elevated in OVA-exposed RORγt-overexpressing mice compared with wild-type mice. Interestingly, airway hyperresponsiveness accompanied by neutrophilic airway inflammation in RORγt-overexpressing mice was effectively suppressed by anti-IL-17 Ab, CXCR2 antagonist, or anti-IL-6R Ab administration. In conclusion, our results suggest that the expression levels of GATA-3 and RORγt may be important for determining the phenotype of asthmatic airway inflammation. Furthermore, blockade of the Th17-signaling pathway may be a treatment option for steroid-insensitive asthma.
Collapse
Affiliation(s)
- Satoshi Ano
- Division of Clinical Medicine, Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Innate Lymphoid Cells in Immunity and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:9-26. [DOI: 10.1007/978-1-4614-6217-0_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
214
|
Huang YF, Zhang SL, Jin F, Cheng D, Zhou YP, Li HR, Tang ZM, Xue J, Cai W, Dong JH, Zhao L. Activity of Corilagin on Post-Parasiticide Liver Fibrosis in Schistosomiasis Animal Model. Int J Immunopathol Pharmacol 2013; 26:85-92. [PMID: 23527711 DOI: 10.1177/039463201302600108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects and possible molecular mechanisms of corilagin extraction on prevention of Schistosoma japonicum ova-induced granulomas and liver fibrosis. As a result, under a light microscope, when compared to a model group, the corilagin group showed smaller granulomas, less liver cell denaturation and less inflammatory cell infiltration, and the connective tissues were significantly decreased. By Masson staining, the liver sections from the corilagin group showed less collagen distributed around granulomas, decreased liver fibrosis in the portal tracts and less formed interlobular tissue. The expression of hydroxyproline, IL-13 in liver and GATA3 in spleen in the model group was significantly higher than that in the normal group (P<0.05 or 0.01), while the level of hydroxyproline, IL-13 and GATA3 in the corilagin group were significantly lower than that in the model group (P<0.05). In conclusion, corilagin extraction can decrease the level of Th2-associated profibrotic cytokine IL-13, and down-regulate the transcription of GATA3 mRNA in spleen cells, which alleviate the hepatic fibrosis caused by egg granuloma in Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Y.-F. Huang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- The No. 3 Department of Medicine, Hubei Provincial Crops Hospital of Chinese People's Armed Police Forces, Wuhan, PR China
| | - S.-L. Zhang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - F. Jin
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong, PR China
| | - D. Cheng
- Liver Disease Center, Department of Infectious Disease, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha, PR China
| | - Y.-P. Zhou
- Department of Integrated Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - H.-R. Li
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Z.-M. Tang
- Department of Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - J. Xue
- Tumor Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - W. Cai
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - J.-H. Dong
- Central Lab, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - L. Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
215
|
Toxicity profile of the GATA-3-specific DNAzyme hgd40 after inhalation exposure. Pulm Pharmacol Ther 2012; 26:281-9. [PMID: 23266273 DOI: 10.1016/j.pupt.2012.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 11/30/2012] [Accepted: 12/12/2012] [Indexed: 01/03/2023]
Abstract
DNAzymes are single-stranded catalytic DNA molecules that bind and cleave specific sequences in a target mRNA molecule. Their potential as novel therapeutic agents has been demonstrated in a variety of disease models. However, no studies have yet addressed their toxicology and safety pharmacology profiles in detail. Here we describe a detailed toxicological analysis of inhaled hgd40, a GATA-3-specific DNAzyme designed for the treatment of allergic bronchial asthma. Subacute toxicity, immunotoxicity, and respiratory, cardiovascular, and CNS safety pharmacology were analyzed in rodents and non-rodents, and genotoxicity was assessed in human peripheral blood. Overall, hgd40 was very well tolerated when delivered by aerosol inhalation or slow intravenous infusion. Only marginal reversible histopathological changes were observed in the lungs of rats receiving the highest dose of inhaled hgd40. The changes consisted of slight mononuclear cell infiltration and alveolar histiocytosis, and moderate hyperplasia of bronchus-associated lymphoid tissue. No local or systemic adverse effects were observed in dogs. No compound-related respiratory, cardiovascular, or CNS adverse events were observed. The only relevant immunological findings were very slight dose-dependent changes in interleukin-10 and interferon-γ levels in bronchoalveolar lavage fluid. Taken together, these results support direct delivery of a DNAzyme via inhalation for the treatment of respiratory disease.
Collapse
|
216
|
Christophi GP, Rong R, Holtzapple PG, Massa PT, Landas SK. Immune markers and differential signaling networks in ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2012; 18:2342-56. [PMID: 22467146 PMCID: PMC3407828 DOI: 10.1002/ibd.22957] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cytokine signaling pathways play a central role in the pathogenesis of inflammatory bowel disease (IBD). Ulcerative colitis (UC) and Crohn's disease (CD) have unique as well as overlapping phenotypes, susceptibility genes, and gene expression profiles. This study aimed to delineate patterns within cytokine signaling pathways in colonic mucosa of UC and CD patients, explore molecular diagnostic markers, and identify novel immune mediators in IBD pathogenesis. METHODS We quantified 70 selected immune genes that are important in IBD signaling from formalin-fixed, paraffin-embedded (FFPE) colon biopsy samples from normal control subjects and UC and CD patients having either severe colitis or quiescent disease (n = 98 subjects). We utilized and validated a new modified real-time reverse-transcription polymerase chain reaction (RT-PCR) technique for gene quantification. RESULTS Expression levels of signaling molecules including IL-6/10/12/13/17/23/33, STAT1/3/6, T-bet, GATA3, Foxp3, SOCS1/3, and downstream inflammatory mediators such as chemokines CCL-2/11/17/20, oxidative stress inducers, proteases, and mucosal genes were differentially regulated between UC and CD and between active and quiescent disease. We also document the possible role of novel genes in IBD, including SHP-1, IRF-1,TARC, Eotaxin, NOX2, arginase I, and ADAM 8. CONCLUSIONS This comprehensive approach to quantifying gene expression provides insights into the pathogenesis of IBD by elucidating distinct immune signaling networks in CD and UC. Furthermore, this is the first study demonstrating that gene expression profiling in FFPE colon biopsies might be a practical and effective tool in the diagnosis and prognosis of IBD and may help identify molecular markers that can predict and monitor response to individualized therapeutic treatments.
Collapse
Affiliation(s)
- George P. Christophi
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY
,Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
,Corresponding Author: Mailing Address: Washington University School of Medicine Department of Internal Medicine, 660 S. Euclid Ave., Box 8121, St. Louis, MO 63110, , Tel: 314-956-9640
| | - Rong Rong
- Department of Pathology, SUNY Upstate Medical University, Syracuse NY
| | | | - Paul T. Massa
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY
| | - Steve K. Landas
- Department of Pathology, SUNY Upstate Medical University, Syracuse NY
| |
Collapse
|
217
|
Nandi S, Ioshikhes I. Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites. BMC Genomics 2012; 13:416. [PMID: 22913572 PMCID: PMC3481455 DOI: 10.1186/1471-2164-13-416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 08/02/2012] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The identifying of binding sites for transcription factors is a key component of gene regulatory network analysis. This is often done using position-weight matrices (PWMs). Because of the importance of in silico mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially improves the accuracy of such mapping. RESULTS The present work implements the optimization algorithm applied to the existing PWM for GATA-3 transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for several T-cell lineage specific factors in human promoters. CONCLUSION Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible transcriptional regulatory interactions in human promoters.
Collapse
Affiliation(s)
- Soumyadeep Nandi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
218
|
Development of drug delivery systems for the dermal application of therapeutic DNAzymes. Int J Pharm 2012; 431:61-9. [DOI: 10.1016/j.ijpharm.2012.04.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/05/2012] [Accepted: 04/08/2012] [Indexed: 11/23/2022]
|
219
|
Divergent transcriptional programming of class-specific B cell memory by T-bet and RORα. Nat Immunol 2012; 13:604-11. [PMID: 22561605 PMCID: PMC3362691 DOI: 10.1038/ni.2294] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/27/2012] [Indexed: 12/14/2022]
Abstract
Antibody class defines function in B cell immunity, but how class is propagated into B cell memory remains poorly understood. Here, we demonstrate that memory B cell subsets unexpectedly diverge across antibody class through the differential impact of major transcriptional regulators. Conditional genetic deletion of Tbx21 selectively blocks the formation and antigen-specific response of IgG2a memory B cells in vivo. Cell intrinsic T-bet expression regulates STAT1 expression, steady-state cell survival and IgG2a BCR transcription. In contrast, RORα was differentially expressed in IgA memory B cells with siRNA knockdown and chemical inhibition supporting its selective control in cell survival and IgA BCR transcription. Thus, divergent transcriptional regulators dynamically maintain subset integrity to promote specialized immune function within class-specific memory B cells.
Collapse
|
220
|
Libraty DH, Mäkelä S, Vlk J, Hurme M, Vaheri A, Ennis FA, Mustonen J. The degree of leukocytosis and urine GATA-3 mRNA levels are risk factors for severe acute kidney injury in Puumala virus nephropathia epidemica. PLoS One 2012; 7:e35402. [PMID: 22523590 PMCID: PMC3327672 DOI: 10.1371/journal.pone.0035402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/16/2012] [Indexed: 11/29/2022] Open
Abstract
Puumala hantavirus (PUUV) infection, also known as nephropathia epidemica, is the most common cause of hemorrhagic fever with renal syndrome (HFRS) in Europe. The pathogenesis of PUUV nephropathia epidemica is complex and multifactorial, and the risk factors for severe acute kidney injury (AKI) during acute PUUV infection are not well defined. We conducted a prospective study of hospitalized patients with PUUV infection in Tampere, Finland to identify acute illness risk factors for HFRS severity. Serial daily blood and urine samples were collected throughout acute illness and at 2 week and 6 month convalescent visits. By univariate analyses, the maximum white blood cell count during acute illness was a risk factor for severe AKI. There were no significant associations between PUUV-induced AKI severity and platelet counts, C-reactive protein, or alanine aminotransferase levels. Maximum plasma interleukin (IL)-6, urine IL-6, and urine IL-8 concentrations were positively associated with PUUV-induced AKI. Finally, the maximum urinary sediment GATA-3 mRNA level was positively correlated with the peak fold-change in serum creatinine, regardless of AKI severity classification. By multivariate analyses, we found that the maximum levels of leukocytes and urinary sediment GATA-3 mRNA during acute illness were independent risk factors for severe PUUV-induced AKI. We have identified novel acute illness risk factors for severe PUUV-induced AKI.
Collapse
Affiliation(s)
- Daniel H Libraty
- Department of Medicine, Medical School, University of Massachusetts, Worcester, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
221
|
Compound A, a dissociated glucocorticoid receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity in immune cells. PLoS One 2012; 7:e35155. [PMID: 22496903 PMCID: PMC3322149 DOI: 10.1371/journal.pone.0035155] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively. Results Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively. Conclusions Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders.
Collapse
|
222
|
Dicke T, Pali-Schöll I, Kaufmann A, Bauer S, Renz H, Garn H. Absence of unspecific innate immune cell activation by GATA-3-specific DNAzymes. Nucleic Acid Ther 2012; 22:117-26. [PMID: 22428550 DOI: 10.1089/nat.2011.0294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
DNAzymes of the 10-23 family represent an important class of antisense molecules with implications for therapeutic treatment of diseases. These molecules are single-stranded oligodeoxynucleotides combining the high specificity of oligonucleotide base pairing with an inherent RNA-cleaving enzymatic activity. However, like other oligonucleotide-based molecules these substances might exert so-called off-target effects, which have not been investigated so far for this molecule class. Therefore, the present study investigates putative off-target effects of DNAzymes on innate immune mechanisms using GATA-3-specific DNAzymes that have recently been developed as novel therapeutic approach for the treatment of allergic diseases including allergic asthma. The conserved catalytic domain of 10-23 DNAzymes contains a CpG motif that may stimulate innate immune cells via Toll-like receptor 9 (TLR-9). Therefore, potential TLR-9-mediated as well as TLR-9 independent cell activation was investigated using TLR-9-transfected HEK293 cells, macrophage cell lines and primary innate immune cells. Furthermore, putative effects of GATA-3-specific DNAzymes on the activation of neutrophil granulocytes and degranulation of mast cells/basophils were analyzed. In summary, no innate immune cell-stimulating activities of the tested DNAzymes were observed in any of the systems. Consequently, use of GATA-3-specific DNAzymes may represent a novel and highly specific approach for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Tanja Dicke
- Sterna Biologicals GmbH & Co. KG, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
223
|
CD4⁺T cells: differentiation and functions. Clin Dev Immunol 2012; 2012:925135. [PMID: 22474485 PMCID: PMC3312336 DOI: 10.1155/2012/925135] [Citation(s) in RCA: 906] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
CD4⁺T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4⁺T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4⁺T cells.
Collapse
|
224
|
Yuan J, Tang ZL, Yang S, Cao JY, Li K. Molecular characteristics of the porcine TIMD4 gene and its association analysis. Biochem Genet 2012; 50:538-48. [PMID: 22354463 DOI: 10.1007/s10528-012-9498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
Abstract
As a member of the T cell immunoglobulin domain and mucin domain (TIM) gene family, TIMD4 plays an important role in the immune response. To understand its function more precisely, we isolated it and analyzed its subcellular localization, expression pattern, and associations. The porcine TIMD4 gene included nine exons and eight introns with an open reading frame of 1086 bp encoding 361 amino acids. It had relatively high levels in liver, lymph, and spleen. The fusion protein was localized mainly in the cytoplasm of pig kidney cells (PK15). The promoter region contained a TATA box and GATA3 consensus sites. A single nucleotide polymorphism was identified in intron 3 of the porcine TIMD4 gene, and analysis indicated that it had significant associations with the 17-day red blood cell count (p = 0.0106), hemoglobin (p = 0.0149), and hematocrit (p = 0.0063) and with 32-day hemoglobin (p = 0.0140).
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | | | | | | | | |
Collapse
|
225
|
Rothenberg EV. Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24:132-8. [PMID: 22264928 DOI: 10.1016/j.coi.2011.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/31/2011] [Indexed: 11/28/2022]
Abstract
The T-cell development program is specifically triggered by Notch-Delta signaling, but most transcription factors needed to establish T-cell lineage identity also have crossover roles in other hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory circuits required for T-cell specification. But new advances illuminate the roles of three of the most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
226
|
Li XM. Treatment of asthma and food allergy with herbal interventions from traditional chinese medicine. ACTA ACUST UNITED AC 2012; 78:697-716. [PMID: 21913200 DOI: 10.1002/msj.20294] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prevalence of asthma and allergy has increased over the past 2-3 decades in Westernized countries. Despite increased understanding of the pathogenesis of asthma and allergic diseases, control of severe asthma is still difficult. Asthma is also associated with a high prevalence of anxiety, particularly in adolescents. There is no effective treatment for food allergy. Food allergy is often associated with severe and recalcitrant eczema. Novel approaches for treatment of asthma and food allergy and comorbid conditions are urgently needed. Traditional Chinese medicine, used in Asia for centuries, is beginning to play a role in Western healthcare. There is increasing scientific evidence supporting the use of traditional Chinese medicine for asthma treatment. Since 2005, several controlled clinical studies of "antiasthma" herbal remedies have been published. Among the herbal medicines, antiasthma herbal medicine intervention is the only antiasthma traditional Chinese medicine product that is a Food and Drug Administration investigational new drug that has entered clinical trials in the United States. Research into the effects and mechanisms of action of antiasthma herbal medicine intervention in animal models is actively being pursued. Research on traditional Chinese medicine herbal medicines for treating food allergy is rare. The herbal intervention Food Allergy Herbal Formula-2 is the only Food and Drug Administration botanical investigational new drug under investigation as a multiple food allergy therapy. This review article discusses promising traditional Chinese medicine interventions for asthma, food allergy, and comorbid conditions, and explores their possible mechanisms of action.
Collapse
Affiliation(s)
- Xiu-Min Li
- Department of Pediatric Allergy and Immunology, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
227
|
Arun KV, Talwar A, Kumar TSS. T-helper cells in the etiopathogenesis of periodontal disease: A mini review. J Indian Soc Periodontol 2011; 15:4-10. [PMID: 21772714 PMCID: PMC3134046 DOI: 10.4103/0972-124x.82255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/04/2010] [Indexed: 01/06/2023] Open
Abstract
Our traditional understanding of the T-helper (Th)1/Th2 paradigm in periodontal disease has undergone considerable changes in recent years. This review focuses on the Th subsets, including the recently identified cells of the CD4 lineage, their activation pathways and effector function in periodontal disease. The roles of Th17 and regulatory T (Treg) cells in disease pathogenesis have been explored. Newer Th subsets such as Th9 and Th22 cells and their potential role in periodontal disease have also been outlined.
Collapse
Affiliation(s)
- K V Arun
- Department of Periodontics, Ragas Dental College and Hospital, Uthandi, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
228
|
Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 2011; 7:e1002343. [PMID: 22039363 PMCID: PMC3197692 DOI: 10.1371/journal.pgen.1002343] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
229
|
Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G, Ribeiro CH, Hall JA, Yagi R, Naik S, Bhairavabhotla R, Paul WE, Bosselut R, Wei G, Zhao K, Oukka M, Zhu J, Belkaid Y. GATA3 controls Foxp3⁺ regulatory T cell fate during inflammation in mice. J Clin Invest 2011; 121:4503-15. [PMID: 21965331 DOI: 10.1172/jci57456] [Citation(s) in RCA: 439] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/24/2011] [Indexed: 12/17/2022] Open
Abstract
Tregs not only keep immune responses to autoantigens in check, but also restrain those directed toward pathogens and the commensal microbiota. Control of peripheral immune homeostasis by Tregs relies on their capacity to accumulate at inflamed sites and appropriately adapt to their local environment. To date, the factors involved in the control of these aspects of Treg physiology remain poorly understood. Here, we show that the canonical Th2 transcription factor GATA3 is selectively expressed in Tregs residing in barrier sites including the gastrointestinal tract and the skin. GATA3 expression in both murine and human Tregs was induced upon TCR and IL-2 stimulation. Although GATA3 was not required to sustain Treg homeostasis and function at steady state, GATA3 played a cardinal role in Treg physiology during inflammation. Indeed, the intrinsic expression of GATA3 by Tregs was required for their ability to accumulate at inflamed sites and to maintain high levels of Foxp3 expression in various polarized or inflammatory settings. Furthermore, our data indicate that GATA3 limits Treg polarization toward an effector T cell phenotype and acquisition of effector cytokines in inflamed tissues. Overall, our work reveals what we believe to be a new facet in the complex role of GATA3 in T cells and highlights what may be a fundamental role in controlling Treg physiology during inflammation.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Mirza N, Pollock K, Hoelzinger DB, Dominguez AL, Lustgarten J. Comparative kinetic analyses of gene profiles of naïve CD4+ and CD8+ T cells from young and old animals reveal novel age-related alterations. Aging Cell 2011; 10:853-67. [PMID: 21711441 DOI: 10.1111/j.1474-9726.2011.00730.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is well established that immune responses are diminished in the old. However, we still do not have a clear understanding of what dictates the dysfunction of old T cells at the molecular level. Although microarray analysis has been used to compare young and old T cells, identifying hundreds of genes that are differentially expressed among these populations, it has been difficult to utilize this information to pinpoint which biological pathways truly affect the function of aged T cells. To better define differences between young and old naïve CD4+ and CD8+ T cells, microarray analysis was performed pre- and post-TCR stimulation for 4, 12, 24 and 72 h. Our data indicate that many genes are differentially expressed in the old compared to the young at all five time points. These genes encode proteins involved in multiple cellular functions such as cell growth, cell cycle, cell death, inflammatory response, cell trafficking, etc. Additionally, the information from this microarray analysis allowed us to underline both intrinsic deficiencies and defects in signaling only seen after activation, such as pathways involving T-cell signaling, cytokine production, and Th2 differentiation in old T cells. With the knowledge gained, we can proceed to design strategies to restore the function of old T cells. Therefore, this microarray analysis approach is a powerful and sensitive tool that reveals the extensive changes seen between young and old CD4+ and CD8+ naïve T cells. Evaluation of these differences provides in-depth insight into potential functional and phenotypical differences among these populations.
Collapse
Affiliation(s)
- Noweeda Mirza
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA.
| | | | | | | | | |
Collapse
|
231
|
Singh SP, Gundavarapu S, Peña-Philippides JC, Rir-Sima-ah J, Mishra NC, Wilder JA, Langley RJ, Smith KR, Sopori ML. Prenatal secondhand cigarette smoke promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4542-52. [PMID: 21930963 DOI: 10.4049/jimmunol.1101567] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parental, particularly maternal, smoking increases the risk for childhood allergic asthma and infection. Similarly, in a murine allergic asthma model, prenatal plus early postnatal exposure to secondhand cigarette smoke (SS) exacerbates airways hyperreactivity and Th2 responses in the lung. However, the mechanism and contribution of prenatal versus early postnatal SS exposure on allergic asthma remain unresolved. To identify the effects of prenatal and/or early postnatal SS on allergic asthma, BALB/c dams and their offspring were exposed gestationally and/or 8-10 wk postbirth to filtered air or SS. Prenatal, but not postnatal, SS strongly increased methacholine and allergen (Aspergillus)-induced airway resistance, Th2 cytokine levels, and atopy and activated the Th2-polarizing pathway GATA3/Lck/ERK1/2/STAT6. Either prenatal and/or early postnatal SS downregulated the Th1-specific transcription factor T-bet and, surprisingly, despite high levels of IL-4/IL-13, dramatically blocked the allergen-induced mucous cell metaplasia, airway mucus formation, and the expression of mucus-related genes/proteins: Muc5ac, γ-aminobutyric acid A receptors, and SAM pointed domain-containing Ets-like factor. Given that SS/nicotine exposure of normal adult mice promotes mucus formation, the results suggested that fetal and neonatal lung are highly sensitive to cigarette smoke. Thus, although the gestational SS promotes Th2 polarization/allergic asthma, it may also impair and/or delay the development of fetal and neonatal lung, affecting mucociliary clearance and Th1 responses. Together, this may explain the increased susceptibility of children from smoking parents to allergic asthma and childhood respiratory infections.
Collapse
Affiliation(s)
- Shashi P Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Upadhyaya B, Yin Y, Hill BJ, Douek DC, Prussin C. Hierarchical IL-5 expression defines a subpopulation of highly differentiated human Th2 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3111-20. [PMID: 21849680 PMCID: PMC3445433 DOI: 10.4049/jimmunol.1101283] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Each of the three Th2 cytokine genes, IL-4, IL-5, and IL-13, has different functions. We hypothesized that Th2 heterogeneity could yield Th2 subpopulations with different cytokine expression and effector functions. Using multiple approaches, we demonstrate that human Th2 cells are composed of two major subpopulations: a minority IL-5(+) (IL-5(+), IL-4(+), IL-13(+)) and majority IL-5(-) Th2 (IL-5(-), IL-4(+), IL-13(+)) population. IL-5(+) Th2 cells comprised only 20% of all Th2 cells. Serial rounds of in vitro differentiation initially yielded IL-5(-) Th2, but required multiple rounds of differentiation to generate IL-5(+) Th2 cells. IL-5(+) Th2 cells expressed less CD27 and greater programmed cell death-1 than IL-5(-) Th2 cells, consistent with their being more highly differentiated, Ag-exposed memory cells. IL-5(+) Th2 cells expressed greater IL-4, IL-13, and GATA-3 relative to IL-5(-) Th2 cells. GATA-3 and H3K4me(3) binding to the IL5 promoter (IL5p) was greater in IL-5(+) relative to IL-5(-) Th2 cells, whereas there was no difference in their binding to the IL4p and IL13p. Conversely, H3K27me(3) binding to the IL5p was greater in IL-5(-) Th2 cells. These findings demonstrate Th2 lineage heterogeneity, in which the IL5 gene is regulated in a hierarchical manner relative to other Th2 genes. IL-5(+) Th2 cells are phenotypically distinct and have epigenetic changes consistent with greater IL5p accessibility. Recurrent antigenic exposure preferentially drives the differentiation of IL-5(+) Th2 cells. These results demonstrate that IL-5(+) and IL-5(-) Th2 cells, respectively, represent more and less highly differentiated Th2 cell subpopulations. Such Th2 subpopulations may differentially contribute to Th2-driven pathology.
Collapse
Affiliation(s)
- Bhaskar Upadhyaya
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yuzhi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brenna J. Hill
- Human Immunology Section, Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Calman Prussin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
233
|
Möröy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol 2011; 23:368-78. [PMID: 21920773 DOI: 10.1016/j.smim.2011.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
T- and B-lymphocytes are important elements in the immune defense repertoire of higher organisms. The development and function of lymphoid cells is regulated at many levels one being the control of gene expression by transcription factors. The zinc finger transcriptional repressor Gfi1 has emerged as a factor that is critically implicated in the commitment of precursor cells for the lymphoid lineage. In addition, Gfi1 controls distinct stages of early T- or B-lymphoid development and is also critical for their maturation, activation and effector function. From many years of work, a picture emerges in which Gfi1 is part of a complicated, but well orchestrated network of interdependent regulators, most of which impinge on lymphoid development and activation by transcriptional regulation. Biochemical studies show that Gfi1 is part of a large DNA binding multi-protein complex that enables histone modifications, but may also control alternative pre mRNA splicing. Many insights into the biological role of Gfi1 have been gained through the study of gene deficient mice that have defects in B- and T-cell differentiation, in T-cell selection and polarization processes and in the response of mature B- and T-cells towards antigen. Most importantly, the defects seen in Gfi1 deficient mice also point to roles of Gfi1 in diseases of the immune system that involve auto-immune responses and acute lymphoid leukemia and lymphoma.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | | |
Collapse
|
234
|
Shikonin inhibited mitogen-activated IL-4 and IL-5 production on EL-4 cells through downregulation of GATA-3 and c-Maf induction. Life Sci 2011; 89:364-70. [DOI: 10.1016/j.lfs.2011.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/14/2011] [Accepted: 06/29/2011] [Indexed: 11/20/2022]
|
235
|
Animal models of chronic experimental asthma - strategies for the identification of new therapeutic targets. J Occup Med Toxicol 2011; 3 Suppl 1:S4. [PMID: 18315835 PMCID: PMC2259398 DOI: 10.1186/1745-6673-3-s1-s4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Over the last decade mouse models of experimental asthma proved to be a valuable tool for the investigation of mechanisms that underlie acute allergic airway inflammation and development of airway hyperresponsiveness, two of the hallmarks of human asthma. Nevertheless, these acute models fail to reflect the aspects of this chronic disease because they do not represent any signs of chronicity and airway remodelling as it is defined by subepithelial fibrosis, goblet cell hyperplasia and airway smooth muscle cell hypertrophy. Recent mouse models were successful in overcoming these limitations by using chronic allergen-challenges. These new models of chronic experimental asthma now proved as a novel tool to examine the complex interaction of infiltrating inflammatory cells and structural cells such as fibroblasts and smooth muscle cells that ultimately leads to airway remodelling and stable airflow limitation. Recent studies clearly demonstrated that T helper 2 (TH2) cells and their typical cytokines play a critical role not only in airway inflammation but also in the development of airway remodelling. Since the transcription factor GATA-3 is essential for TH2 cell development and the production of several TH2 type cytokines this intracellular molecule represents a new promising target for therapeutic intervention in asthma that might even effect airway remodelling.
Collapse
|
236
|
c-Abl-mediated tyrosine phosphorylation of the T-bet DNA-binding domain regulates CD4+ T-cell differentiation and allergic lung inflammation. Mol Cell Biol 2011; 31:3445-56. [PMID: 21690296 DOI: 10.1128/mcb.05383-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tyrosine kinase c-Abl is required for full activation of T cells, while its role in T-cell differentiation has not been characterized. We report that c-Abl deficiency skews CD4(+) T cells to type 2 helper T cell (Th2) differentiation, and c-Abl(-/-) mice are more susceptible to allergic lung inflammation. c-Abl interacts with and phosphorylates T-bet, a Th1 lineage transcription factor. c-Abl-mediated phosphorylation enhances the transcriptional activation of T-bet. Interestingly, three tyrosine residues within the T-bet DNA-binding domain are the predominant sites of phosphorylation by c-Abl. Mutation of these tyrosine residues inhibits the promoter DNA-binding activity of T-bet. c-Abl regulates Th cell differentiation in a T-bet-dependent manner because genetic deletion of T-bet in CD4(+) T cells abolishes c-Abl-deficiency-mediated enhancement of Th2 differentiation. Reintroduction of T-bet-null CD4(+) T cells with wild-type T-bet, but not its tyrosine mutant, rescues gamma interferon (IFN-γ) production and inhibits Th2 cytokine production. Therefore, c-Abl catalyzes tyrosine phosphorylation of the DNA-binding domain of T-bet to regulate CD4(+) T cell differentiation.
Collapse
|
237
|
Murakami M, Hirano T. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases. Front Immunol 2011; 2:22. [PMID: 22566812 PMCID: PMC3341963 DOI: 10.3389/fimmu.2011.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/06/2011] [Indexed: 11/13/2022] Open
Abstract
It is commonly thought that autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases (Marrack et al., 2001; Mathis and Benoist, 2004). In several cases, however, even for diseases associated with class II major histocompatibility complex (MHC) alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established (Mocci et al., 2000; Skapenko et al., 2005). Rheumatoid arthritis (RA) and arthritis in F759 knock-in mice (F759 mice) are such examples (Atsumi et al., 2002; Brennan et al., 2002; Falgarone et al., 2009). These include associations with class II MHC and CD4 molecules; increased numbers of memory/activated CD4+ T cells; and improved outcomes in response to suppressions and/or deficiencies in class II MHC molecules, CD4+ T cells, and the T cell survival cytokine IL-7. Regarding the development of arthritis in F759 mice, it is not only the immune system, but also non-immune tissue that are involved, indicating that the importance of their interactions (Sawa et al., 2006, 2009; Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Furthermore, we have shown that local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice (Murakami et al., 2011). For example, local microbleeding-mediated CCL20 expression induce such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s) such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non-hematopoietic cells in the joint (Murakami et al., 2011). We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier for short (Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Thus, certain class II MHC-associated, tissue-specific autoimmune diseases, including some RA subtypes, may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. In other words, in certain cases, the target tissue itself may determine the specificity of the autoimmune disease via activation of the IL-6 amplifier. To explain this hypothesis, we have proposed a four-step model for MHC class II-associated autoimmune diseases (Murakami et al., 2011): (1) T cell activation regardless of antigen specificity; (2) local events inducing a tissue-specific accumulation of activated T cells; (3) transient activation of the IL-6 amplifier; and (4) enhanced sensitivity to cytokines in the target tissue. The interaction of these events results in chronic activation of the IL-6 amplifier and subsequent manifestation of autoimmune diseases. Thus, the IL-6 amplifier, which is chronically activated by these four events, is a critical regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.
Collapse
Affiliation(s)
- Masaaki Murakami
- Laboratory of Developmental Immunology, JST-CREST, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | | |
Collapse
|
238
|
Role of macrophage migration inhibitory factor in the Th2 immune response to epicutaneous sensitization. J Clin Immunol 2011; 31:666-80. [PMID: 21559932 DOI: 10.1007/s10875-011-9541-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/28/2011] [Indexed: 12/31/2022]
Abstract
We examined the role of macrophage migration inhibitory factor (MIF) in the generation of the Th2 response using MIF-deficient mice in a model of epicutaneous sensitization to ovalbumin. Lymph node cells from sensitized MIF-deficient mice produce lower levels of Th2 cytokines after antigen challenge when compared to their wild-type counterparts. Sensitized mice lacking MIF show less pulmonary inflammation after intranasal antigen exposure. Mice deficient in CD74, the MIF receptor, also are unable to generate an inflammatory response to epicutaneous sensitization. Examination of the elicitation phase of the atopic response using DO11.10 OVA TCR transgenic animals shows that T cell proliferation and IL-2 production are strongly impaired in MIF-deficient T cells. This defect is most profound when both T cells and antigen-presenting cells are lacking MIF. These data suggest that MIF is crucial both for the sensitization and the elicitation phases of a Th2-type immune response in allergic disease.
Collapse
|
239
|
Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 2011; 238:247-62. [PMID: 20969597 DOI: 10.1111/j.1600-065x.2010.00951.x] [Citation(s) in RCA: 425] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD4(+) T cells, also known as T-helper (Th) cells, play an important role in orchestrating adaptive immune responses to various infectious agents. They are also involved in the induction of autoimmune and allergic diseases. Upon T-cell receptor (TCR)-mediated cell activation, naive CD4(+) T cells can differentiate into at least four major lineages, Th1, Th2, Th17, and iTreg cells, that participate in different types of immune responses. Networks of cytokines and transcription factors are critical for determining CD4(+) T-cell fates and effector cytokine production. Here, we review collaboration and cross-regulation between various essential cytokines in the activation/induction of key transcription factors during the process of Th cell differentiation towards these distinct lineages. We also discuss the interactions of key transcription factors at both genetic and protein levels and the function of the resulting network(s) in regulating the expression of effector cytokines.
Collapse
Affiliation(s)
- Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | | |
Collapse
|
240
|
Schmidts T, Dobler D, von den Hoff S, Schlupp P, Garn H, Runkel F. Protective effect of drug delivery systems against the enzymatic degradation of dermally applied DNAzyme. Int J Pharm 2011; 410:75-82. [DOI: 10.1016/j.ijpharm.2011.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 03/09/2011] [Accepted: 03/13/2011] [Indexed: 11/26/2022]
|
241
|
Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. THE JOURNAL OF IMMUNOLOGY 2011; 186:5772-83. [PMID: 21498664 DOI: 10.4049/jimmunol.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
242
|
Borges MC, Martini LA, Rogero MM. Current perspectives on vitamin D, immune system, and chronic diseases. Nutrition 2011; 27:399-404. [DOI: 10.1016/j.nut.2010.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/26/2010] [Accepted: 07/30/2010] [Indexed: 12/20/2022]
|
243
|
Frenzel DF, Weiss JM. Osteopontin and allergic disease: pathophysiology and implications for diagnostics and therapy. Expert Rev Clin Immunol 2011; 7:93-109. [PMID: 21162653 DOI: 10.1586/eci.10.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteopontin (OPN) is a phosphoglycoprotein that is expressed by various immune cells in a secreted and intracellular form. It has cytokine, chemotactic and cell signaling functions enhancing Th1 and Th17 immunity and protects against apoptosis. Recent studies found OPN to be modulatory in cell-mediated and immediate-type allergic diseases. In allergic asthma, OPN enhances sensitization but downmodulates Th2-driven IL-4-dominated inflammation. The finding that OPN expression is augmented during specific immunotherapy supports a Th2 suppressive effect of OPN. In Th1-driven delayed-type allergy, such as allergic contact dermatitis, OPN supports dendritic cell migration and IL-12 expression and is secreted by T effector cells and keratinocytes, augmenting Th1-mediated allergy and supporting disease chronification. There are numerous missing links as to how OPN variants modulate allergic inflammation through different OPN receptors. OPN research in allergy is an interesting, rapidly expanding field that has high potential for translational research.
Collapse
Affiliation(s)
- Denis F Frenzel
- University of Ulm, Department of Dermatology and Allergy, Maienweg 12, D-89081 Ulm, Germany
| | | |
Collapse
|
244
|
Dinesh R, Hahn BH, La Cava A, Singh RP. Interferon-inducible gene 202b controls CD8(+) T cell-mediated suppression in anti-DNA Ig peptide-treated (NZB × NZW) F1 lupus mice. Genes Immun 2011; 12:360-9. [PMID: 21326316 PMCID: PMC3149980 DOI: 10.1038/gene.2011.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of an artificial peptide (pConsensus) based on anti-DNA IgG sequences that contain major histocompatibility complex class I and class II T-cell determinants, induces immune tolerance in NZB/NZW F1 female (BWF1) mice. To understand the molecular basis of CD8+ Ti-mediated suppression, we previously performed microarray analysis to identify genes that were differentially expressed following tolerance induction with pCons. CD8+ T cells from mice tolerized with pCons showed more than two-fold increase in Ifi202b mRNA, an interferon inducible gene, versus cells from untolerized mice. Ifi202b expression increased through weeks 1–4 after tolerization and then decreased, reapproaching baseline levels at 6 weeks. In vitro polyclonal activation of tolerized CD8+ T cells significantly increased Ifi202b mRNA expression. Importantly, silencing of Ifi202b abrogated the suppressive capacity of CD8+ Ti cells. This was associated with decreased expression of Foxp3, and decreased gene and protein expression of transforming growth factor (TGF)β and interleukin-2 (IL-2), but not of interferon (IFN)-γ, IL-10, or IL-17. Silencing of another IFN-induced gene upregulated in tolerized CD8+ T cells, IFNAR1, had no effect on the ability of CD8+ T cells to suppress autoantibody production. Our findings indicate a potential role for Ifi202b in the suppressive capacity of peptide-induced regulatory CD8+ Ti cells through effects on the expression of Foxp3 and the synthesis of TGFβ.
Collapse
Affiliation(s)
- R Dinesh
- Division of Rheumatology, Department of Medicine at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
245
|
Monroy CM, Cortes AC, Lopez MS, D'Amelio AM, Etzel CJ, Younes A, Strom SS, El-Zein RA. Hodgkin disease risk: role of genetic polymorphisms and gene-gene interactions in inflammation pathway genes. Mol Carcinog 2011; 50:36-46. [PMID: 21061265 DOI: 10.1002/mc.20688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammation is a critical component of cancer development. The clinical and pathological features of Hodgkin disease (HD) reflect an abnormal immunity that results from cytokines secreted by Reed-Sternberg cells and the surrounding tumor. Numerous studies have reported the association between genetic polymorphisms in cytokine genes and the susceptibility to different hematologic cancers. However, the effects of such SNPs on modulating HD risk have not yet been investigated. We hypothesized that gene-gene interactions between candidate genes in the anti- and pro-inflammatory pathways carrying suspicious polymorphisms may contribute to susceptibility to HD. To test this hypothesis, we conducted a study on 200 HD cases and 220 controls to assess associations between HD risk and 38 functional SNPs in inflammatory genes. We evaluated potential gene-gene interactions using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction, and classification and regression tree (CART) approaches. We observed that, in combination, allelic variants in the COX2, IL18, ILR4, and IL10 genes modify the risk for developing HD. Moreover, the cumulative genetic risk score (CGRS) revealed a significant trend where the risk for developing HD increases as the number of adverse alleles in the cytokine genes increase. These findings support the notion that epigenetic-interactions between these cytokines may influence pathogenesis of HD modulating the proliferation of regulatory T cells. In this way, the innate and adaptative immune responses may be altered and defy their usual functions in the host anti-tumor response. Our study is the first to report the association between polymorphisms in inflammation genes and HD susceptibility risk.
Collapse
Affiliation(s)
- Claudia M Monroy
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-1439, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Murakami M, Okuyama Y, Ogura H, Asano S, Arima Y, Tsuruoka M, Harada M, Kanamoto M, Sawa Y, Iwakura Y, Takatsu K, Kamimura D, Hirano T. Local microbleeding facilitates IL-6- and IL-17-dependent arthritis in the absence of tissue antigen recognition by activated T cells. ACTA ACUST UNITED AC 2011; 208:103-14. [PMID: 21220456 PMCID: PMC3023133 DOI: 10.1084/jem.20100900] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Local microbleeding induces the accumulation of Th17 cells and the development of IL-17– and IL-6–dependent arthritis in the absence of cognate antigen recognition by CD4+ T cells. Cognate antigen recognition by CD4+ T cells is thought to contribute to the tissue specificity of various autoimmune diseases, particularly those associated with class II MHC alleles. However, we show that localized class II MHC–dependent arthritis in F759 mice depends on local events that result in the accumulation of activated CD4+ T cells in the absence of cognate antigen recognition. In this model, transfer of in vitro polarized Th17 cells combined with the induction of experimental microbleeding resulted in CCL20 production, the accumulation of T cells in the joints, and local production of IL-6. Disease induction required IL-17A production by transferred T cells, IL-6 and CCL20 expression, and STAT3 signaling in type I collagen–expressing cells. Our data suggest a model in which the development of autoimmune disease in F759 mice depends on four events: CD4+ T cell activation regardless of antigen specificity, local events that induce T cell accumulation, enhanced sensitivity to T cell–derived cytokines in the tissue, and activation of IL-6 signaling in the tissue. This model provides a possible explanation for why tissue-specific antigens recognized by activated CD4+ T cells have not been identified in many autoimmune diseases, especially those associated with class II MHC molecules.
Collapse
Affiliation(s)
- Masaaki Murakami
- Laboratory of Developmental Immunology, JST-CREST, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Li RR, Pang LL, Du Q, Shi Y, Dai WJ, Yin KS. Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma. Immunopharmacol Immunotoxicol 2010; 32:364-70. [PMID: 20095800 DOI: 10.3109/08923970903420566] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many flavonoids were demonstrated to possess the antiallergic effect. Here we detected whether apigenin, a flavonoid, can attenuate allergen-induced airway inflammation and what is the possible mechanism in a murine model of asthma. Apigenin decreased the degree of the inflammatory cell infiltration, airway hyperresponsiveness, and total immunoglobulin E levels compared with the ovalbumin group. In addition, apigenin triggered the switching of the immune response to allergens toward a T-helper type 1 (Th1) profile. Our data clearly demonstrated that apigenin exhibits an anti-inflammatory activity in a murine asthma model, and can switch the immune response to allergens toward the Th1 profile.
Collapse
Affiliation(s)
- Ruo-Ran Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
248
|
Kuroda E, Antignano F, Ho VW, Hughes MR, Ruschmann J, Lam V, Kawakami T, Kerr WG, McNagny KM, Sly LM, Krystal G. SHIP Represses Th2 Skewing by Inhibiting IL-4 Production from Basophils. THE JOURNAL OF IMMUNOLOGY 2010; 186:323-32. [DOI: 10.4049/jimmunol.1002778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
249
|
JACKSON JOSEPHA, BEGON MICHAEL, BIRTLES RICHARD, PATERSON STEVE, FRIBERG IDAM, HALL AMY, LOWE ANN, RALLI CATRIONA, TURNER ANDREW, ZAWADZKA MALGORZATA, BRADLEY JANETTEE. The analysis of immunological profiles in wild animals: a case study on immunodynamics in the field vole, Microtus agrestis. Mol Ecol 2010; 20:893-909. [DOI: 10.1111/j.1365-294x.2010.04907.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
250
|
Maeda K, Nishiyama C, Ogawa H, Okumura K. GATA2 and Sp1 Positively Regulate the c-kitPromoter in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4252-60. [DOI: 10.4049/jimmunol.1001228] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|