201
|
Jakobsen T, Dahl M, Dimopoulos K, Grønbæk K, Kjems J, Kristensen LS. Genome-Wide Circular RNA Expression Patterns Reflect Resistance to Immunomodulatory Drugs in Multiple Myeloma Cells. Cancers (Basel) 2021; 13:cancers13030365. [PMID: 33498476 PMCID: PMC7930955 DOI: 10.3390/cancers13030365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) constitutes the second most common hematological malignancy and is caused by aberrant plasma cell proliferation in the bone marrow. While recent improvements in the treatment of MM has been observed using immunomodulatory drugs (IMiDs), patients often relapse due to acquired drug resistance and no cure for the disease is currently available. In this report, we profile circular RNA (circRNA) expression patterns in cultured MM cells being sensitive to IMiDs and their resistant counterparts. CircRNAs constitute a large class of non-coding RNA molecules with emerging roles in cancer development and progression, but have not previously been explored in this context. We found that global circRNA expression patterns reflect IMiD sensitivity, but the most downregulated circRNA in IMiD resistant MM cells did not seem to be a direct driver of IMiD resistance. Future studies should investigate other circRNA candidates identified here in the context of IMiD resistance. Abstract Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, may induce significant remissions in multiple myeloma (MM) patients, but relapses are frequently observed and the underlying molecular mechanisms for this are not completely understood. Circular RNAs (circRNAs) constitute an emerging class of non-coding RNAs with important roles in cancer. Here, we profiled genome-wide expression patterns of circRNAs in IMiD-sensitive MM cells and their resistant counterparts as well as in IMiD-resistant cells treated with specific epigenetic drugs alone or in combination. We found that genome-wide circRNA expression patterns reflect IMiD sensitivity and ciRS-7 (also known as CDR1as) was the most downregulated circRNA upon acquired resistance. The depletion of ciRS-7 correlated with increased methylation levels of the promoter CpG island of its host gene, LINC00632. Expression of LINC00632 and ciRS-7 was partly restored by treatment with a combination of an EZH2 inhibitor (EPZ-6438) and a DNA methyl transferase inhibitor (5-azacytidine), which also restores the IMiD sensitivity of the cells. However, knockdown of ciRS-7 did not affect IMiD sensitivity and we found that ciRS-7 also becomes epigenetically silenced after prolonged cell culture without drug-exposure. In conclusion, we found that genome-wide circRNA expression patterns reflect IMiD sensitivity in an in vitro model of acquired resistance.
Collapse
Affiliation(s)
- Theresa Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000 Aarhus, Denmark;
| | - Mette Dahl
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; (M.D.); (K.D.); (K.G.)
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; (M.D.); (K.D.); (K.G.)
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; (M.D.); (K.D.); (K.G.)
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark;
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
| | - Lasse Sommer Kristensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000 Aarhus, Denmark;
- Correspondence:
| |
Collapse
|
202
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
203
|
CircRNA GFRA1 promotes hepatocellular carcinoma progression by modulating the miR-498/NAP1L3 axis. Sci Rep 2021; 11:386. [PMID: 33431945 PMCID: PMC7801409 DOI: 10.1038/s41598-020-79321-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Circular RNAs (circRNAs) play essential roles in tumorigenesis and tumor progression. CircRNA GFRA1 (circGFRA1) was dysregulated in many cancer samples and acted as an independent marker for prediction of survivals in various cancer patients. However, the functions and molecular mechanisms of circGFRA1 in hepatocellular carcinoma (HCC) remain unclear. We collected 62 HCC tissues and normal adjacent tissues to evaluate the expression of circGFRA1 and the relationship between circGFRA1 expression and HCC patients' survival. We carried out a list of characterization experiments to investigate the roles and underling mechanisms of circGFRA1 and miR-498 in HCC progressions. CircGFRA1 was greatly increased in HCC tissues and cells, and the over-expression of circGFRA1 was intimately related with the advanced clinical stage and poor survival of HCC patients. The expression of circGFRA1 was negatively correlated with the expression of miR-498, but a positive correlation was found between circGFRA1 and NAP1L3 expression in HCC tissues. Silencing circGFRA1 inhibited the growth and invasion of hepatocellular carcinoma. Moreover, miR-498 over-expression or NAP1L3 inhibition could abrogate the oncogene role of circGFRA1 in HCC in vivo. Our findings indicated that circGFRA1 contributed to HCC progression by modulating the miR-498/NAP1L3 axis in HCC.
Collapse
|
204
|
Wang X, Xu D, Pei X, Zhang Y, Zhang Y, Gu Y, Li Y. CircSKA3 Modulates FOXM1 to Facilitate Cell Proliferation, Migration, and Invasion While Confine Apoptosis in Medulloblastoma via miR-383-5p. Cancer Manag Res 2021; 12:13415-13426. [PMID: 33408514 PMCID: PMC7779290 DOI: 10.2147/cmar.s272753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor during childhood. Circular RNA (circSKA3) was identified to function as an oncogene in MB. However, the mechanism of circSKA3 in MB remains unclear. Methods The levels of circSKA3, microRNA-383-5p (miR-383-5p), and forkhead box M1 (FOXM1) in MB tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. The protein levels of B-cell lymphoma 2 (Bcl-2), C-Caspase3, and FOXM1 were detected via Western blot assay. Cell cycle was detected by flow cytometry. The migration and invasion abilities were monitored by Transwell assay. The dual-luciferase reporter assay was constructed to verify the interactions between miR-383-5p and circSKA3 or FOXM1. The mice model experiment was carried out to validate the effects of circSKA3 in vivo. Results The levels of circSKA3 and FOXM1 were significantly elevated, while the level of miR-383-5p was notably declined in MB tissues. CircSKA3 was validated to sponge miR-383-5p, and FOXM1 was a candidate target of miR-383-5p. CircSKA3 silencing impeded cell proliferation, migration, and invasion while promoted apoptosis by targeting miR-383-5p in vitro and retarded xenograft tumor growth in vivo. miR-383-5p suppressed cell proliferation, migration, and invasion but promoted apoptosis in MB cells by regulating FOXM1. CircSKA3 depletion decreased FOXM1 expression via miR-383-5p in MB cells. Conclusion CircSKA3 augmented MB progression partly through miR-383-5p/FOXM1 axis.
Collapse
Affiliation(s)
- Xinfang Wang
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Dong Xu
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Xin Pei
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Yingying Zhang
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Yuling Zhang
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Yaxing Gu
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Ying Li
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| |
Collapse
|
205
|
Abstract
Accumulated lines of evidence have revealed that a large number of circular RNAs are produced in transcriptomes from fruit fly to mouse and human. Unlike linear RNAs shaped with 5' cap and 3' tail, circular RNAs are characterized by covalently closed loop structures without open terminals, thus required specific treatments for their identification and validation. Here, we describe a detailed pipeline for the characterization of circular RNAs. It has been successfully applied to the study of circular intronic RNAs (ciRNAs) derived from intron lariats and circular RNAs (circRNAs) produced from back spliced exons in human.
Collapse
|
206
|
Awan FM, Yang BB, Naz A, Hanif A, Ikram A, Obaid A, Malik A, Janjua HA, Ali A, Sharif S. The emerging role and significance of circular RNAs in viral infections and antiviral immune responses: possible implication as theranostic agents. RNA Biol 2021; 18:1-15. [PMID: 32615049 PMCID: PMC7833768 DOI: 10.1080/15476286.2020.1790198] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are ubiquitously expressed, covalently closed rings, produced by pre-mRNA splicing in a reversed order during post-transcriptional processing. Circularity endows 3'-5'-linked circRNAs with stability and resistance to exonucleolytic degradation which raises the question whether circRNAs may be relevant as potential therapeutic targets or agents. High stability in biological systems is the most remarkable property and a major criterion for why circRNAs could be exploited for a range of RNA-centred medical applications. Even though various biological roles and regulatory functions of circRNAs have been reported, their in-depth study is challenging because of their circular structure and sequence-overlap with linear mRNA counterparts. Moreover, little is known about their role in viral infections and in antiviral immune responses. We believe that an in-depth and detailed understanding of circRNA mediated viral protein regulations will increase our knowledge of the biology of these novel molecules. In this review, we aimed to provide a comprehensive basis and overview on the biogenesis, significance and regulatory roles of circRNAs in the context of antiviral immune responses and viral infections including hepatitis C virus infection, hepatitis B virus infection, hepatitis delta virus infection, influenza A virus infection, Epstein-Barr virus infection, kaposi's sarcoma herpesvirus infection, human cytomegalovirus infection, herpes simplex virus infection, human immunodeficiency virus infection, porcine epidemic diarrhoea virus infection, ORF virus infection, avian leukosis virus infection, simian vacuolating virus 40 infection, transmissible gastroenteritis coronavirus infection, and bovine viral diarrhoea virus infection. We have also discussed the critical regulatory role of circRNAs in provoking antiviral immunity, providing evidence for implications as therapeutic agents and as diagnostic markers.
Collapse
Affiliation(s)
- Faryal Mehwish Awan
- Institute of Molecular Biology and Biotechnology (IMBB), the University of Lahore (UOL), Lahore, Pakistan
| | - Burton B. Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), the University of Lahore (UOL), Lahore, Pakistan
| | - Aneeqa Hanif
- Institute of Molecular Biology and Biotechnology (IMBB), the University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), the University of Lahore (UOL), Lahore, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology (IMBB), the University of Lahore (UOL), Lahore, Pakistan
| |
Collapse
|
207
|
Abstract
While the processing of mRNA is essential for gene expression, recent findings have highlighted that RNA processing is systematically altered in cancer. Mutations in RNA splicing factor genes and the shortening of 3' untranslated regions are widely observed. Moreover, evidence is accumulating that other types of RNAs, including circular RNAs, can contribute to tumorigenesis. In this Review, we highlight how altered processing or activity of coding and non-coding RNAs contributes to cancer. We introduce the regulation of gene expression by coding and non-coding RNA and discuss both established roles (microRNAs and long non-coding RNAs) and emerging roles (selective mRNA processing and circular RNAs) for RNAs, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer. The widespread alteration of coding and non-coding RNA demonstrates that altered RNA biogenesis contributes to multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia.
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
208
|
Yue Y, Cui J, Zhao Y, Liu S, Niu W. Circ_101341 Deteriorates the Progression of Clear Cell Renal Cell Carcinoma Through the miR- 411/EGLN3 Axis. Cancer Manag Res 2020; 12:13513-13525. [PMID: 33408523 PMCID: PMC7781030 DOI: 10.2147/cmar.s272287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/25/2020] [Indexed: 01/02/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the main subtypes of renal cell carcinoma, with intense aggressiveness. The involvement of circular RNAs (circRNAs) in human cancers attracts much concern. The intention of this study was to investigate the expression of circ_101341 and explore its function in ccRCC. Materials and Methods The expression of circ_101341, miR-411 and Egl nine homolog 3 (EGLN3) was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Cell migration and invasion were monitored by transwell assay. Xenograft model was established to explore the role of circ_101341 in vivo. The protein levels of E-cadherin (E-cad), N-cadherin (N-cad), matrix metalloprotein-9 (MMP9) and EGLN3 were detected by Western blot. Bioinformatic analysis was conducted using Circinteractome and starBase. The targeted relationship was verified using dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA pull-down assay. Results The expression of circ_101341 was elevated in ccRCC tissues and cells. Functionally, circ_101341 knockdown depleted proliferation, migration and invasion of ccRCC cells in vitro and restricted tumor growth in vivo. Circ_101341 directly targeted miR-411, and miR-411 inhibition revised the inhibitory effects of circ_101341 knockdown on proliferation, migration and invasion in ccRCC cells. Moreover, miR-411 directly bound to EGLN3, and EGLN3 overexpression also rescued the effects of circ_101341 knockdown. Conclusion Circ_101341 functioned as a tumor promoter to strengthen proliferation, migration and invasion by regulating EGLN3 via sponging miR-411, indicating that circ_101341 was a potential diagnostic and therapeutic biomarker of ccRCC.
Collapse
Affiliation(s)
- Yongjun Yue
- Department of Urology, Heji Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, People's Republic of China
| | - Jinsheng Cui
- Department of Urology, Heji Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, People's Republic of China
| | - Yu Zhao
- Department of Ophthalmology, Peace Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, People's Republic of China
| | - Shangying Liu
- Department of Urology, First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Weixing Niu
- Department of Urology, Heji Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, People's Republic of China
| |
Collapse
|
209
|
Wei G, Zhu J, Hu HB, Liu JQ. Circular RNAs: Promising biomarkers for cancer diagnosis and prognosis. Gene 2020; 771:145365. [PMID: 33346098 DOI: 10.1016/j.gene.2020.145365] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs), a group of non-coding RNA characterized by the presence of covalent bonds linking 3' and 5' ends, act as miRNA sponges to participate in the tumorigenesis. Being stable, conserved and cell- or tissue-specific, circRNAs have shown their potentials as molecular markers for cancer. Convenient and noninvasive approaches may be developed based on the roles of circRNAs to diagnose or predict the prognosis of tumors. Although most of the potential mechanisms are not entirely clear, circRNAs have shown a universal and critical role in regulating cellular processes of cancers. This review summarized the classification, formation, characteristics, detection, and biological functions of circRNAs. We proposed the possibility of using circRNAs as biomarkers for cancer diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Guohao Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Sparkfire Scientific Research Group, Nanjing Medical University, Nanjing, China
| | - Jing Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Sparkfire Scientific Research Group, Nanjing Medical University, Nanjing, China
| | - Hai-Bo Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| | - Jia-Qiang Liu
- Department of Oral and CranioMaxillofacial, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
210
|
Xu H, Liu Y, Cheng P, Wang C, Liu Y, Zhou W, Xu Y, Ji G. CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res 2020; 39:283. [PMID: 33317596 PMCID: PMC7735421 DOI: 10.1186/s13046-020-01799-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), important members of the noncoding RNA family, have been recently revealed to play a role in the pathogenic progression of diseases, particularly in the malignant progression of cancer. With the application of high-throughput sequencing technology, a large number of circRNAs have been identified in tumor tissues, and some circRNAs have been demonstrated to act as oncogenes. In this study, we analyzed the circRNA expression profile in colorectal cancer (CRC) tissues and normal adjacent tissues by high-throughput sequencing. We focused on circRNA_0000392, a circRNA with significantly increased expression in CRCtissues, and further investigated its function in the progression of colorectal cancer. METHODS The expression profile of circRNAs in 6 pairs of CRC tissues and normal adjacent tissues was analyzed by RNA sequencing. We verified the identified differentially expressed circRNAs in additional samples by qRT-PCR and selected circRNA_0000392 to evaluate its associations with clinicopathological features. Then, we knocked down circRNA_0000392 in CRC cells and investigated the in vitro and in vivo effects using functional experiments. Dual luciferase and RNA pull-down assays were performed to further explore the downstream potential molecular mechanisms. RESULTS CircRNA_0000392 was significantly upregulated in CRC compared with normal adjacent tissues and cell lines. The expression level of circRNA_0000392 was positively correlated with the malignant progression of CRC. Functional studies revealed that reducing the expression of circRNA_0000392 could inhibit the proliferation and invasion of CRC both in vitro and in vivo. Mechanistically, circRNA_0000392 could act as a sponge of miR-193a-5p and regulate the expression of PIK3R3, affecting the activation of the AKT-mTOR pathway in CRC cells. CONCLUSIONS CircRNA_0000392 functions as an oncogene through the miR-193a-5p/PIK3R3/Akt axis in CRC cells, suggesting that circRNA_0000392 is a potential therapeutic target for the treatment of colorectal cancer and a predictive marker for CRC patients.
Collapse
Affiliation(s)
- Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peiqiu Cheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunyan Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yang Liu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
211
|
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 2020; 19:172. [PMID: 33317550 PMCID: PMC7734744 DOI: 10.1186/s12943-020-01286-3] [Citation(s) in RCA: 756] [Impact Index Per Article: 151.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/20/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (CircRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across species ranging from viruses to mammals. Important advances have been made in the biogenesis, regulation, localization, degradation and modification of circRNAs. CircRNAs exert biological functions by acting as transcriptional regulators, microRNA (miR) sponges and protein templates. Moreover, emerging evidence has revealed that a group of circRNAs can serve as protein decoys, scaffolds and recruiters. However, the existing research on circRNA-protein interactions is quite limited. Hence, in this review, we briefly summarize recent progress in the metabolism and functions of circRNAs and elaborately discuss the patterns of circRNA-protein interactions, including altering interactions between proteins, tethering or sequestering proteins, recruiting proteins to chromatin, forming circRNA-protein-mRNA ternary complexes and translocating or redistributing proteins. Many discoveries have revealed that circRNAs have unique expression signatures and play crucial roles in a variety of diseases, enabling them to potentially act as diagnostic biomarkers and therapeutic targets. This review systematically evaluates the roles and mechanisms of circRNAs, with the hope of advancing translational medicine involving circRNAs.
Collapse
Affiliation(s)
- Wei-Yi Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ze-Rong Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jia Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| |
Collapse
|
212
|
Geng X, Zhang Y, Li Q, Xi W, Yu W, Shi L, Lin X, Sun S, Wang H. Screening and functional prediction of differentially expressed circular RNAs in human glioma of different grades. Aging (Albany NY) 2020; 13:1989-2014. [PMID: 33323543 PMCID: PMC7880344 DOI: 10.18632/aging.202192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) have a critical regulatory function in human glioma. However, novel circRNAs related to different pathological grades of glioma and their crucial potential function are worth screening and prediction. CircRNA expression profiling was performed for 6 paired high- and low-grade glioma tissues and 5 adjacent normal brain tissues through next-generation sequencing. Quantitative real-time PCR (qRT-PCR) was conducted to validate circRNA expression. Bioinformatics analysis was performed, and circRNA-miRNA-mRNA networks were constructed. The expression and survival data of miRNAs and target genes were examined by GEPIA, Chinese Glioma Genome Atlas (CGGA), ONCOMINE, and cBioPortal databases. The RNA binding proteins (RBPs), open reading frames (ORFs) and N6-methyladenosine (m6A) modifications of the identified circRNAs were also predicted. Through multilevel research screening, 4 circRNAs (hsa_circ_0000915, hsa_circ_0127664, hsa_circ_0008362, and hsa_circ_0001467) were associated with glioma of different pathological grades and could be preferred candidates for subsequent functional analysis. Therefore, circRNAs are associated with the different pathological grades of glioma and reveal their potential critical regulatory function. CircRNAs might provide vital molecular biomarkers and potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| | - Yuhao Zhang
- School of Clinical Medicine, Hebei University, Baoding 071000, PR China.,Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China
| | - Wang Xi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Wentao Yu
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China
| | - Liang Shi
- Endoscope Room, Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061001, PR China
| | - Xiaomeng Lin
- Departments of Breast Surgery, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China.,School of Clinical Medicine, Hebei University, Baoding 071000, PR China
| |
Collapse
|
213
|
hsa_circRNA_000166 Facilitated Cell Growth and Limited Apoptosis through Targeting miR-326/LASP1 Axis in Colorectal Cancer. Gastroenterol Res Pract 2020; 2020:8834359. [PMID: 33376485 PMCID: PMC7746441 DOI: 10.1155/2020/8834359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) belong to noncoding RNAs and are widely expressed in a variety of cell species, including cancers. However, the function and mechanism of circRNAs in colorectal cancer (CRC) has not been well investigated. Here, we firstly downloaded and analyzed the circRNA expression profile of CRC from the Gene Expression Omnibus (GEO) database. And we identified 181 differentially expressed circRNAs between 10 pairs of CRC and adjacent normal tissues. Interestingly, we observed that the expression of hsa_circRNA_000166 was the top increased among these circRNAs. Then, we confirmed an upregulation of hsa_circRNA_000166 in CRC tissues and cell lines and observed that higher expression of hsa_circRNA_000166 was associated with poor 5-year survival rate of patients with CRC. Next, we investigated the function of hsa_circRNA_000166 during CRC progression by knocking down its expression. Cell growth and apoptosis assay revealed that hsa_circRNA_000166 regulated the cell growth and apoptosis in CRC cell lines. Furthermore, we identified that hsa_circRNA_000166 targeted the miR-326/LASP1 pathway using bioinformatics analysis and luciferase reporter assay. Finally, suppression of miR-326 or overexpression of LASP1 could sufficiently rescue the aberrant cell growth and apoptosis in CRC cell lines. Taken together, our results indicated that downregulation of hsa_circRNA_000166 inhibited the cell growth and facilitated apoptosis during CRC development by sponging the miR-326/LASP1 pathway.
Collapse
|
214
|
Zhu Q, Zhang X, Zai HY, Jiang W, Zhang KJ, He YQ, Hu Y. circSLC8A1 sponges miR-671 to regulate breast cancer tumorigenesis via PTEN/PI3k/Akt pathway. Genomics 2020; 113:398-410. [PMID: 33301895 DOI: 10.1016/j.ygeno.2020.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/11/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequently diagnosed and the leading cause of cancer-related deaths in women worldwide. However, the role of circSLC8A1 in breast cancer remains elusive. Herein, a cohort of 77 breast tumors and paired adjacent normal mammary tissues were collected. We demonstrated that circSLC8A1 was significantly down-regulated in breast cancer tissues and cell lines, of which expression was negatively correlated with clinical severity and dismal prognosis. Overexpression of circSLC8A1 suppressed cell proliferation, migration and invasion in vitro, and inhibited tumor growth in vivo. CircSLC8A1 directly targeted miR-671 to execute tumor suppressive activities via regulating PI3k/Akt signaling. Krüppel-like factor 16 (KLF16), a transcriptional activator of PTEN, was identified as a target of miR-671. Furthermore, circSLC8A1 could sponge miR-671 to suppress breast tumor growth via PTEN/PI3k/Akt signaling in vivo. In summary, circSLC8A1/miR-671 regulates breast cancer progression through PTEN/PI3k/Akt signaling, which may provide efficient therapeutic target for this devastating cancer.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Hong-Yan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Ke-Jing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China; Clinical Research Center For Breast Cancer In Hunan Province, Changsha 410008, Hunan Province, PR China
| | - Yu-Qiong He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China; Clinical Research Center For Breast Cancer In Hunan Province, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
215
|
Li W, Liu JQ, Chen M, Xu J, Zhu D. Circular RNA in cancer development and immune regulation. J Cell Mol Med 2020; 26:1785-1798. [PMID: 33277969 PMCID: PMC8918416 DOI: 10.1111/jcmm.16102] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single‐stranded RNAs with closed loop structures formed by covalent bonds of head and tail. Exploration of circRNAs is continually increasing; however, their functional relevance largely remains to be elucidated. In general, they are stable, abundant, conserved and expressed in tissue‐specific manner. These distinct properties and their diverse cellular actions indicate that circRNAs modulate transcription and translation, and may even function as translation templates. Growing evidence reveals that circRNAs contribute to various physiological and pathological processes, including the initiation and progression of cancer. In this review, we present the current knowledge about circRNAs in cancer development, as well as their potential for use as biomarkers and even therapeutic targets. CircRNA’s role in immune regulation and antitumour immunotherapy is also discussed. In addition, possible challenges in antitumour therapy are raised, and current progress and future perspectives are provided.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Taizhou, China.,Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Jia-Qiang Liu
- Department of Oral and Cranio-Maxillofacial, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Taizhou, China.,Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Di Zhu
- School of Pharmacy and Shanghai Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
216
|
Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin Cancer Biol 2020; 83:36-56. [PMID: 33242578 DOI: 10.1016/j.semcancer.2020.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Understanding of cancer with the help of ever-expanding cutting edge technological tools and bioinformatics is revolutionizing modern cancer research by broadening the space of discovery window of various genomic and epigenomic processes. Genomics data integrated with multi-omics layering have advanced cancer research. Uncovering such layers of genetic mutations/modifications, epigenetic regulation and their role in the complex pathophysiology of cancer progression could lead to novel therapeutic interventions. Although a plethora of literature is available in public domain defining the role of various tumor driver gene mutations, understanding of epigenetic regulation of cancer is still emerging. This review focuses on epigenetic regulation association with the pathogenesis of non-melanoma skin cancer (NMSC). NMSC has higher prevalence in Caucasian populations compared to other races. Due to lack of proper reporting to cancer registries, the incidence rates for NMSC worldwide cannot be accurately estimated. However, this is the most common neoplasm in humans, and millions of new cases per year are reported in the United States alone. In organ transplant recipients, the incidence of NMSC particularly of squamous cell carcinoma (SCC) is very high and these SCCs frequently become metastatic and lethal. Understanding of solar ultraviolet (UV) light-induced damage and impaired DNA repair process leading to DNA mutations and nuclear instability provide an insight into the pathogenesis of metastatic neoplasm. This review discusses the recent advances in the field of epigenetics of NMSCs. Particularly, the role of DNA methylation, histone hyperacetylation and non-coding RNA such as long-chain noncoding (lnc) RNAs, circular RNAs and miRNA in the disease progression are summarized.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
217
|
Liu Y, Chang Y, Cai Y. Circ_0067835 sponges miR-324-5p to induce HMGA1 expression in endometrial carcinoma cells. J Cell Mol Med 2020; 24:13927-13937. [PMID: 33169939 PMCID: PMC7754019 DOI: 10.1111/jcmm.15996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Endometrial cancer is a common gynaecological malignant tumour among women across the world. Circular RNAs (circRNAs) are a novel kind of non‐coding RNAs, and they can play a crucial role in multiple cancers. Nevertheless, the mechanisms of circRNAs in regulating gene expression in endometrial cancer are still unclear. Here, our work sought to focus on the role that circ_0067835 exert in progression and development of endometrial cancer cells. We observed circ_0067835 was markedly elevated in endometrial cancer. Then, changes in endometrial cancer cell (RL95‐2 and HEC‐1B) function were determined after circ_0067835 knockdown. Loss‐of‐functional assays revealed that circ_0067835 down‐regulation significantly repressed RL95‐1 and HEC‐1B cell proliferation, migration and invasion. Bioinformatics analysis, luciferase reporter experiment and RNA pull‐down assay were employed to predict and validate circ_0067835 can bind to miR‐324‐5p. Increase in miR‐324‐5p remarkably depressed the proliferation, migration and invasion of endometrial cancer cells via inhibiting high mobility group A1 (HMGA1). HMGA1 is identified as a vital prognostic biomarker in endometrial cancer. Currently, we reported circ_0067835 was positively correlated with HMGA1 in endometrial cancer. We implied that circ_0067835 was capable of sponging miR‐324‐5p and inducing its downstream target HMGA1 in vitro and in vivo. In conclusion, circ_0067835 can compete with miR‐324‐5p, resulting in HMGA1 up‐regulation, and therefore induce the development of endometrial cancer.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
218
|
Dong K, He X, Su H, Fulton DJR, Zhou J. Genomic analysis of circular RNAs in heart. BMC Med Genomics 2020; 13:167. [PMID: 33160353 PMCID: PMC7648966 DOI: 10.1186/s12920-020-00817-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heart failure is a leading cause of human morbidity and mortality. Circular RNAs (circRNAs) are a newly discovered class of RNA that have been found to have important physiological and pathological roles. In the current study, we de novo analyzed existing whole transcriptome data from 5 normal and 5 dilated cardiomyopathy (DCM) human heart samples and compared the results with circRNAs that have been previously reported in human, mouse and rat hearts. RESULTS Our analysis identifies a list of cardiac circRNAs that are reliably detected in multiple studies. We have also defined the top 30 most abundant circRNAs in healthy human hearts which include some with previously unrecognized cardiac roles such as circHIPK3_11 and circTULP4_1. We further found that many circRNAs are dysregulated in DCM, particularly transcripts originating from DCM-related gene loci, such as TTN and RYR2. In addition, we predict the potential of cardiac circRNAs to sponge miRNAs that have reported roles in heart disease. We found that circALMS1_6 has the highest potential to bind miR-133, a microRNA that can regulate cardiac remodeling. Interestingly, we detected a novel class of circRNAs, referred to as read-though (rt)-circRNAs which are produced from exons of two different neighboring genes. Specifically, rt-circRNAs from SCAF8 and TIAM2 were observed to be dysregulated in DCM and these rt-circRNAs have the potential to sponge multiple heart disease-related miRNAs. CONCLUSIONS In summary, this study provides a valuable resource for exploring the function of circRNAs in human heart disease and establishes a functional paradigm for identifying novel circRNAs in other tissues.
Collapse
Affiliation(s)
- Kunzhe Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Xiangqin He
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Huabo Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
219
|
CircPlant: An Integrated Tool for circRNA Detection and Functional Prediction in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:352-358. [PMID: 33157302 PMCID: PMC7801249 DOI: 10.1016/j.gpb.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Abstract
The recent discovery of circular RNAs (circRNAs) and characterization of their functional roles have opened a new avenue for understanding the biology of genomes. circRNAs have been implicated to play important roles in a variety of biological processes, but their precise functions remain largely elusive. Currently, a few approaches are available for novel circRNA prediction, but almost all these methods are intended for animal genomes. Considering that the major differences between the organization of plant and mammal genomes cannot be neglected, a plant-specific method is needed to enhance the validity of plant circRNA identification. In this study, we present CircPlant, an integrated tool for the exploration of plant circRNAs, potentially acting as competing endogenous RNAs (ceRNAs), and their potential functions. With the incorporation of several unique plant-specific criteria, CircPlant can accurately detect plant circRNAs from high-throughput RNA-seq data. Based on comparison tests on simulated and real RNA-seq datasets from Arabidopsis thaliana and Oryza sativa, we show that CircPlant outperforms all evaluated competing tools in both accuracy and efficiency. CircPlant is freely available at http://bis.zju.edu.cn/circplant.
Collapse
|
220
|
Song R, Li Y, Hao W, Yang L, Chen B, Zhao Y, Sun B, Xu F. Circular RNA MTO1 inhibits gastric cancer progression by elevating PAWR via sponging miR-199a-3p. Cell Cycle 2020; 19:3127-3139. [PMID: 33089757 PMCID: PMC7714510 DOI: 10.1080/15384101.2020.1834301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 02/03/2023] Open
Abstract
The effect of circular RNA MTO1 (circMTO1) signaling on the expression of miR-199a-3p in gastric carcinoma cells, and its effect on proliferation and apoptosis of gastric cancer cells were investigated in this study. RT-qPCR was performed to detect the expression levels of circMTO1 and miR-199a-3p in the cell lines and tissues of gastric cancer. The effect of circMTO1 and miR-199a-3p on the growth and apoptosis of tumor cells was detected by BrdU incorporation and Annexin V/PI staining. Target gene prediction and screening, and luciferase reporter assays were performed to validate downstream interested genes of circMTO1 and miR-199a-3p. The expression levels of miR-199a-3p target gene PAWR (named as PRKC apoptosis WT1 Regulator Protein) was measured by RT-qPCR and Western blotting. Tumor changes in mice were detected by transfecting circMTO1. The expression of circMTO1 was significantly downregulated in the cell lines and tissues of gastric cancer, and low expression levels of circMTO1 were closely associated with poor prognosis. Overexpression of circMTO1 inhibited tumor growth, enhanced apoptosis rate and decreased cell invasion and migration. There was a significant negative relationship between the expression levels of circMTO1 and miR-199a-3p in gastric cancer tissues. Inhibiting miR-199a-3p expression or overexpression of PAWR could decrease the promotive effects of knockdown of circMTO1 on the progression of gastric cancer, and a positive relationship was established between the expression of circMTO1 and PAWR. circMTO1 can regulate the growth of gastric cancer cells by regulating miR-199a-3p/PAWR axis, thus inhibiting the development and progression of gastric cancer. Abbreviation GC: Gastric cancer; circ RNA: Circular RNA; MTO1: mitochondrial translation optimized 1 homolog.
Collapse
Affiliation(s)
- Ruifeng Song
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Weiwei Hao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Lei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Yingying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Binghua Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| |
Collapse
|
221
|
Shi Y, He R, Yang Y, He Y, Shao K, Zhan L, Wei B. Circular RNAs: Novel biomarkers for cervical, ovarian and endometrial cancer (Review). Oncol Rep 2020; 44:1787-1798. [PMID: 33000238 PMCID: PMC7551080 DOI: 10.3892/or.2020.7780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical, ovarian and endometrial cancer are the three most common types of malignant tumor and the leading causes of cancer‑associated death in women. Tumor debulking surgery followed by platinum and paclitaxel chemotherapy is the current treatment regime of choice. However, as a result of late diagnosis and chemoresistance, the survival rates of patients with advanced gynecological cancers remains unsatisfactory. Circular RNAs (circRNAs) are stable noncoding RNAs that are present in a wide variety of tissue and cell types. With the enhancement of RNA sequencing methods, increasing numbers of circRNAs have been identified, and their functions are gradually being revealed. In recent years, circRNAs have received increasing attention for their regulatory roles in cervical, ovarian and endometrial cancer. The aim of the present review was to summarize the possible mechanisms of recently identified circRNAs; we hypothesize that a novel diagnostic and therapeutic biomarker may be identified to prolong the survival time of patients with gynecological malignancies.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Runhua He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu Yang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Kang Shao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
222
|
Xin R, Qu D, Xu H, Chen D. circ_001504 promotes the development of renal cell carcinoma by sponging microRNA-149 to increase NUCB2. Cancer Gene Ther 2020; 28:667-678. [PMID: 33110207 DOI: 10.1038/s41417-020-00247-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
Renal cell carcinoma (RCC) accounts for over 90% of primary renal tumors in adults. Although treatment approaches have steadily improved over the years, the prognosis outcome remains poor. With the aim of developing novel targets for RCC treatment, we explored the role of the circular RNA (circRNA) circ_001504 in the progression of RCC. We initially detected the expression of circ_001504 and microRNA (miRNA)-149 in RCC tissues and cells. RT-qPCR results showed that circ_001504 was highly expressed in RCC tissues, whereas miR-149 was poorly expressed. Interestingly, downregulation of circ_001504 suppressed malignant phenotypes in RCC cells, and upregulation of miR-149 exerted a similar effect. Bioinformatics analysis suggested potential binding sites between circ_001504 and miR-149, verified by a dual-luciferase reporter gene assay. Next, we identified nucleobindin 2 (NUCB2), a calcium-binding protein, as a target gene of miR-149. Furthermore, our data suggested that circ_001504 might serve as a competing endogenous RNA of miR-149, serving to elevate the expression of NUCB2. The silencing of circ_001504 resulted in decreased NUCB2 expression, which could be reversed by miR-149 inhibition. In addition, in vivo experiments demonstrated that circ_001504 depletion could suppress tumor growth in an established mouse RCC model. Collectively, reduced expression of circ_001504 lowered NUCB2 expression by sponging miR-149, thereby attenuating RCC progression, providing insight into circ_001504/miR-149/NUCB2 feedback loop into RCC treatment.
Collapse
Affiliation(s)
- Rui Xin
- Jilin University, 130000, Changchun, P. R. China.,Department of Radiology, the Second Hospital of Jilin University, 130000, Changchun, P. R. China
| | - Danhua Qu
- Jilin University, 130000, Changchun, P. R. China.,Department of Respiratory and Critical Diseases, the Second Hospital of Jilin University, 130000, Changchun, P. R. China
| | - Huiying Xu
- Jilin University, 130000, Changchun, P. R. China.,Department of Ultrasound, the First Hospital of Jilin University, 130000, Changchun, P. R. China
| | - Dawei Chen
- Jilin University, 130000, Changchun, P. R. China. .,Department of Radiation Protection, School of Public Health, Jilin University, 130000, Changchun, P. R. China.
| |
Collapse
|
223
|
Laschos K, Lampropoulou DI, Aravantinos G, Piperis M, Filippou D, Theodoropoulos G, Gazouli M. Exosomal noncoding RNAs in cholangiocarcinoma: Laboratory noise or hope? World J Gastrointest Surg 2020; 12:407-424. [PMID: 33194090 PMCID: PMC7642347 DOI: 10.4240/wjgs.v12.i10.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, extracellular vesicles and particularly exosomes have gained a lot of research interest due to their unique roles in several biological processes. Noncoding RNAs (microRNAs, long noncoding RNAs and circular RNAs) represent a class of functional RNA with distinct regulatory roles in tumorigenesis and cancer progression. Cholangiocarcinoma is a rare but highly aggressive type of malignancy that is very challenging to diagnose, especially in early stages; surgical resection still represents the sole potentially curative treatment option. Hence, there is an urgent need for the discovery of novel diagnostic and prognostic biomarkers. Hereby, we provide a comprehensive review of the most recent discoveries that focus on exosomal noncoding RNAs in cholangio-carcinoma with the aim to identify new molecular players that could be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Konstantinos Laschos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Dimitra Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Maria Piperis
- Radiation Therapy Department, Iatropolis, Athens 15231, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Theodoropoulos
- 1st Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
224
|
Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol Ther 2020; 220:107715. [PMID: 33141028 DOI: 10.1016/j.pharmthera.2020.107715] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs characterized by a covalently closed-loop structure generated through a special type of alternative splicing termed back-splicing. Currently, an increasing body of evidence has demonstrated that 1) majority of circRNAs are evolutionarily conserved across species, stable, and resistant to RNase R degradation, and often exhibit cell-specific, and tissue-specific/developmental-stage-specific expression and can be largely independent of the expression levels of the linear host gene-encoded linear RNAs; 2) the biogenesis of circRNAs via back-splicing is different from the canonical splicing of linear RNAs; 3) circRNA biogenesis is regulated by specific cis-acting elements and trans-acting factors; 4) circRNAs regulate biological and pathological processes by sponging miRNAs, binding to RNA-binding protein (RBP), regulators of splicing and transcription, modifiers of parental gene expression, and regulators of protein translation or being translated into peptides in various diseases; 5) circRNAs have been identified for their enrichment and stability in exosomes and detected in body fluids such as human blood, saliva, and cerebrospinal fluids, suggesting that these exo-circRNAs have potential applications as disease biomarkers and novel therapeutic targets; 6) several circRNAs are regulated by oxidative stress and mediate reactive oxygen species (ROS) production as well as promote ROS-induced cellular death, cell apoptosis, and inflammation; 7) circRNAs have also emerged as important regulators in atherosclerotic cardiovascular disease, metabolic disease, and cancers; 8) the potential mechanisms of several circRNAs have been described in diseases, hinting at their potential applications as novel therapeutic targets. In this highlight, we summarized the current understandings of the biogenesis and functions of circRNAs and their roles in ROS regulation and vascular inflammation-associated with cardiovascular and metabolic disease. (Word count: 272).
Collapse
|
225
|
Rochow H, Jung M, Weickmann S, Ralla B, Stephan C, Elezkurtaj S, Kilic E, Zhao Z, Jung K, Fendler A, Franz A. Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors. Int J Mol Sci 2020; 21:ijms21217812. [PMID: 33105568 PMCID: PMC7672590 DOI: 10.3390/ijms21217812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
As new biomarkers, circular RNAs (circRNAs) have been largely unexplored in prostate cancer (PCa). Using an integrative approach, we aimed to evaluate the potential of circRNAs and their linear transcripts (linRNAs) to act as (i) diagnostic biomarkers for differentiation between normal and tumor tissue and (ii) prognostic biomarkers for the prediction of biochemical recurrence (BCR) after radical prostatectomy. In a first step, eight circRNAs (circATXN10, circCRIM1, circCSNK1G3, circGUCY1A2, circLPP, circNEAT1, circRHOBTB3, and circSTIL) were identified as differentially expressed via a genome-wide circRNA-based microarray analysis of six PCa samples. Additional bioinformatics and literature data were applied for this selection process. In total, 115 malignant PCa and 79 adjacent normal tissue samples were examined using robust RT-qPCR assays specifically established for the circRNAs and their linear counterparts. Their diagnostic and prognostic potential was evaluated using receiver operating characteristic curves, Cox regressions, decision curve analyses, and C-statistic calculations of prognostic indices. The combination of circATXN10 and linSTIL showed a high discriminative ability between malignant and adjacent normal tissue PCa. The combination of linGUCY1A2, linNEAT1, and linSTIL proved to be the best predictive RNA-signature for BCR. The combination of this RNA signature with five established reference models based on only clinicopathological factors resulted in an improved predictive accuracy for BCR in these models. This is an encouraging study for PCa to evaluate circRNAs and their linRNAs in an integrative approach, and the results showed their clinical potential in combination with standard clinicopathological variables.
Collapse
Affiliation(s)
- Hannah Rochow
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Monika Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Sabine Weickmann
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Bernhard Ralla
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Carsten Stephan
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.E.); (E.K.)
| | - Ergin Kilic
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.E.); (E.K.)
- Institute of Pathology, Hospital Leverkusen, 51375 Leverkusen, Germany
| | - Zhongwei Zhao
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Klaus Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-450-515041
| | - Annika Fendler
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Cancer Research Program, 13125 Berlin, Germany
- Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonia Franz
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| |
Collapse
|
226
|
seekCRIT: Detecting and characterizing differentially expressed circular RNAs using high-throughput sequencing data. PLoS Comput Biol 2020; 16:e1008338. [PMID: 33079938 PMCID: PMC7598922 DOI: 10.1371/journal.pcbi.1008338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, researchers have discovered a special form of alternative splicing that produces a circular form of RNA. Although these circular RNAs (circRNAs) have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of current studies has been on the tissue-specific circRNAs that exist only in one tissue but not in other tissues or on the disease-specific circRNAs that exist in certain disease conditions, such as cancer, but not under normal conditions. This approach was conducted in the relative absence of methods that analyze a group of common circRNAs that exist in both conditions, but are more abundant in one condition relative to another (differentially expressed). Studies of differentially expressed circRNAs (DECs) between two conditions would serve as a significant first step in filling this void. Here, we introduce a novel computational tool, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the DECs between two conditions from high-throughput sequencing data. Using rat retina RNA-seq data from ischemic and normal conditions, we show that over 74% of identifiable circRNAs are expressed in both conditions and over 40 circRNAs are differentially expressed between two conditions. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient approach to detect DECs using rRNA depleted RNA-seq data. seekCRIT is freely downloadable at https://github.com/UofLBioinformatics/seekCRIT. The source code is licensed under the MIT License. seekCRIT is developed and tested on Linux CentOS-7. The focus of circRNA studies has been on condition-specific circRNAs, however, there are situations in which circRNAs exist in both conditions with different abundance. Here, we introduce a new and robust analytic software, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the differentially expressed circRNAs (DECs) between two conditions from high-throughput sequencing data. seekCRIT provides a straightforward normalized quantification of circRNAs and statistical measures by adapting a junction-count-based estimation approach. Using publicly available ribosomal RNA depleted RNA-seq data and our own rat retina RNA-seq data, we show that seekCRIT can efficiently detect circRNAs and identify DECs. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient software to detect DECs using rRNA depleted RNA-seq data.
Collapse
|
227
|
Papatsirou M, Artemaki PI, Scorilas A, Kontos CK. The role of circular RNAs in therapy resistance of patients with solid tumors. Per Med 2020; 17:469-490. [PMID: 33052780 DOI: 10.2217/pme-2020-0103] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA molecules forming a covalently closed, continuous structure, lacking 5'-3' polarity and polyadenylated tails. Recent advances in high-throughput sequencing technologies have revealed that these molecules are abundant, resistant to degradation and often expressed in a tissue- or developmental stage-specific manner. circRNAs are produced by back-splicing circularization of primary transcripts and exhibit a variety of functions, including regulation of transcription, translation and cellular localization. This review focuses on differentially expressed circRNAs conferring therapy resistance or sensitivity of solid tumors, such as carcinomas, sarcomas and lymphomas. Deregulated circRNAs can participate in the development of resistance to treatment by modulating regulatory pathways and cellular processes, including the mitogen-activated protein kinase pathway, epithelial-mesenchymal transition, apoptosis and autophagy.
Collapse
Affiliation(s)
- Maria Papatsirou
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Andreas Scorilas
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Christos K Kontos
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| |
Collapse
|
228
|
Zhu H, Du F, Cao C. Restoration of circPSMC3 sensitizes gefitinib-resistant esophageal squamous cell carcinoma cells to gefitinib by regulating miR-10a-5p/PTEN axis. Cell Biol Int 2020; 45:107-116. [PMID: 32997362 DOI: 10.1002/cbin.11473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) has been shown to play an important role in the progression of various cancers. However, the function and underlying mechanisms of circRNAs affecting chemotherapy resistance in esophageal squamous cell carcinoma (ESCC) remain largely unknown. In this study, we used gefitinib-resistant (GR) ESCC cells to investigate the function of circPSMC3 and clarify the underlying mechanism in chemotherapy resistance in ESCC. The results suggested that circPSMC3 expression was downregulated, but miR-10a-5p was upregulated in ESCC tissues and cells, as well as in GR ESCC cells. CircPSMC3 overexpression increased the sensitivity of ESCC cells to gefitinib, as indicated by reduced half maximal inhibitory concentration value, increased apoptosis rate and cleaved caspase-3 protein expression. CircPSMC3 directly interacted with miR-10a-5p and inhibited the expression of miR-10a-5p. Phosphatase and tensin homolog (PTEN) was a direct target of miR-10a-5p and circPSMC3 promoted PTEN expression via decreasing miR-10a-5p level. Moreover, the effect of circPSMC3 on resistance of GR ESCC cells to gefitinib was remarkably reduced by restoration of miR-10a-5p and downregultion of PTEN. Taken together, these observations suggested that upregulation of circPSMC3 overcame resistance of GR ESCC cells to gefitinib by modulating the miR-10a-5p/PTEN axis, which provide a new therapeutic strategy for overcoming gefitinib resistance in ESCC.
Collapse
Affiliation(s)
- Han Zhu
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Fang Du
- Department of Hematology and Oncology, No. 988 Hospital of Joint Logistic Support Force of the Chinese People's Liberation Army, Zhengzhou, Henan, China
| | - Chenghua Cao
- Translational Research Institute, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
229
|
Seimiya T, Otsuka M, Iwata T, Shibata C, Tanaka E, Suzuki T, Koike K. Emerging Roles of Exosomal Circular RNAs in Cancer. Front Cell Dev Biol 2020; 8:568366. [PMID: 33117799 PMCID: PMC7578227 DOI: 10.3389/fcell.2020.568366] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed continuous loop. The expression pattern of circRNA varies among cell types and tissues, and many circRNAs are aberrantly expressed in various cancers. Aberrantly expressed circRNAs have been shown to play crucial roles in carcinogenesis, functioning as microRNA sponges or new templates for protein translation. Recent research has shown that circRNAs are enriched in exosomes. Exosomes are secretory vesicles that mediate intercellular communication through the delivery of cargo, including proteins, lipids, DNA, and RNA. Exosome-mediated crosstalk between cancer cells and the tumor microenvironment promotes the epithelial-mesenchymal transition, angiogenesis, and immune escape, and thus may contribute to cancer invasion and metastasis. In this review, we discuss the biological functions of exosomal circRNAs and their significance in cancer progression. Additionally, we discuss the potential clinical applications of exosomal circRNAs as biomarkers and in cancer therapy.
Collapse
Affiliation(s)
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
230
|
circCDYL Acts as a Tumor Suppressor in Triple Negative Breast Cancer by Sponging miR-190a-3p and Upregulating TP53INP1. Clin Breast Cancer 2020; 20:422-430. [DOI: 10.1016/j.clbc.2020.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 12/24/2022]
|
231
|
Jin X, Xu Y, Guo M, Sun Y, Ding J, Li L, Zheng X, Li S, Yuan D, Li SS. hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1007-1019. [PMID: 33614247 PMCID: PMC7868929 DOI: 10.1016/j.omtn.2020.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
In this study, we explored the circular RNA (circRNA) profile in pulmonary arterial hypertension (PAH) patients caused by chronic obstructive pulmonary disease (COPD) and the effects of hsa_circNFXL1_009 on abnormal proliferation, apoptosis, and migration of human pulmonary arterial smooth muscle cells (hPASMCs) driven by hypoxia. Using microarrays, we screened the circRNA profile in whole-blood samples from three pairs of subjects and found 158 dysregulated circRNAs in patients with PAH-COPD. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis further validated that hsa_circNFXL1_009 was dramatically downregulated with the highest area under a receiver operating characteristic curve (ROC) in 21 pairs of subjects. Consistently, exposure to hypoxia markedly reduced the hsa_circNFXL1_009 level in cultured hPASMCs. Delivery of exogenous hsa_circNFXL1_009 attenuated hypoxia-induced proliferation, apoptotic resistance, and migration of hPASMCs, as evidenced by immunocytochemistry, 5-ethynyl-2′-deoxyuridine incorporation, wound healing, and a TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling) assay. A luciferase assay showed that hsa_circNFXL1_009 directly sponged hsa-miR-29b-2-5p (miR-29b) and positively regulated the expression of voltage-gated potassium (K+) channel subfamily B member 1 (KCNB1) at the mRNA level. Using patch-clamp electrophysiology, we proved that overexpression of hsa_circNFXL1_009 promoted a whole-cell K+ current in hPASMCs. Taken together, these studies identify hsa_circNFXL1_009 as a key regulator of PAH, and it may be used as a potential therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Guo
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yushuang Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Junzhu Ding
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaodong Zheng
- Department of Genetics and Cell Biology, Harbin Medical University-Daqing, Daqing, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Dandan Yuan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
232
|
Li X, Zhang B, Li F, Yu K, Bai Y. The mechanism and detection of alternative splicing events in circular RNAs. PeerJ 2020; 8:e10032. [PMID: 33033662 PMCID: PMC7521338 DOI: 10.7717/peerj.10032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 01/15/2023] Open
Abstract
Circular RNAs (circRNAs) are considered as functional biomolecules with tissue/development-specific expression patterns. Generally, a single gene may generate multiple circRNA variants by alternative splicing, which contain different combinations of exons and/or introns. Due to the low abundance of circRNAs as well as overlapped with their linear counterparts, circRNA enrichment protocol is needed prior to sequencing. Compared with numerous algorithms, which use back-splicing reads for detection and functional characterization of circRNAs, original bioinformatic analyzing tools have been developed to large-scale determination of full-length circRNAs and accurate quantification. This review provides insights into the complexity of circRNA biogenesis and surveys the recent progresses in the experimental and bioinformatic methodologies that focus on accurately full-length circRNAs identification.
Collapse
Affiliation(s)
- Xiaohan Li
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Fuyu Li
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Kequan Yu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
233
|
Abstract
Circular RNAs (circRNAs) are covalently circularized RNA moieties that despite being relatively abundant were only recently identified and have only begun to be investigated within the last couple of years. Even though there are many thousands of genes that appear capable of producing circRNAs, and the fact that many circRNAs appear to be highly evolutionarily conserved, the function of all but a few remain to be fully explored. What has been determined, however, is that circRNAs play key regulatory roles in many aspects of biology with focus being given to their function in cancer. Most of the studies to date have found that circRNAs act as master regulator of gene expression most often than not acting to regulate levels though sequestration or "sponging" of other gene expression regulators, particularly miRNAs. They can also function directly modulating transcription, or by interfering with splicing mechanisms. Some circRNAs can also be translated into functional proteins or peptides. A combination of tissue and developmental stage specific expression along with an innate resistance to RNAse activity means that circRNAs show perhaps their greatest potential as novel biomarkers of cancer. In this chapter we consider the current state of knowledge regarding these molecules, their synthesis, function, and association with cancer. We also consider some of the challenges that remain to be overcome to allow this emerging class of RNAs to fulfill their potential in clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles Henderson Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
234
|
He Y, Zhang Q, Zheng Q, Yu X, Guo W. Distinct 5-methylcytosine profiles of circular RNA in human hepatocellular carcinoma. Am J Transl Res 2020; 12:5719-5729. [PMID: 33042451 PMCID: PMC7540146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have indicated that several circular RNAs (circRNAs) can affect the occurrence and development of hepatocellular carcinoma (HCC). Post-transcriptional methylation modifications, including 5-methylcytosine (m5C) modification, are closely related to the tumorigenesis of cancers. However, the map of m5C modification of circRNA in HCC remains to be investigated. In this study, we performed MeRIP-seq to identify m5C sites on circRNA of human HCC tissues and paired adjacent non-tumor tissues. Further, we analyzed the relationship between m5C and HCC. Moreover, we performed a bioinformatics analysis to predict the function of specific methylated transcripts. We found that there was a significant difference in m5C between HCC tissues and paired non-tumor tissues, suggesting potential critical roles of m5C of circRNA in HCC development. In addition, the Gene Ontology (GO) analysis results indicated that the unique distribution pattern of circRNA m5C in HCC was associated with specific metabolism-associated pathways. In conclusion, our findings suggest a possible association between HCC and m5C of circRNA. Additionally, our results provide new insights into a novel function of m5C RNA methylation of circRNA in HCC progression.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
235
|
Curry-Hyde A, Ueberham U, Chen BJ, Zipfel I, Mills JD, Bochmann J, Jendrek R, Takenaka K, Kirazov L, Kirazov E, Jünger J, Brückner MK, Arendt T, Janitz M. Analysis of the Circular Transcriptome in the Synaptosomes of Aged Mice. Neuroscience 2020; 449:202-213. [PMID: 32926955 DOI: 10.1016/j.neuroscience.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Recently, circular RNAs (circRNAs) have been revealed to be an important non-coding element of the transcriptome. The brain contains the most abundant and widespread expression of circRNA. There are also indications that the circular transcriptome undergoes dynamic changes as a result of brain ageing. Diminished cognitive function with increased age reflects the dysregulation of synaptic function and ineffective neurotransmission through alterations of the synaptic proteome. Here, we present changes in the circular transcriptome in ageing synapses using a mouse model. Specifically, we observed an accumulation of uniquely expressed circular transcripts in the synaptosomes of aged mice compared to young mice. Individual circRNA expression patterns were characterized by an increased abundance in the synaptosomes of young or aged mice, whereas the opposite expression was observed for the parental gene linear transcripts. These changes in expression were validated by RT-qPCR. We provide the first comprehensive survey of the circular transcriptome in mammalian synapses, thereby paving the way for future studies. Additionally, we present 16 genes that express solely circRNAs, without linear RNAs co-expression, exclusively in young and aged synaptosomes, suggesting a synaptic gene network that functions along canonical splicing activity.
Collapse
Affiliation(s)
- Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Uwe Ueberham
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ivonne Zipfel
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jana Bochmann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Renate Jendrek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ludmil Kirazov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Evgeni Kirazov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jennifer Jünger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Martina K Brückner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
236
|
Xie S, Li M, Chen Y, Liu Y, Ma L, Sun X, Sun Y, Gao R, Huang T. Identification of circular RNAs in the ovarian follicles of Meishan and Duroc sows during the follicular phase. J Ovarian Res 2020; 13:104. [PMID: 32917247 PMCID: PMC7488758 DOI: 10.1186/s13048-020-00709-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs that play an important role in growth and development by regulating gene expression and participating in a variety of biological processes. However, the role of circRNAs in porcine follicles remains unclear. Therefore, this study examined middle-sized ovarian follicles obtained from Meishan and Duroc sows at day 4 of the follicular phase. High-throughput RNA sequencing (RNA-seq) was utilized to construct circRNAs, and differential expression was identified. The findings were validated using reverse transcription PCR (RT-PCR) and DNA sequencing, GO and KEGG analyses were performed, and potential miRNA targets were identified. The RNA-seq identified a total of 15,866 circRNAs, with 244 differentially expressed in the Meishan relative to the Duroc (111 up-regulated and 133 down-regulated). The RT-PCR finding confirmed the RNA-seq results, and quantitative real-time PCR (qPCR) analysis examining a subset of the circRNAs showed that they are resistant to RNase R digestion. Bioinformatics analysis (GO and KEGG) showed that the host genes associated with the differentially expressed circRNAs are involved in reproduction and follicular development signaling pathways. Furthermore, many of the circRNAs were found to interact with miRNAs that are associated with follicular development. This study presents a new perspective for studying circRNAs and provides a valuable resource for further examination into the potential roles of circRNAs in porcine follicular development.
Collapse
Affiliation(s)
- Su Xie
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Mengxun Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China.,Key Laboratory of Animal Breeding and Reproduction of Minstry of Education,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yansen Chen
- University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
| | - Yi Liu
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Xiaomei Sun
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Yishan Sun
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Ruonan Gao
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China.
| |
Collapse
|
237
|
Disease-Associated Circular RNAs: From Biology to Computational Identification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6798590. [PMID: 32908906 PMCID: PMC7450300 DOI: 10.1155/2020/6798590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are endogenous RNAs with a covalently closed continuous loop, generated through various backsplicing events of pre-mRNA. An accumulating number of studies have shown that circRNAs are potential biomarkers for major human diseases such as cancer and Alzheimer's disease. Thus, identification and prediction of human disease-associated circRNAs are of significant importance. To this end, a computational analysis-assisted strategy is indispensable to detect, verify, and quantify circRNAs for downstream applications. In this review, we briefly introduce the biology of circRNAs, including the biogenesis, characteristics, and biological functions. In addition, we outline about 30 recent bioinformatic analysis tools that are publicly available for circRNA study. Principles for applying these computational strategies and considerations will be briefly discussed. Lastly, we give a complete survey on more than 20 key computational databases that are frequently used. To our knowledge, this is the most complete and updated summary on publicly available circRNA resources. In conclusion, this review summarizes key aspects of circRNA biology and outlines key computational strategies that will facilitate the genome-wide identification and prediction of circRNAs.
Collapse
|
238
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
239
|
Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat Commun 2020; 11:4551. [PMID: 32917870 PMCID: PMC7486402 DOI: 10.1038/s41467-020-18355-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) have recently gained substantial attention in the cancer research field where most, including the putative oncogene ciRS-7 (CDR1as), have been proposed to function as competitive endogenous RNAs (ceRNAs) by sponging specific microRNAs. Here, we report the first spatially resolved cellular expression patterns of ciRS-7 in colon cancer and show that ciRS-7 is completely absent in the cancer cells, but highly expressed in stromal cells within the tumor microenvironment. Additionally, our data suggest that this generally apply to classical oncogene-driven adenocarcinomas, but not to other cancers, including malignant melanoma. Moreover, we find that correlations between circRNA and mRNA expression, which are commonly interpreted as evidence of a ceRNA function, can be explained by different cancer-to-stromal cell ratios among the studied tumor specimens. Together, these results have wide implications for future circRNA studies and highlight the importance of spatially resolving expression patterns of circRNAs proposed to function as ceRNAs.
Collapse
|
240
|
Fan S, Hu K, Zhang D, Liu F. Interference of circRNA HIPK3 alleviates cardiac dysfunction in lipopolysaccharide-induced mice models and apoptosis in H9C2 cardiomyocytes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1147. [PMID: 33240996 PMCID: PMC7576089 DOI: 10.21037/atm-20-5306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Circular RNAs (circRNAs) have been deemed to be microRNA (miRNA) sponges that are involved in multiple biological processes. It has not yet been corroborated whether the regulation of circular RNA HIPK3 (circHIPK3) can be used for the treatment of myocardial dysfunction. Methods In this study, we aimed to investigate the cardioprotective effects and apoptosis inhibition of circHIPK3 regulation on lipopolysaccharide (LPS)-induced myocarditis in vivo and vitro. C57BL/6 mice were exposed to LPS with or without knockdown of circHIPK3. Reverse transcription polymerase chain reaction (RT-PCR) testing was used to evaluate the expression of circHIPK3. Hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), Cell Counting Kit-8 (CCK8), flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and western blotting were used to evaluate histopathology, proliferation, apoptosis, oxidative stress, and inflammatory response, respectively. Cardiac function and myocardial damage were also evaluated. Results It was proven that short hairpin RNA1 (shRNA1) was a superior interference of circHIPK3. The results revealed that knockdown of circHIPK3 effectively alleviated myocardial tissue damage, improved cardiac function, and suppressed cardiomyocyte apoptosis in the animal model of LPS-induced myocarditis. Furthermore, LPS-induced oxidative injuries and inflammation in the myocardium were also partly reversed after circHIPK3 knockdown. In vitro, being LPS-induced enhanced the levels of heart damage markers, simultaneously inhibited proliferation, promoted apoptosis, and stimulated oxidative stress and inflammation of H9C2 cells. Fortunately, the abnormalities mentioned were partly reversed following circHIPK3 knockdown. Conclusions In this study, we characterized the expression and regulation of circHIPK3 in LPS-induced myocarditis in the animal model and H9c2 cells. The results demonstrated that circHIPK3 expression is significantly upregulated when exposed to LPS in vivo and in vitro. Knockdown of circHIPK3 effectively alleviated LPS-induced myocarditis.
Collapse
Affiliation(s)
- Shunyang Fan
- Central Department of Cardiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kailun Hu
- Central Department of Cardiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deyin Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuyun Liu
- Department of Pediatric Orthopaedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
241
|
Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, Xin HY, Mao L, Luo CB, Yu SY, Huang XW, Cao Y, Fan J, Zhou J. Circular RNA Sequencing Identifies CircASAP1 as a Key Regulator in Hepatocellular Carcinoma Metastasis. Hepatology 2020; 72:906-922. [PMID: 31838741 DOI: 10.1002/hep.31068] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS There is growing evidence that single-stranded, circular RNA (circRNA) plays a key role in the development of certain cancers, including hepatocellular carcinoma (HCC). It is less clear, however, what role circRNA plays in HCC metastasis. APPROACH AND RESULTS In this study, through circRNA sequencing, we identified a circRNA: circASAP1 (a circRNA derived from exons 2 and 3 of the ASAP1 gene, hsa_circ_0085616), which is associated with pulmonary metastasis after curative resection in patients with HCC. CircASAP1 was overexpressed in HCC cell lines with high metastatic potential and in metastatic HCCs. In vitro, circASAP1 promoted cell proliferation, colony formation, migration, and invasion, and in vivo, it enhanced tumor growth and pulmonary metastasis. Mechanism studies showed that circASAP1 acts as a competing endogenous RNA for microRNA 326 (miR-326) and microRNA 532-5p (miR-532-5p), both of which are tumor suppressors in HCC. We found that mitogen-activated protein kinase (MAPK) 1 and colony stimulating factor (CSF)-1 were direct common targets for microRNA 326 (miR-326) and microRNA 532-5p (miR-532-5p), which were regulated by circASAP1. CircASAP1 promotes HCC cell proliferation and invasion by regulating miR-326/miR-532-5p-MAPK1 signaling and, furthermore, mediates tumor-associated macrophage infiltration by regulating the miR-326/miR-532-5p-CSF-1 pathway. Clinical HCC samples exhibited a positive correlation between circASAP1 expression and levels of CSF-1, MAPK1, and CD68+ tumor-associated macrophages, all of which were predictive of patient outcomes. CONCLUSION We identified circASAP1 as a key regulator of HCC metastasis that acts on miR-326/miR-532-5p-MAPK1/CSF-1 signaling and serves as a prognostic predictor in patients with HCC.
Collapse
Affiliation(s)
- Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shao-Lai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zheng-Jun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Cheng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao-Yang Xin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Mao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chu-Bin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Song-Yang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Wu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Cancer Research Institute, Changsha, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
242
|
Artemaki PI, Scorilas A, Kontos CK. Circular RNAs: A New Piece in the Colorectal Cancer Puzzle. Cancers (Basel) 2020; 12:cancers12092464. [PMID: 32878117 PMCID: PMC7564116 DOI: 10.3390/cancers12092464] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most fatal type of malignancy, worldwide. Despite the advances accomplished in the elucidation of its molecular base and the existing CRC biomarkers introduced in the clinical practice, additional research is required. Circular RNAs (circRNAs) constitute a new RNA type, formed by back-splicing of primary transcripts. They have been discovered during the 1970s but were characterized as by-products of aberrant splicing. However, the modern high-throughput approaches uncovered their widespread expression; therefore, several questions were raised regarding their potential biological roles. During the last years, great progress has been achieved in the elucidation of their functions: circRNAs can act as microRNA sponges, transcription regulators, and interfere with splicing, as well. Furthermore, they are heavily involved in various human pathological states, including cancer, and could serve as diagnostic and prognostic biomarkers in several diseases. Particularly in CRC, aberrant expression of circRNAs has been observed. More specifically, these molecules either inhibit or promote colorectal carcinogenesis by regulating different molecules and signaling pathways. The present review discusses the characteristics and functions of circRNA, prior to analyzing the multifaceted role of these molecules in CRC and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pinelopi I Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, GR-15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, GR-15701 Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, GR-15701 Athens, Greece
| |
Collapse
|
243
|
Chaabane M, Williams RM, Stephens AT, Park JW. circDeep: deep learning approach for circular RNA classification from other long non-coding RNA. Bioinformatics 2020; 36:73-80. [PMID: 31268128 PMCID: PMC6956777 DOI: 10.1093/bioinformatics/btz537] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023] Open
Abstract
MOTIVATION Over the past two decades, a circular form of RNA (circular RNA), produced through alternative splicing, has become the focus of scientific studies due to its major role as a microRNA (miRNA) activity modulator and its association with various diseases including cancer. Therefore, the detection of circular RNAs is vital to understanding their biogenesis and purpose. Prediction of circular RNA can be achieved in three steps: distinguishing non-coding RNAs from protein coding gene transcripts, separating short and long non-coding RNAs and predicting circular RNAs from other long non-coding RNAs (lncRNAs). However, the available tools are less than 80 percent accurate for distinguishing circular RNAs from other lncRNAs due to difficulty of classification. Therefore, the availability of a more accurate and fast machine learning method for the identification of circular RNAs, which considers the specific features of circular RNA, is essential to the development of systematic annotation. RESULTS Here we present an End-to-End deep learning framework, circDeep, to classify circular RNA from other lncRNA. circDeep fuses an RCM descriptor, ACNN-BLSTM sequence descriptor and a conservation descriptor into high level abstraction descriptors, where the shared representations across different modalities are integrated. The experiments show that circDeep is not only faster than existing tools but also performs at an unprecedented level of accuracy by achieving a 12 percent increase in accuracy over the other tools. AVAILABILITY AND IMPLEMENTATION https://github.com/UofLBioinformatics/circDeep. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mohamed Chaabane
- Department of Computer Engineering and Computer Science, Louisville, KY 40208, USA
| | - Robert M Williams
- Department of Computer Engineering and Computer Science, Louisville, KY 40208, USA
| | - Austin T Stephens
- Department of Computer Engineering and Computer Science, Louisville, KY 40208, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, Louisville, KY 40208, USA.,KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
244
|
Yang Y, Dai E, Wang S, Bai Y. Whole Transcriptome RNA Sequencing Identified circ_022743, circ_052666, and circ_004452 Were Associated with Colon Cancer Development. DNA Cell Biol 2020; 39:1825-1837. [PMID: 32799546 DOI: 10.1089/dna.2019.5320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to identify the key circular RNAs (circRNAs) related to the development of colon cancer. High-throughput RNA sequencing on eight early-stage (ES) and eight later stage (LS) colon tumor tissues, and eight normal tissues, was performed. Differentially expressed circRNAs and differentially expressed mRNAs were identified. Functional enrichment analysis and the miRNA-circRNA-mRNA network were performed. In addition, the differential expression levels of key circRNAs were verified using real-time quantitative PCR (qPCR). In total, 408, 472, and 278 differentially expressed circRNAs were identified in ES versus normal control (N), LS versus N, and LS versus ES groups, respectively. Functional enrichment analysis showed that circ_052666 was significantly enriched in "extracellular matrix/receptor interaction"; circ_022743 was remarkably enriched in "neurotrophin signaling pathway"; and circ_004452 was observably enriched in "TGF-β signaling pathway." Moreover, key miRNA-circRNA-mRNA relationships, such as hsa-miR-29b/c-3p-circ_052666-COL1A1 and hsa-miR-1294-circ_004452-left-right determination factor 1 (LEFTY1), were identified. Furthermore, qPCR showed consistent results with RNA sequencing. Our findings indicate that key circRNAs, such as circ_022743, circ_052666, and circ_004452, may be involved in colon cancer development, and could be used as potential biomarkers for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shibao Wang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
245
|
Pils D, Steindl E, Bachmayr-Heyda A, Dekan S, Aust S. A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types. Cancers (Basel) 2020; 12:cancers12082257. [PMID: 32806596 PMCID: PMC7464642 DOI: 10.3390/cancers12082257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetics, CpG methylation of CpG islands (CGI) and gene bodies (GBs), plays an important role in gene regulation and cancer biology, the former established as a transcription regulator. Genome wide CpG methylation, summarized over GBs and CGIs, was analyzed for impact on overall survival (OS) in cancer. The averaged GB and CGI methylation status of each gene was categorized into methylated and unmethylated (defined) or undefined. Differentially methylated GBs and genes associated with their GB methylation status were compared to the corresponding CGI methylation states and biologically annotated. No relevant correlations of GB and CGI methylation or GB methylation and gene expression were observed. Summarized GB methylation showed impact on OS in ovarian, breast, colorectal, and pancreatic cancer, and glioblastoma, but not in lung cancer. In ovarian, breast, and colorectal cancer more defined GBs correlated with unfavorable OS, in pancreatic cancer with favorable OS and in glioblastoma more methylated GBs correlated with unfavorable OS. The GB methylation of genes were similar over different samples and even over cancer types; nevertheless, the clustering of different cancers was possible. Gene expression differences associated with summarized GB methylation were cancer specific. A genome-wide dysregulation of gene-body methylation showed impact on the outcome in different cancers.
Collapse
Affiliation(s)
- Dietmar Pils
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-41690; Fax: +43-1-40400-66740
| | - Elisabeth Steindl
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria;
| | - Anna Bachmayr-Heyda
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria; (A.B.-H.); (S.A.)
| | - Sabine Dekan
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefanie Aust
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria; (A.B.-H.); (S.A.)
| |
Collapse
|
246
|
Ma S, Kong S, Wang F, Ju S. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Mol Cancer 2020; 19:119. [PMID: 32758239 PMCID: PMC7409473 DOI: 10.1186/s12943-020-01231-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted treatment, which can specifically kill tumour cells without affecting normal cells, is a new approach for tumour therapy. However, tumour cells tend to acquire resistance to targeted drugs during treatment. Circular RNAs (circRNAs) are single-stranded RNA molecules with unique structures and important functions. With the development of RNA sequencing technology, circRNAs have been found to be widespread in tumour-resistant cells and to play important regulatory roles. In this review, we present the latest advances in circRNA research and summarize the various mechanisms underlying their regulation. Moreover, we review the role of circRNAs in the chemotherapeutic resistance of tumours and explore the clinical value of circRNA regulation in treating tumour resistance.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
247
|
Lei KX, Bai HT, Yang SY, Li J, Chen QM. [Research progress on circular RNA in oral squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:425-430. [PMID: 32865363 DOI: 10.7518/hxkq.2020.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circular RNA, a non-coding RNA that forms a covalently closed continuous loop, exists widely in eukaryotic cells. The biogenesis and biological function of this type of RNA indicate that it can play a crucial role in diseases such as tumors, neural system diseases, and cardiovascular diseases; moreover, this RNA may have great potential use as a biomarker in these diseases. Oral squamous cell carcinoma (OSCC) is a common malignancy in oral surgery that is difficult to cure, metastasizes easily, and has poor prognosis. In this review, we summarize the loop-forming mechanisms and functions of circular RNA and describe the progress of current research in the development of oral cancer.
Collapse
Affiliation(s)
- Ke-Xin Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - He-Tian Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Song-Yue Yang
- West China Clinical Medicine School, Sichuan University, Chengdu 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
248
|
Liu C, Liu YC, Huang HD, Wang W. Biogenesis mechanisms of circular RNA can be categorized through feature extraction of a machine learning model. Bioinformatics 2020; 35:4867-4870. [PMID: 31529043 PMCID: PMC6901070 DOI: 10.1093/bioinformatics/btz705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Motivation In recent years, multiple circular RNAs (circRNA) biogenesis mechanisms have been discovered. Although each reported mechanism has been experimentally verified in different circRNAs, no single biogenesis mechanism has been proposed that can universally explain the biogenesis of all tens of thousands of discovered circRNAs. Under the hypothesis that human circRNAs can be categorized according to different biogenesis mechanisms, we designed a contextual regression model trained to predict the formation of circular RNA from a random genomic locus on human genome, with potential biogenesis factors of circular RNA as the features of the training data. Results After achieving high prediction accuracy, we found through the feature extraction technique that the examined human circRNAs can be categorized into seven subgroups, according to the presence of the following sequence features: RNA editing sites, simple repeat sequences, self-chains, RNA binding protein binding sites and CpG islands within the flanking regions of the circular RNA back-spliced junction sites. These results support all of the previously reported biogenesis mechanisms of circRNA and solidify the idea that multiple biogenesis mechanisms co-exist for different subset of human circRNAs. Furthermore, we uncover a potential new links between circRNA biogenesis and flanking CpG island. We have also identified RNA binding proteins putatively correlated with circRNA biogenesis. Availability and implementation Scripts and tutorial are available at http://wanglab.ucsd.edu/star/circRNA. This program is under GNU General Public License v3.0. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Yu-Chen Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Hsien-Da Huang
- School of Life and Health Sciences
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- Shenzhen Bay Laboratory, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wei Wang
- Department of Chemistry and Biochemistry
- To whom correspondence should be addressed.
| |
Collapse
|
249
|
Ma D, Qin Y, Huang C, Chen Y, Han Z, Zhou X, Liu H. Circular RNA ABCB10 promotes non-small cell lung cancer progression by increasing E2F5 expression through sponging miR-584-5p. Cell Cycle 2020; 19:1611-1620. [PMID: 32420810 PMCID: PMC7469616 DOI: 10.1080/15384101.2020.1761617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS CircABCB10 function as an endogenous miRNA sponge plays an important role in various tumors. This experimental design was based on circABCB10 to explore the pathogenesis of non-small cell lung cancer (NSCLC). Methods: CircRNA microarray was used to examine circRNA expression profiles in lung cancer from 3 NSCLC patients and paired healthy lung tissues. The expression of circABCB10 and miR-584-5p was detected by q-PCR. CCK-8, colony formation, and transwell assays to study the circABCB10 effects on tumor cell growth and cell migration invasiveness. To validate downstream target genes of circABCB10 and miR-584-5p detected by luciferase reporter assays. RT-qPCR and Western blotting were used to study E2F5 expression. The tumor growth was detected by nude mice in vivo. Results: We analyzed the human circRNA expression profile in NSCLC tissues. CircABCB10 was identified as a circRNA that increased in NSCLC tissues. CircABCB10 was noticeably raised in NSCLC, and high circABCB10 expression was related to low survival in NSCLC patients. Silencing of circABCB10 suppressed non-small cell lung cancer cell migration, cell proliferation, and invasion.CircABCB10 can act as a sponge of miR-584-5p to up-regulate E2F5 expression level. E2F5 knockdown or overexpress of miR-584-5p gene reversed the circABCB10 who has carcinogenic effects. There was a negative correlation expression between the circABCB10 and miR-584-5p gene, and There was a positive relationship between the expression of circABCB10 and E2F5 in NSCLC tumors. Conclusion: CircABCB10 promoted the progression of NSCLC by modulating the miR-584-5p/E2F5 axis. ABBREVIATION NSCLC: non-small cell lung cancer; circ RNA: circular RNA; miRNA: micro RNA.
Collapse
Affiliation(s)
- Dongjie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| | - Yingzhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| | - Yeye Chen
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| | - Zhijun Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing City, PR. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing City, PR. China
| |
Collapse
|
250
|
Yi Z, Li Y, Wu Y, Zeng B, Li H, Ren G, Wang X. Circular RNA 0001073 Attenuates Malignant Biological Behaviours in Breast Cancer Cell and Is Delivered by Nanoparticles to Inhibit Mice Tumour Growth. Onco Targets Ther 2020; 13:6157-6169. [PMID: 32636640 PMCID: PMC7334238 DOI: 10.2147/ott.s248822] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a special class of noncoding RNAs that are involved in gene regulation and compete with mRNA for miRNA binding sites. The roles of circRNAs in cancer, especially breast cancer (BC), are poorly understood. Materials and Methods The expression levels of circRNA 0001073 (circ-1073) in BC cells (BCCs) and tissues and peritumoural tissues were detected by real-time quantitative reverse transcription-polymerase chain reaction. Kaplan–Meier analysis and receiver operating characteristic curves were used to evaluate relapse-free survival (RFS) and the diagnostic value of circ-1073 for BC, respectively. The biological functions of circ-1073 were determined by cell counting kit-8 assays, colony formation assays, flow cytometry, wound-healing assays, transwell assays, and xenograft model studies. RNA immunoprecipitation assays were conducted to identify the connection between circ-1073 and human antigen R (HuR). Results Low circ-1073 expression was discovered in BCCs and BC tissues compared with normal mammary epithelial cells and peritumoural tissues, respectively. Circ-1073 downregulation was significantly associated with an unfavourable prognosis, including a shorter RFS, in BC patients. Circ-1073 is a valuable diagnostic biomarker for BC. Circ-1073 overexpression significantly inhibited BCC proliferation and induced apoptosis by increasing Cleaved Caspase-3/9 levels. Moreover, circ-1073 upregulation significantly suppressed cell mobility and epithelial–mesenchymal transition. Notably, xenograft tumour growth was inhibited by the intratumoural injection of nanoparticles containing the circ-1073 plasmid or by circ-1073 overexpression, and this inhibition was accompanied by HuR upregulation. Conclusion Circ-1073 functions as a tumour suppressor in BC, suggesting its potential as a novel therapeutic target in BC.
Collapse
Affiliation(s)
- Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaoyi Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|