201
|
Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases. BIOLOGY 2014; 3:578-605. [PMID: 25198254 PMCID: PMC4192629 DOI: 10.3390/biology3030578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential contribution of these deregulated protein-coding and non-coding transcription programs to the perturbation of cellular phenotypes.
Collapse
|
202
|
Bryzgunova OE, Laktionov PP. Generation of blood circulating DNAs: Sources, features of struction and circulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814030020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
203
|
Müller-Ott K, Erdel F, Matveeva A, Mallm JP, Rademacher A, Hahn M, Bauer C, Zhang Q, Kaltofen S, Schotta G, Höfer T, Rippe K. Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 2014; 10:746. [PMID: 25134515 PMCID: PMC4299515 DOI: 10.15252/msb.20145377] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cell establishes heritable patterns of active and silenced chromatin via interacting factors
that set, remove, and read epigenetic marks. To understand how the underlying networks operate, we
have dissected transcriptional silencing in pericentric heterochromatin (PCH) of mouse fibroblasts.
We assembled a quantitative map for the abundance and interactions of 16 factors related to PCH in
living cells and found that stably bound complexes of the histone methyltransferase SUV39H1/2
demarcate the PCH state. From the experimental data, we developed a predictive mathematical model
that explains how chromatin-bound SUV39H1/2 complexes act as nucleation sites and propagate a
spatially confined PCH domain with elevated histone H3 lysine 9 trimethylation levels via chromatin
dynamics. This “nucleation and looping” mechanism is particularly robust toward
transient perturbations and stably maintains the PCH state. These features make it an attractive
model for establishing functional epigenetic domains throughout the genome based on the localized
immobilization of chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Katharina Müller-Ott
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Fabian Erdel
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Anna Matveeva
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Anne Rademacher
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Matthias Hahn
- Munich Center for Integrated Protein Science and Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Caroline Bauer
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Qin Zhang
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Sabine Kaltofen
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Gunnar Schotta
- Munich Center for Integrated Protein Science and Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Thomas Höfer
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| |
Collapse
|
204
|
Ekram MB, Kim J. High-throughput targeted repeat element bisulfite sequencing (HT-TREBS): genome-wide DNA methylation analysis of IAP LTR retrotransposon. PLoS One 2014; 9:e101683. [PMID: 25003790 PMCID: PMC4086960 DOI: 10.1371/journal.pone.0101683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/10/2014] [Indexed: 01/23/2023] Open
Abstract
In vertebrates, DNA methylation-mediated repression of retrotransposons is essential for the maintenance of genomic integrity. In the current study, we developed a technique termed HT-TREBS (High-Throughput Targeted Repeat Element Bisulfite Sequencing). This technique is designed to measure the DNA methylation levels of individual loci of any repeat families with next-generation sequencing approaches. To test the feasibility of HT-TREBS, we analyzed the DNA methylation levels of the IAP LTR family using a set of 12 different genomic DNA isolated from the brain, liver and kidney of 4 one-week-old littermates of the mouse strain C57BL/6N. This technique has successfully generated the CpG methylation data of 5,233 loci common in all the samples, representing more than 80% of the individual loci of the five targeted subtypes of the IAP LTR family. According to the results, approximately 5% of the IAP LTR loci have less than 80% CpG methylation levels with no genomic position preference. Further analyses of the IAP LTR loci also revealed the presence of extensive DNA methylation variations between different tissues and individuals. Overall, these data demonstrate the efficiency and robustness of the new technique, HT-TREBS, and also provide new insights regarding the genome-wide DNA methylation patterns of the IAP LTR repeat elements.
Collapse
Affiliation(s)
- Muhammad B. Ekram
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
205
|
Bulut-Karslioglu A, De La Rosa-Velázquez I, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galán C, Winter G, Engist B, Gerle B, O’Sullivan R, Martens J, Walter J, Manke T, Lachner M, Jenuwein T. Suv39h-Dependent H3K9me3 Marks Intact Retrotransposons and Silences LINE Elements in Mouse Embryonic Stem Cells. Mol Cell 2014; 55:277-90. [DOI: 10.1016/j.molcel.2014.05.029] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/30/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
|
206
|
Nzabarushimana E, Miousse IR, Shao L, Chang J, Allen AR, Turner J, Stewart B, Raber J, Koturbash I. Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. JOURNAL OF RADIATION RESEARCH 2014; 55:823-8. [PMID: 24585548 PMCID: PMC4100002 DOI: 10.1093/jrr/rru010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Despite significant progress, the long-term health effects of exposure to high charge (Z) and energy (E) nuclei (HZEs) and the underlying mechanisms remain poorly understood. Mouse studies show that space missions can result in pulmonary pathological states. The goal of this study was to evaluate the pro-fibrotic and pro-carcinogenic effects of exposure to low doses of heavy iron ions ((56)Fe) in the mouse lung. Exposure to (56)Fe (600 MeV; 0.1, 0.2 and 0.4 Gy) resulted in minor pro-fibrotic changes, detected at the beginning of the fibrotic phase (22 weeks post exposure), which were exhibited as increased expression of chemokine Ccl3, and interleukin Il4. Epigenetic alterations were exhibited as global DNA hypermethylation, observed after exposure to 0.4 Gy. Cadm1, Cdh13, Cdkn1c, Mthfr and Sfrp1 were significantly hypermethylated after exposure to 0.1 Gy, while exposure to higher doses resulted in hypermethylation of Cdkn1c only. However, expression of these genes was not affected by any dose. Congruently with the observed patterns of global DNA methylation, DNA repetitive elements were hypermethylated after exposure to 0.4 Gy, with minor changes observed after exposure to lower doses. Importantly, hypermethylation of repetitive elements coincided with their transcriptional repression. The findings of this study will aid in understanding molecular determinants of pathological states associated with exposure to (56)Fe, as well as serve as robust biomarkers for the delayed effects of irradiation. Further studies are clearly needed to investigate the persistence and outcomes of molecular alterations long term after exposure.
Collapse
Affiliation(s)
- Etienne Nzabarushimana
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Jennifer Turner
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA
| | - Blair Stewart
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA Department of Neurology, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA Division of Cancer Biology and Radiobiology, and Division of Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| |
Collapse
|
207
|
Miousse IR, Shao L, Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Zhou D, Koturbash I. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells. Radiat Res 2014; 182:92-101. [PMID: 24960414 DOI: 10.1667/rr13580.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to (56)Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose (56)Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to (56)Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to (56)Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to (56)Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in the development of radiation-induced genomic instability and thus, may have a causative role in the development of AML.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wei Feng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer Turner
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon
| | - Blair Stewart
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon
| | - Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon.,Department of Neurology, ONPRC, Oregon Health and Science University, Portland, Oregon.,Department of Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
208
|
Pezic D, Manakov SA, Sachidanandam R, Aravin AA. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev 2014; 28:1410-28. [PMID: 24939875 PMCID: PMC4083086 DOI: 10.1101/gad.240895.114] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose constant threats to genomic integrity. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. Pezic et al. show the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in mammalian germ cells. The analyses reveal that the piRNA pathway targets full-length elements of actively transposing LINE families but not the copious small fragments present throughout the genome. Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments.
Collapse
Affiliation(s)
- Dubravka Pezic
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sergei A Manakov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ravi Sachidanandam
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
209
|
Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, Ye X, Mou C, Wang L, Wang L, Yin Y, Yuan J, Zuo B, Wang F, Li Z, Pan X, Yin Z, Chen L, Keefe DL, Gagos S, Xiao A, Liu L. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell 2014; 29:7-19. [PMID: 24735877 DOI: 10.1016/j.devcel.2014.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 11/18/2013] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
Abstract
Telomere length homeostasis is essential for genomic stability and unlimited self-renewal of embryonic stem cells (ESCs). We show that telomere-associated protein Rif1 is required to maintain telomere length homeostasis by negatively regulating Zscan4 expression, a critical factor for telomere elongation by recombination. Depletion of Rif1 results in terminal hyperrecombination, telomere length heterogeneity, and chromosomal fusions. Reduction of Zscan4 by shRNA significantly rescues telomere recombination defects of Rif1-depleted ESCs and associated embryonic lethality. Further, Rif1 negatively modulates Zscan4 expression by maintaining H3K9me3 levels at subtelomeric regions. Mechanistically, Rif1 interacts and stabilizes H3K9 methylation complex. Thus, Rif1 regulates telomere length homeostasis of ESCs by mediating heterochromatic silencing.
Collapse
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yifei Liu
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Na Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Maria Chiourea
- Laboratory of Genetics, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens Greece (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Tao Wu
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunlin Mou
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jihong Yuan
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bingfeng Zuo
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiguo Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinghua Pan
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sarantis Gagos
- Laboratory of Genetics, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens Greece (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
| | - Andrew Xiao
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
210
|
Chappell G, Kutanzi K, Uehara T, Tryndyak V, Hong HH, Hoenerhoff M, Beland FA, Rusyn I, Pogribny IP. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice. Int J Cancer 2014; 134:2778-88. [PMID: 24242335 PMCID: PMC4209252 DOI: 10.1002/ijc.28610] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/24/2013] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and is rising in incidence worldwide. The molecular mechanisms leading to the development of HCC are complex and include both genetic and epigenetic events. To determine the relative contribution of these alterations in liver tumorigenesis, we evaluated epigenetic modifications at both global and gene specific levels, as well as the mutational profile of genes commonly altered in liver tumors. A mouse model of fibrosis-associated liver cancer that was designed to emulate cirrhotic liver, a prevailing disease state observed in most humans with HCC, was used. Tumor and nontumor liver samples from B6C3F1 mice treated with N-nitrosodiethylamine (DEN; a single ip injection of 1 mg/kg at 14 days of age) and carbon tetrachloride (CCl4; 0.2 ml/kg, 2 times/week ip starting at 8 weeks of age for 14 weeks), as well as corresponding vehicle control animals, were analyzed for genetic and epigenetic alterations. H-ras, Ctnnb1 and Hnf1α genes were not mutated in tumors in mice treated with DEN+CCl4 . In contrast, the increased tumor incidence in mice treated with DEN+CCl4 was associated with marked epigenetic changes in liver tumors and nontumor liver tissue, including demethylation of genomic DNA and repetitive elements, a decrease in histone 3 lysine 9 trimethylation (H3K9me3) and promoter hypermethylation and functional downregulation of Riz1, a histone lysine methyltransferase tumor suppressor gene. Additionally, the reduction in H3K9me3 was accompanied by increased expression of long interspersed nucleotide elements 1 and short interspersed nucleotide elements B2, which is an indication of genomic instability. In summary, our results suggest that epigenetic events, rather than mutations in known cancer-related genes, play a prominent role in increased incidence of liver tumors in this mouse model of fibrosis-associated liver cancer.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristy Kutanzi
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Takeki Uehara
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Hue-Hua Hong
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - Mark Hoenerhoff
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
211
|
Darrow EM, Chadwick BP. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Res 2014; 42:6421-35. [PMID: 24753417 PMCID: PMC4041453 DOI: 10.1093/nar/gku280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
The human genome contains numerous large tandem repeats, many of which remain poorly characterized. Here we report a novel transfer RNA (tRNA) tandem repeat on human chromosome 1q23.3 that shows extensive copy number variation with 9-43 repeat units per allele and displays evidence of meiotic and mitotic instability. Each repeat unit consists of a 7.3 kb GC-rich sequence that binds the insulator protein CTCF and bears the chromatin hallmarks of a bivalent domain in human embryonic stem cells. A tRNA containing tandem repeat composed of at least three 7.6-kb GC-rich repeat units reside within a syntenic region of mouse chromosome 1. However, DNA sequence analysis reveals that, with the exception of the tRNA genes that account for less than 6% of a repeat unit, the remaining 7.2 kb is not conserved with the notable exception of a 24 base pair sequence corresponding to the CTCF binding site, suggesting an important role for this protein at the locus.
Collapse
Affiliation(s)
- Emily M Darrow
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
212
|
Miousse IR, Chalbot MCG, Aykin-Burns N, Wang X, Basnakian A, Kavouras IG, Koturbash I. Epigenetic alterations induced by ambient particulate matter in mouse macrophages. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:428-35. [PMID: 24535919 PMCID: PMC4162398 DOI: 10.1002/em.21855] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/22/2014] [Indexed: 05/25/2023]
Abstract
Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10-200 µg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marie-Cécile G. Chalbot
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nükhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaoying Wang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alexei Basnakian
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ilias G. Kavouras
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
213
|
White E, Schlackow M, Kamieniarz-Gdula K, Proudfoot NJ, Gullerova M. Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nat Struct Mol Biol 2014; 21:552-9. [PMID: 24814348 PMCID: PMC4129937 DOI: 10.1038/nsmb.2827] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Dicer is a central enzymatic player in RNA-interference pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated. Dicer interacts with RNA polymerase II (Pol II) at actively transcribed gene loci. Loss of Dicer causes the appearance of endogenous double-stranded RNA (dsRNA), which in turn leads to induction of the interferon-response pathway and consequent cell death. Our results suggest that Pol II-associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units. Failure to do so has catastrophic effects on cell function.
Collapse
Affiliation(s)
- Eleanor White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
214
|
A region of euchromatin coincides with an extensive tandem repeat on the mouse (Mus musculus) inactive X chromosome. Chromosome Res 2014; 22:335-50. [DOI: 10.1007/s10577-014-9424-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
|
215
|
Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G, Grummt I. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell 2014; 54:675-82. [PMID: 24768537 DOI: 10.1016/j.molcel.2014.03.032] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/31/2014] [Accepted: 03/10/2014] [Indexed: 12/18/2022]
Abstract
A complex network of regulatory pathways links transcription to cell growth and proliferation. Here we show that cellular quiescence alters chromatin structure by promoting trimethylation of histone H4 at lysine 20 (H4K20me3). In contrast to pericentric or telomeric regions, recruitment of the H4K20 methyltransferase Suv4-20h2 to rRNA genes and IAP elements requires neither trimethylation of H3K9 nor interaction with HP1 proteins but depends on long noncoding RNAs (lncRNAs) that interact with Suv4-20h2. Growth factor deprivation and terminal differentiation lead to upregulation of these lncRNAs, increase in H4K20me3, and chromatin compaction. The results uncover a lncRNA-mediated mechanism that guides Suv4-20h2 to specific genomic loci to establish a more compact chromatin structure in growth-arrested cells.
Collapse
Affiliation(s)
- Holger Bierhoff
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marcel Andre Dammert
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - David Brocks
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Silvia Dambacher
- Adolf Butenandt Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Gunnar Schotta
- Adolf Butenandt Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
216
|
Characterization of human pseudogene-derived non-coding RNAs for functional potential. PLoS One 2014; 9:e93972. [PMID: 24699680 PMCID: PMC3974860 DOI: 10.1371/journal.pone.0093972] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Thousands of pseudogenes exist in the human genome and many are transcribed, but their functional potential remains elusive and understudied. To explore these issues systematically, we first developed a computational pipeline to identify transcribed pseudogenes from RNA-Seq data. Applying the pipeline to datasets from 16 distinct normal human tissues identified ∼ 3,000 pseudogenes that could produce non-coding RNAs in a manner of low abundance but high tissue specificity under normal physiological conditions. Cross-tissue comparison revealed that the transcriptional profiles of pseudogenes and their parent genes showed mostly positive correlations, suggesting that pseudogene transcription could have a positive effect on the expression of their parent genes, perhaps by functioning as competing endogenous RNAs (ceRNAs), as previously suggested and demonstrated with the PTEN pseudogene, PTENP1. Our analysis of the ENCODE project data also found many transcriptionally active pseudogenes in the GM12878 and K562 cell lines; moreover, it showed that many human pseudogenes produced small RNAs (sRNAs) and some pseudogene-derived sRNAs, especially those from antisense strands, exhibited evidence of interfering with gene expression. Further integrated analysis of transcriptomics and epigenomics data, however, demonstrated that trimethylation of histone 3 at lysine 9 (H3K9me3), a posttranslational modification typically associated with gene repression and heterochromatin, was enriched at many transcribed pseudogenes in a transcription-level dependent manner in the two cell lines. The H3K9me3 enrichment was more prominent in pseudogenes that produced sRNAs at pseudogene loci and their adjacent regions, an observation further supported by the co-enrichment of SETDB1 (a H3K9 methyltransferase), suggesting that pseudogene sRNAs may have a role in regional chromatin repression. Taken together, our comprehensive and systematic characterization of pseudogene transcription uncovers a complex picture of how pseudogene ncRNAs could influence gene and pseudogene expression, at both epigenetic and post-transcriptional levels.
Collapse
|
217
|
Corney DC, Coller HA. On form and function: does chromatin packing regulate the cell cycle? Physiol Genomics 2014; 46:191-4. [PMID: 24474443 PMCID: PMC3949104 DOI: 10.1152/physiolgenomics.00002.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/23/2014] [Indexed: 12/26/2022] Open
Abstract
The Systems Biology of Cell State Regulation Section is dedicated to considering how we can define a cellular state and how cells transition between states. One important decision that a cell makes is whether to cycle, that is, replicate DNA and generate daughter cells, or to exit the cell cycle in a reversible manner. The members of the Systems Biology of Cell State Regulation Editorial Board have an interest in the role of epigenetics and the commitment to a dividing or nondividing state. The ability of cells to transition between proliferating and nonproliferating states is essential for the proper formation of tissues. The ability to enter the cell cycle when needed is necessary for complex multicellular processes, such as healing injuries or mounting an immune response. Cells that fail to quiesce properly can contribute to the formation of tumors. In this perspective piece, we focus on research exploring the relationship between epigenetics and the cell cycle.
Collapse
Affiliation(s)
- David C Corney
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California; and Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, California
| | | |
Collapse
|
218
|
Baier SR, Zbasnik R, Schlegel V, Zempleni J. Off-target effects of sulforaphane include the derepression of long terminal repeats through histone acetylation events. J Nutr Biochem 2014; 25:665-8. [PMID: 24746830 DOI: 10.1016/j.jnutbio.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/26/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022]
Abstract
Sulforaphane is a naturally occurring isothiocyanate in cruciferous vegetables. Sulforaphane inhibits histone deacetylases, leading to the transcriptional activation of genes including tumor suppressor genes. The compound has attracted considerable attention in the chemoprevention of prostate cancer. Here we tested the hypothesis that sulforaphane is not specific for tumor suppressor genes but also activates loci such as long terminal repeats (LTRs), which might impair genome stability. Studies were conducted using chemically pure sulforaphane in primary human IMR-90 fibroblasts and in broccoli sprout feeding studies in healthy adults. Sulforaphane (2.0 μM) caused an increase in LTR transcriptional activity in cultured cells. Consumption of broccoli sprouts (34, 68 or 102 g) by human volunteers caused a dose dependent elevation in LTR mRNA in circulating leukocytes, peaking at more than a 10-fold increase. This increase in transcript levels was associated with an increase in histone H3 K9 acetylation marks in LTR 15 in peripheral blood mononuclear cells from subjects consuming sprouts. Collectively, this study suggests that sulforaphane has off-target effects that warrant further investigation when recommending high levels of sulforaphane intake, despite its promising activities in chemoprevention.
Collapse
Affiliation(s)
- Scott R Baier
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE
| | - Richard Zbasnik
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE
| | - Vicki Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE
| | - Janos Zempleni
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE.
| |
Collapse
|
219
|
Baubec T, Schübeler D. Genomic patterns and context specific interpretation of DNA methylation. Curr Opin Genet Dev 2014; 25:85-92. [PMID: 24614011 DOI: 10.1016/j.gde.2013.11.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/29/2013] [Indexed: 12/21/2022]
Abstract
Methylation of CpG dinucleotides is a reversible modification of DNA that is highly prevalent throughout mammalian genomes. Recent advances generated genomic DNA methylation maps during cellular differentiation at unprecedented resolution. Combined with functional assays this revealed that dynamics in DNA methylation coincide with changes in regulatory activity and that transcription factors play an important role in shaping methylation patterns. This tightly links DNA methylation with underlying DNA sequence features and suggests that a substantial fraction of methylation changes occur downstream of gene regulation. Here we discuss our current understanding of the context-dependent readout of DNA methylation and criteria that need to be fulfilled for this modification to be instructive for gene regulation.
Collapse
Affiliation(s)
- Tuncay Baubec
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland.
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland; University of Basel, Faculty of Science, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
220
|
Schoorlemmer J, Pérez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Front Oncol 2014; 4:14. [PMID: 24567914 PMCID: PMC3915180 DOI: 10.3389/fonc.2014.00014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain ; ARAID Foundation , Zaragoza , Spain
| | - Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| | - Diana Guallar
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
221
|
Tommasi S, Zheng A, Yoon JI, Besaratinia A. Epigenetic targeting of the Nanog pathway and signaling networks during chemical carcinogenesis. Carcinogenesis 2014; 35:1726-36. [DOI: 10.1093/carcin/bgu026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
222
|
Pinello L, Xu J, Orkin SH, Yuan GC. Analysis of chromatin-state plasticity identifies cell-type-specific regulators of H3K27me3 patterns. Proc Natl Acad Sci U S A 2014; 111:E344-53. [PMID: 24395799 PMCID: PMC3903219 DOI: 10.1073/pnas.1322570111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin states are highly cell-type-specific, but the underlying mechanisms for the establishment and maintenance of their genome-wide patterns remain poorly understood. Here we present a computational approach for investigation of chromatin-state plasticity. We applied this approach to investigate an ENCODE ChIP-seq dataset profiling the genome-wide distributions of the H3K27me3 mark in 19 human cell lines. We found that the high plasticity regions (HPRs) can be divided into two functionally and mechanistically distinct subsets, which correspond to CpG island (CGI) proximal or distal regions, respectively. Although the CGI proximal HPRs are typically associated with continuous variation across different cell-types, the distal HPRs are associated with binary-like variations. We developed a computational approach to predict putative cell-type-specific modulators of H3K27me3 patterns and validated the predictions by comparing with public ChIP-seq data. Furthermore, we applied this approach to investigate mechanisms for poised enhancer establishment in primary human erythroid precursors. Importantly, we predicted and experimentally validated that the principal hematopoietic regulator T-cell acute lymphocytic leukemia-1 (TAL1) is involved in regulating H3K27me3 variations in collaboration with the transcription factor growth factor independent 1B (GFI1B), providing fresh insights into the context-specific role of TAL1 in erythropoiesis. Our approach is generally applicable to investigate the regulatory mechanisms of epigenetic pathways in establishing cellular identity.
Collapse
Affiliation(s)
- Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215
| | - Jian Xu
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and
| | - Stuart H. Orkin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215
| |
Collapse
|
223
|
Xue J, Zempleni J. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats. Scand J Immunol 2014; 78:419-25. [PMID: 24007195 DOI: 10.1111/sji.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.
Collapse
Affiliation(s)
- J Xue
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
224
|
Dunican DS, Cruickshanks HA, Suzuki M, Semple CA, Davey T, Arceci RJ, Greally J, Adams IR, Meehan RR. Lsh regulates LTR retrotransposon repression independently of Dnmt3b function. Genome Biol 2013; 14:R146. [PMID: 24367978 PMCID: PMC4054100 DOI: 10.1186/gb-2013-14-12-r146] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/24/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND DNA methylation contributes to genomic integrity by suppressing repeat-associated transposition. In addition to the canonical DNA methyltransferases, several auxiliary chromatin factors are required to maintain DNA methylation at intergenic and satellite repeats. The interaction between Lsh, a chromatin helicase, and the de novo methyltransferase Dnmt3b facilitates deposition of DNA methylation at stem cell genes, which are hypomethylated in Lsh-/- embryos. We wished to determine if a similar targeting mechanism operates to maintain DNA methylation at repetitive sequences. RESULTS We mapped genome-wide DNA methylation patterns in Lsh-/- and Dnmt3b-/- somatic cells. DNA methylation is predominantly lost from specific genomic repeats in Lsh-/- cells: LTR -retrotransposons, LINE-1 repeats and mouse satellites. RNA-seq experiments demonstrate that specific IAP LTRs and satellites, but not LINE-1 elements, are aberrantly transcribed in Lsh-/- cells. LTR hypomethylation in Dnmt3b-/- cells is moderate, whereas IAP, LINE-1 and satellite elements are hypomethylated but silent. Repressed LINE-1 elements in Lsh-/- cells gain H3K4me3, but H3K9me3 levels are unaltered, indicating that DNA hypomethylation alone is not permissive for their transcriptional activation. Mis-expressed IAPs and satellites lose H3K9me3 and gain H3K4me3 in Lsh-/- cells. CONCLUSIONS Our study emphasizes that regulation of repetitive elements by Lsh and DNA methylation is selective and context dependent. Silencing of repeats in somatic cells appears not to be critically dependent on Dnmt3b function. We propose a model where Lsh is specifically required at a precise developmental window to target de novo methylation to repeat sequences, which is subsequently maintained by Dnmt1 to enforce selective repeat silencing.
Collapse
Affiliation(s)
- Donncha S Dunican
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Hazel A Cruickshanks
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Masako Suzuki
- Departments of Genetics (Computational Genetics) and Center for Epigenomics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, USA
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Tracey Davey
- Newcastle Medical School, Framlington Place, Newcastle University, Newcastle Upon Tyne NE2 4HH, England
| | - Robert J Arceci
- Room 2 M51 Cancer Research Building, Pediatrics and Oncology, Cellular and Molecular Medicine, Johns Hopkins, Baltimore, MD, USA
| | - John Greally
- Departments of Genetics (Computational Genetics) and Center for Epigenomics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, USA
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| | - Richard R Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland
| |
Collapse
|
225
|
Beaujean N. Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol Reprod Dev 2013; 81:100-12. [PMID: 24150914 DOI: 10.1002/mrd.22268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/08/2013] [Indexed: 02/03/2023]
Abstract
In mammals, epigenetic modifications are globally rearranged after fertilization, when gametes fuse to form the embryo. While gametes carry special epigenetic signatures and a unique nuclear organization, they attain embryo-specific patterns after fertilization. This "reprogramming" is promoted by intimate contact between the parental inherited genomes and the oocyte cytoplasm over the first cell cycles of development. Although the mechanisms of this reprogramming remain poorly understood, it appears that the particular epigenetic landscape established after fertilization is essential for further development. This review looks at histone post-translational modifications, focusing on their functions in chromatin organization and their role in nuclear architecture during mouse embryonic development. Epigenetic changes linked to the use of assisted reproductive technologies are also considered.
Collapse
Affiliation(s)
- Nathalie Beaujean
- UMR1198 Biologie du Développement et Reproduction, INRA Domaine de Vilvert, Jouy-en-Josas, France; ENVA, Maisons Alfort, France
| |
Collapse
|
226
|
Rangasamy D. Distinctive patterns of epigenetic marks are associated with promoter regions of mouse LINE-1 and LTR retrotransposons. Mob DNA 2013; 4:27. [PMID: 24289137 PMCID: PMC4177394 DOI: 10.1186/1759-8753-4-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/29/2013] [Indexed: 01/04/2023] Open
Abstract
Background The long terminal repeat (LTR) retrotransposons and the non-LTR retrotransposons (LINE-1 or L1) make up more than one-third of the mouse genome. Because of their abundance, the retrotransposons are the major players in genomic structure and function. While much attention has been focused on the biology of retrotransposons, little is known about the chromatin structure of these elements or the potential role of epigenetic marks on the regulation of retrotransposon expression. Findings Using sequential chromatin immunoprecipitation analysis, we analyzed the cohabitation of several post-translational histone modifications in the promoter regions of mouse L1 and LTR retrotransposons. We show here that the variant histone H2A.Z selectively present in L1 promoters. Notably, H2A.Z and trimethylated histone H3 (H3K9me3) co-localize in the same genomic location of the L1 promoter along with heterochromatin-binding protein HP1α. In contrast, MmERV and intracisternal A-particle (IAP) classes of LTR promoters are enriched with core histone H2A and heterochromatic trimethylated histone H4 (H4K20me3). These distinctive patterns of chromatin modifications are relatively consistent irrespective of cell type. Conclusions Chromatin structure regulates the expression of retrotransposons. LINE-1 elements are associated with H2A.Z and HP1α-containing constitutive heterochromatin, while the LTR elements are enriched with H2A and the H4K20me3-type of facultative heterochromatin. Our findings demonstrate that different epigenetic mechanisms operate in the mouse genome to silence different classes of retrotransposons.
Collapse
Affiliation(s)
- Danny Rangasamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
227
|
Bierhoff H, Postepska-Igielska A, Grummt I. Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics 2013; 9:53-61. [PMID: 24121539 DOI: 10.4161/epi.26485] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A significant fraction of eukaryotic genomes comprises repetitive sequences, including rRNA genes, centromeres, telomeres, and retrotransposons. Repetitive elements are hotspots for recombination and represent a serious challenge for genome integrity. Maintaining these repeated elements in a compact heterochromatic structure suppresses recombination and unwanted mutagenic transposition, and is therefore indispensable for genomic stability. Paradoxically, repetitive elements are not transcriptionally inert, but produce RNA that has important functions in regulating and reinforcing the heterochromatic state. Here, we review the role of non-coding RNA (ncRNA) in recruiting chromatin-modifying enzymes to repetitive genomic loci to establish a repressive chromatin structure that safeguards chromosome integrity and genome stability.
Collapse
Affiliation(s)
- Holger Bierhoff
- Division of Molecular Biology of the Cell II; German Cancer Research Center; DKFZ-ZMBH Alliance; Heidelberg, Germany
| | - Anna Postepska-Igielska
- Division of Molecular Biology of the Cell II; German Cancer Research Center; DKFZ-ZMBH Alliance; Heidelberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II; German Cancer Research Center; DKFZ-ZMBH Alliance; Heidelberg, Germany
| |
Collapse
|
228
|
Schwämmle V, Jensen ON. A computational model for histone mark propagation reproduces the distribution of heterochromatin in different human cell types. PLoS One 2013; 8:e73818. [PMID: 24069233 PMCID: PMC3777982 DOI: 10.1371/journal.pone.0073818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022] Open
Abstract
Chromatin is a highly compact and dynamic nuclear structure that consists of DNA and associated proteins. The main organizational unit is the nucleosome, which consists of a histone octamer with DNA wrapped around it. Histone proteins are implicated in the regulation of eukaryote genes and they carry numerous reversible post-translational modifications that control DNA-protein interactions and the recruitment of chromatin binding proteins. Heterochromatin, the transcriptionally inactive part of the genome, is densely packed and contains histone H3 that is methylated at Lys 9 (H3K9me). The propagation of H3K9me in nucleosomes along the DNA in chromatin is antagonizing by methylation of H3 Lysine 4 (H3K4me) and acetylations of several lysines, which is related to euchromatin and active genes. We show that the related histone modifications form antagonized domains on a coarse scale. These histone marks are assumed to be initiated within distinct nucleation sites in the DNA and to propagate bi-directionally. We propose a simple computer model that simulates the distribution of heterochromatin in human chromosomes. The simulations are in agreement with previously reported experimental observations from two different human cell lines. We reproduced different types of barriers between heterochromatin and euchromatin providing a unified model for their function. The effect of changes in the nucleation site distribution and of propagation rates were studied. The former occurs mainly with the aim of (de-)activation of single genes or gene groups and the latter has the power of controlling the transcriptional programs of entire chromosomes. Generally, the regulatory program of gene transcription is controlled by the distribution of nucleation sites along the DNA string.
Collapse
Affiliation(s)
- Veit Schwämmle
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Ole Nørregaard Jensen
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
229
|
Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep 2013; 4:1156-67. [PMID: 24055057 DOI: 10.1016/j.celrep.2013.08.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/02/2013] [Accepted: 08/08/2013] [Indexed: 02/05/2023] Open
Abstract
The equalization of pericentric heterochromatin from distinct parental origins following fertilization is essential for genome function and development. The recent implication of noncoding transcripts in this process raises questions regarding the connection between RNA and the nuclear organization of distinct chromatin environments. Our study addresses the interrelationship between replication and transcription of the two parental pericentric heterochromatin (PHC) domains and their reorganization during early embryonic development. We demonstrate that the replication of PHC is dispensable for its clustering at the late two-cell stage. In contrast, using parthenogenetic embryos, we show that pericentric transcripts are essential for this reorganization independent of the chromatin marks associated with the PHC domains. Finally, our discovery that only reverse pericentric transcripts are required for both the nuclear reorganization of PHC and development beyond the two-cell stage challenges current views on heterochromatin organization.
Collapse
|
230
|
Belan E. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Direct 2013; 8:22. [PMID: 24034780 PMCID: PMC3868326 DOI: 10.1186/1745-6150-8-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/06/2013] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are
capable of synthesizing DNA on their own RNA templates by harnessing reverse
transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their
RT are found to globally influence gene expression profiles, differentiation state,
and proliferation capacity of early embryos and many types of cancer, albeit by yet
unknown mechanisms. They are essential for the progression of early development and
the establishment of a cancer-related undifferentiated state. This raises important
questions regarding the functional significance of L1 RT in these cell systems.
Massive nuclear L1-linked reverse transcription has been shown to occur in mouse
zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication
independent. This review argues against this claim with the goal of understanding the
nature of this phenomenon and the role of L1 RT in early embryos and cancers.
Available L1 data are revisited and integrated with relevant findings accumulated in
the fields of replication timing, chromatin organization, and epigenetics, bringing
together evidence that strongly supports two new concepts. First, noncanonical
replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse
transcription is proposed to co-exist with DNA polymerase-dependent replication of
the rest of the genome during the same round of DNA replication in embryonic and
cancer cell systems. Second, the role of this mechanism is thought to be epigenetic;
it might promote transcriptional competence of neighboring genes linked to
undifferentiated states through the prevention of tethering of involved L1s to the
nuclear periphery. From the standpoint of these concepts, several hitherto
inexplicable phenomena can be explained. Testing methods for the model are
proposed.
Collapse
Affiliation(s)
- Ekaterina Belan
- Genetics Laboratory, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
231
|
Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA. H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 2013; 24:3025-37. [PMID: 23924899 PMCID: PMC3784377 DOI: 10.1091/mbc.e12-07-0529] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The methylation state of K20 on histone H4 is important for proper cell cycle control and chromatin compaction in human fibroblasts. High levels of dimethylated and trimethylated K20 are associated with quiescence, and loss of these modifications causes a more open chromatin conformation and defects in cell cycle progression and exit. The transition between proliferation and quiescence is frequently associated with changes in gene expression, extent of chromatin compaction, and histone modifications, but whether changes in chromatin state actually regulate cell cycle exit with quiescence is unclear. We find that primary human fibroblasts induced into quiescence exhibit tighter chromatin compaction. Mass spectrometry analysis of histone modifications reveals that H4K20me2 and H4K20me3 increase in quiescence and other histone modifications are present at similar levels in proliferating and quiescent cells. Analysis of cells in S, G2/M, and G1 phases shows that H4K20me1 increases after S phase and is converted to H4K20me2 and H4K20me3 in quiescence. Knockdown of the enzyme that creates H4K20me3 results in an increased fraction of cells in S phase, a defect in exiting the cell cycle, and decreased chromatin compaction. Overexpression of Suv4-20h1, the enzyme that creates H4K20me2 from H4K20me1, results in G2 arrest, consistent with a role for H4K20me1 in mitosis. The results suggest that the same lysine on H4K20 may, in its different methylation states, facilitate mitotic functions in M phase and promote chromatin compaction and cell cycle exit in quiescent cells.
Collapse
Affiliation(s)
- Adam G Evertts
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129 Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, and Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA 90095
| | | | | | | | | | | |
Collapse
|
232
|
Lange UC, Siebert S, Wossidlo M, Weiss T, Ziegler-Birling C, Walter J, Torres-Padilla ME, Daujat S, Schneider R. Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin. Nat Commun 2013; 4:2233. [DOI: 10.1038/ncomms3233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
|
233
|
Li Q, Lian S, Dai Z, Xiang Q, Dai X. BGDB: a database of bivalent genes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat057. [PMID: 23894186 PMCID: PMC3724367 DOI: 10.1093/database/bat057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL:http://dailab.sysu.edu.cn/bgdb/
Collapse
Affiliation(s)
| | | | | | | | - Xianhua Dai
- *Corresponding author: Tel: +86 20 39943331; Fax: +86 20 39943331;
| |
Collapse
|
234
|
Ohno R, Nakayama M, Naruse C, Okashita N, Takano O, Tachibana M, Asano M, Saitou M, Seki Y. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells. Development 2013; 140:2892-903. [PMID: 23760957 DOI: 10.1242/dev.093229] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germline cells reprogramme extensive epigenetic modifications to ensure the cellular totipotency of subsequent generations and to prevent the accumulation of epimutations. Notably, primordial germ cells (PGCs) erase genome-wide DNA methylation and H3K9 dimethylation marks in a stepwise manner during migration and gonadal periods. In this study, we profiled DNA and histone methylation on transposable elements during PGC development, and examined the role of DNA replication in DNA demethylation in gonadal PGCs. CpGs in short interspersed nuclear elements (SINEs) B1 and B2 were substantially demethylated in migrating PGCs, whereas CpGs in long interspersed nuclear elements (LINEs), such as LINE-1, were resistant to early demethylation. By contrast, CpGs in both LINE-1 and SINEs were rapidly demethylated in gonadal PGCs. Four major modifiers of DNA and histone methylation, Dnmt3a, Dnmt3b, Glp and Uhrf1, were actively repressed at distinct stages of PGC development. DNMT1 was localised at replication foci in nascent PGCs, whereas the efficiency of recruitment of DNMT1 into replication foci was severely impaired in gonadal PGCs. Hairpin bisulphite sequencing analysis showed that strand-specific hemi-methylated CpGs on LINE-1 were predominant in gonadal PGCs. Furthermore, DNA demethylation in SINEs and LINE-1 was impaired in Cbx3-deficient PGCs, indicating abnormalities in G1 to S phase progression. We propose that PGCs employ active and passive mechanisms for efficient and widespread erasure of genomic DNA methylation.
Collapse
Affiliation(s)
- Rika Ohno
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS. Retroelements: molecular features and implications for disease. Genes Genet Syst 2013; 88:31-43. [PMID: 23676708 DOI: 10.1266/ggs.88.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic genomes comprise numerous retroelements that have a major impact on the structure and regulation of gene function. Retroelements are regulated by epigenetic controls, and they generate multiple miRNAs that are involved in the induction and progression of genomic instability. Elucidation of the biological roles of retroelements deserves continuous investigation to better understand their evolutionary features and implications for disease.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
236
|
Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression. Transl Psychiatry 2013; 3:e255. [PMID: 23652932 PMCID: PMC3669918 DOI: 10.1038/tp.2013.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA-protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant.
Collapse
|
237
|
Xue J, Wijeratne SSK, Zempleni J. Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of long-terminal repeats. Epigenetics 2013; 8:504-11. [PMID: 23624957 DOI: 10.4161/epi.24449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.
Collapse
Affiliation(s)
- Jing Xue
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE, USA
| | | | | |
Collapse
|
238
|
Cao K, Lailler N, Zhang Y, Kumar A, Uppal K, Liu Z, Lee EK, Wu H, Medrzycki M, Pan C, Ho PY, Cooper GP, Dong X, Bock C, Bouhassira EE, Fan Y. High-resolution mapping of h1 linker histone variants in embryonic stem cells. PLoS Genet 2013; 9:e1003417. [PMID: 23633960 PMCID: PMC3636266 DOI: 10.1371/journal.pgen.1003417] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H10 displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark. Embryonic stem cells (ESCs) possess unique chromatin and epigenetic signatures, which are important in defining the identity and genome plasticity of pluripotent stem cells. Although ESC epigenomes have been extensively characterized, the genome localization of histone H1 variants, the chromatin structural proteins facilitating higher-order chromatin folding, remains elusive. Linker histone H1 is essential for mammalian development and regulates the expression of specific genes in ESCs. Here, by using a knock-in system coupled with ChIP–seq, we first achieve the high resolution mapping of two H1 variants on a genome-wide scale in mouse ESCs. Our study reveals the correlations of this underexplored histone family with other epigenetic marks and genome attributes. Surprisingly, we identify a dramatic enrichment of H1d and H1c at major satellite sequences. H10, mapped using an overexpressing ESC line, shows similar features at active promoters but differential binding at repetitive sequences compared with H1d and H1c. Furthermore, using mutant ESCs that are deficient for multiple H1 variants, we demonstrate the role of H1 in chromocenter clustering and transcriptional repression of major satellites. Thus, these results connect this important repressive mark with the well understood ESC epigenome and identify novel functions of H1 in mammalian genome organization.
Collapse
Affiliation(s)
- Kaixiang Cao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nathalie Lailler
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yunzhe Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ashwath Kumar
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Karan Uppal
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Zheng Liu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Eva K. Lee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hongwei Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Magdalena Medrzycki
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Po-Yi Ho
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Guy P. Cooper
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Xiao Dong
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Eric E. Bouhassira
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
239
|
Yuan GC. Prediction of Epigenetic Target Sites by Using Genomic DNA Sequence. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epigenetic regulation provides an extra layer of gene control in addition to the genomic sequence and is critical for the maintenance of cell-type specific gene expression programs. Significant changes of epigenetic patterns have been linked to developmental stages, environmental exposure, ageing, and diet. However, the regulatory mechanisms for epigenetic recruitment, maintenance, and switch are still poorly understood. Computational biology provides tools to deeply uncover hidden connections and these tools have played a major role in shaping the current understanding of gene regulation, but its application in epigenetics is still in the infancy. This chapter reviews some recent developments of computational approaches to predict epigenetic target sites.
Collapse
Affiliation(s)
- Guo-Cheng Yuan
- Harvard School of Public Health, USA & Dana-Farber Cancer Institute, USA
| |
Collapse
|
240
|
Zheng H, Chen L, Pledger WJ, Fang J, Chen J. p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression. Oncogene 2013; 33:734-44. [PMID: 23376847 PMCID: PMC3912226 DOI: 10.1038/onc.2013.6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/12/2012] [Accepted: 12/09/2012] [Indexed: 12/26/2022]
Abstract
Constitutive heterochromatin is important for maintaining chromosome stability but also delays the repair of DNA double strand breaks (DSB). DSB repair in complex mammalian genomes involves a fast phase (2–6 hrs) where most of the breaks are rapidly repaired, and a slow phase (up to 24 hrs) where the remaining damages in heterochromatin are repaired. We found that p53 deficiency delays the slow phase DNA repair after ionizing irradiation. P53 deficiency prevents down regulation of histone H3K9 trimethylation at pericentric heterochromatin after DNA damage. Moreover, p53 directly induces expression of the H3 K9 demethylase JMJD2b through promoter binding. P53 activation also indirectly down regulates expression of the H3 K9 methytransferase SUV39H1. Depletion of JMJD2b or sustained expression of SUV39H1 delays the repair of heterochromatin DNA and reduces clonogenic survival after ionizing irradiation. The results suggest that by regulating JMJD2b and SUV39H1 expression, p53 not only controls transcription but also promotes heterochromatin relaxation to accelerate a rate-limiting step in the repair of complex genomes.
Collapse
Affiliation(s)
- H Zheng
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - L Chen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - W J Pledger
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - J Fang
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - J Chen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
241
|
High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 2013; 3:567-76. [PMID: 23352666 DOI: 10.1016/j.celrep.2013.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 12/20/2022] Open
Abstract
We describe the use of a unique DNA-modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5-hydroxymethylcytosine (5hmC) at low-occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follow the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the monomethylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or demethylation intermediate, whereas others may suggest a locally accessible chromosomal environment for the TET enzymatic apparatus.
Collapse
|
242
|
Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events. J Nutr Biochem 2013; 24:1446-52. [PMID: 23337344 DOI: 10.1016/j.jnutbio.2012.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/27/2012] [Accepted: 12/06/2012] [Indexed: 01/16/2023]
Abstract
Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to histones H3 and H4, thereby creating rare histone biotinylation marks in the epigenome. These marks co-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins contain a GGGG(K/R)G(I/M)R motif. This motif, with minor variations, is present in the histone-lysine N-methyltransferase EHMT1. Physical interactions between HCS and the N-terminal, ankyrin and SET domains in EHMT1 were confirmed using yeast-two-hybrid assays, limited proteolysis assays and co-immunoprecipitation. The interactions were stronger between HCS and the N-terminus in EHMT1 compared with the ankyrin and SET domains, consistent with the localization of the HCS-binding motif in the EHMT1 N-terminus. HCS has the catalytic activity to biotinylate K161 within the binding motif in EHMT1. Mutation of K161 weakened the physical interaction between EHMT1 and HCS, but it is unknown whether this effect was caused by loss of biotinylation or loss of the motif. Importantly, HCS knockdown decreased the abundance of H3K9me marks in repeats, suggesting that HCS plays a role in creating histone methylation marks in these loci. We conclude that physical interactions between HCS and EHMT1 mediate epigenomic synergies between biotinylation and methylation events.
Collapse
|
243
|
Basile V, Belluti S, Ferrari E, Gozzoli C, Ganassi S, Quaglino D, Saladini M, Imbriano C. bis-Dehydroxy-Curcumin triggers mitochondrial-associated cell death in human colon cancer cells through ER-stress induced autophagy. PLoS One 2013; 8:e53664. [PMID: 23326480 PMCID: PMC3543386 DOI: 10.1371/journal.pone.0053664] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/03/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways. METHODOLOGY/PRINCIPAL FINDINGS In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death. CONCLUSION/SIGNIFICANCE Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 183, Modena, Italy
| | - Chiara Gozzoli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Sonia Ganassi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Daniela Quaglino
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Monica Saladini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 183, Modena, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, Modena, Italy
| |
Collapse
|
244
|
Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:215-32. [PMID: 22956504 PMCID: PMC4281087 DOI: 10.1007/978-1-4419-9967-2_11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumorigenesis, a complex and multifactorial progressive process of transformation of normal cells into malignant cells, is characterized by the accumulation of multiple cancer-specific heritable phenotypes triggered by the mutational and/or non-mutational (i.e., epigenetic) events. Accumulating evidence suggests that environmental and occupational exposures to natural substances, as well as man-made chemical and physical agents, play a causative role in human cancer. In a broad sense, carcinogenesis may be induced through either genotoxic or non-genotoxic mechanisms; however, both genotoxic and non-genotoxic carcinogens also cause prominent epigenetic changes. This review presents current evidence of the epigenetic alterations induced by various chemical carcinogens, including arsenic, 1,3-butadine, and pharmaceutical and biological agents, and highlights the potential for epigenetic changes to serve as markers for carcinogen exposure and cancer risk assessment.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
245
|
Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:31-65. [PMID: 23582201 DOI: 10.1016/b978-0-12-410523-2.00002-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.
Collapse
|
246
|
Fadloun A, Eid A, Torres-Padilla ME. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr Top Dev Biol 2013; 104:1-45. [PMID: 23587237 DOI: 10.1016/b978-0-12-416027-9.00001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Early embryonic development in mammals is characterized by major changes in the components of the chromatin and its remodeling. The embryonic chromatin and the nuclear organization in the mouse preimplantation embryo display particular features that are dramatically different from somatic cells. These include the highly specific organization of the pericentromeric heterochromatin within the nucleus and the suggested lack of conventional heterochromatin. We postulate that the plasticity of the cells in the early embryo relies on the distinctive heterochromatin features that prevail during early embryogenesis. Here, we review some of these features and discuss recent findings on the mechanisms driving heterochromatin formation after fertilization, in particular, the emerging role of RNA as a regulator of heterochromatic loci also in mammals. Finally, we believe that there are at least three major avenues that should be addressed in the coming years: (i) Is heterochromatin a driving force in development? (ii) Does it have a role in lineage allocation? (iii) How can heterochromatin "regulate" epigenetic reprogramming?
Collapse
Affiliation(s)
- Anas Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, Illkirch, France
| | | | | |
Collapse
|
247
|
Du Y, Murani E, Ponsuksili S, Wimmers K. Flexible and efficient genome tiling design with penalized uniqueness score. BMC Bioinformatics 2012; 13:323. [PMID: 23216884 PMCID: PMC3583072 DOI: 10.1186/1471-2105-13-323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/26/2012] [Indexed: 11/24/2022] Open
Abstract
Background As a powerful tool in whole genome analysis, tiling array has been widely used in the answering of many genomic questions. Now it could also serve as a capture device for the library preparation in the popular high throughput sequencing experiments. Thus, a flexible and efficient tiling array design approach is still needed and could assist in various types and scales of transcriptomic experiment. Results In this paper, we address issues and challenges in designing probes suitable for tiling array applications and targeted sequencing. In particular, we define the penalized uniqueness score, which serves as a controlling criterion to eliminate potential cross-hybridization, and a flexible tiling array design pipeline. Unlike BLAST or simple suffix array based methods, computing and using our uniqueness measurement can be more efficient for large scale design and require less memory. The parameters provided could assist in various types of genomic tiling task. In addition, using both commercial array data and experiment data we show, unlike previously claimed, that palindromic sequence exhibiting relatively lower uniqueness. Conclusions Our proposed penalized uniqueness score could serve as a better indicator for cross hybridization with higher sensitivity and specificity, giving more control of expected array quality. The flexible tiling design algorithm incorporating the penalized uniqueness score was shown to give higher coverage and resolution. The package to calculate the penalized uniqueness score and the described probe selection algorithm are implemented as a Perl program, which is freely available at http://www1.fbn-dummerstorf.de/en/forschung/fbs/fb3/paper/2012-yang-1/OTAD.v1.1.tar.gz.
Collapse
Affiliation(s)
- Yang Du
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | |
Collapse
|
248
|
Kishi Y, Kondo S, Gotoh Y. Transcriptional activation of mouse major satellite regions during neuronal differentiation. Cell Struct Funct 2012; 37:101-10. [PMID: 22976370 DOI: 10.1247/csf.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies have revealed various biological functions for repetitive sequences, which make up about half of the human genome. One such sequence, major satellites, which are tandem repetitive sequences adjacent to the centromere, have been shown to be a kinetochore component that plays a role in the formation and function of the pericentric heterochromatin necessary for mitosis. However, it is unknown whether these regions also play a role in post-mitotic cells. Here, we show that, during neuronal differentiation, the heterochromatin domains that include major satellite regions become both enriched with the active histone modification lysine-4 trimethylation of histone H3, and more sensitive to nuclease, both of which suggest increased activation of this area. Further supporting this notion, we also found that transcription from major satellite regions is significantly increased during neuronal differentiation both in vitro and in vivo. These results together suggest that the structural and transcriptional state of major satellite regions changes dramatically during neuronal differentiation, implying that this region might play a role in differentiating neurons.
Collapse
Affiliation(s)
- Yusuke Kishi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|
249
|
Tanaka Y, Chung L, Park IH. Impact of retrotransposons in pluripotent stem cells. Mol Cells 2012; 34:509-16. [PMID: 23135636 PMCID: PMC3784326 DOI: 10.1007/s10059-012-0242-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/28/2012] [Indexed: 01/29/2023] Open
Abstract
Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to 'jump' across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520,
USA
| | | | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520,
USA
| |
Collapse
|
250
|
Tommasi S, Zheng A, Weninger A, Bates SE, Li XA, Wu X, Hollstein M, Besaratinia A. Mammalian cells acquire epigenetic hallmarks of human cancer during immortalization. Nucleic Acids Res 2012; 41:182-95. [PMID: 23143272 PMCID: PMC3592471 DOI: 10.1093/nar/gks1051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Progression to malignancy requires that cells overcome senescence and switch to an immortal phenotype. Thus, exploring the genetic and epigenetic changes that occur during senescence/immortalization may help elucidate crucial events that lead to cell transformation. In the present study, we have globally profiled DNA methylation in relation to gene expression in primary, senescent and immortalized mouse embryonic fibroblasts. Using a high-resolution genome-wide mapping technique, followed by extensive locus-specific validation assays, we have identified 24 CpG islands that display significantly higher levels of CpG methylation in immortalized cell lines as compared to primary murine fibroblasts. Several of these hypermethylated CpG islands are associated with genes involved in the MEK–ERK pathway, one of the most frequently disrupted pathways in cancer. Approximately half of the hypermethylated targets are developmental regulators, and bind to the repressive Polycomb group (PcG) proteins, often in the context of bivalent chromatin in mouse embryonic stem cells. Because PcG-associated aberrant DNA methylation is a hallmark of several human malignancies, our methylation data suggest that epigenetic reprogramming of pluripotency genes may initiate cell immortalization. Consistent with methylome alterations, global gene expression analysis reveals that the vast majority of genes dysregulated during cell immortalization belongs to gene families that converge into the MEK–ERK pathway. Additionally, several dysregulated members of the MAP kinase network show concomitant hypermethylation of CpG islands. Unlocking alternative epigenetic routes for cell immortalization will be paramount for understanding crucial events leading to cell transformation. Unlike genetic alterations, epigenetic changes are reversible events, and as such, can be amenable to pharmacological interventions, which makes them appealing targets for cancer therapy when genetic approaches prove inadequate.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|