201
|
Wangler MF, Yamamoto S, Chao HT, Posey JE, Westerfield M, Postlethwait J, Hieter P, Boycott KM, Campeau PM, Bellen HJ. Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Genetics 2017; 207:9-27. [PMID: 28874452 PMCID: PMC5586389 DOI: 10.1534/genetics.117.203067] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
Efforts to identify the genetic underpinnings of rare undiagnosed diseases increasingly involve the use of next-generation sequencing and comparative genomic hybridization methods. These efforts are limited by a lack of knowledge regarding gene function, and an inability to predict the impact of genetic variation on the encoded protein function. Diagnostic challenges posed by undiagnosed diseases have solutions in model organism research, which provides a wealth of detailed biological information. Model organism geneticists are by necessity experts in particular genes, gene families, specific organs, and biological functions. Here, we review the current state of research into undiagnosed diseases, highlighting large efforts in North America and internationally, including the Undiagnosed Diseases Network (UDN) (Supplemental Material, File S1) and UDN International (UDNI), the Centers for Mendelian Genomics (CMG), and the Canadian Rare Diseases Models and Mechanisms Network (RDMM). We discuss how merging human genetics with model organism research guides experimental studies to solve these medical mysteries, gain new insights into disease pathogenesis, and uncover new therapeutic strategies.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Hsiao-Tuan Chao
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Section of Child Neurology, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4C, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ontario K1H 8L1, Canada
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Quebec H3T 1C5, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine (BCM), Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, Texas 77030
| |
Collapse
|
202
|
Zhang C, Lu J, Lou H, Du R, Xu S, Shen Y, Zhang F, Jin L. CNVbase: Batch identification of novel and rare copy number variations based on multi-ethnic population data. J Genet Genomics 2017; 44:367-370. [PMID: 28739046 DOI: 10.1016/j.jgg.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Cheng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Departments of Laboratory Medicine and Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianqi Lu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Haiyi Lou
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Renqian Du
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiping Shen
- Departments of Laboratory Medicine and Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China; Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai 200127, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China.
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
203
|
Lin J, Zhou Y, Liu J, Chen J, Chen W, Zhao S, Wu Z, Wu N. Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation. J Cell Biochem 2017; 118:3061-3071. [DOI: 10.1002/jcb.26198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
- Department of Internal Medicine, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Department of Breast Surgical Oncology, National Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
- Department of Central Laboratory, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| |
Collapse
|
204
|
Li Z, Wu X, Gu L, Shen Q, Luo W, Deng C, Zhou Q, Chen X, Li Y, Lim Z, Wang X, Wang J, Yang X. Long non-coding RNA ATB promotes malignancy of esophageal squamous cell carcinoma by regulating miR-200b/Kindlin-2 axis. Cell Death Dis 2017. [PMID: 28640252 PMCID: PMC5520904 DOI: 10.1038/cddis.2017.245] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related death, especially in China. In addition, the prognosis of late stage patients is extremely poor. However, the biological significance of the long non-coding RNA lnc-ATB and its potential role in ESCC remain to be documented. In this study, we investigated the role of lnc-ATB and the underlying mechanism promoting its oncogenic activity in ESCC. Expression of lnc-ATB was higher in ESCC tissues and cell lines than that in normal counterparts. Upregulated lnc-ATB served as an independent prognosis predictor of ESCC patients. Moreover, loss-of-function assays in ESCC cells showed that knockdown of lnc-ATB inhibited cell proliferation and migration both in vitro and in vivo. Mechanistic investigation indicated that lnc-ATB exerted oncogenic activities via regulating Kindlin-2, as the anti-migration role of lnc-ATB silence was attenuated by ectopic expression of Kindlin-2. Further analysis showed that lnc-ATB functions as a molecular sponge for miR-200b and Kindlin-2. Dysregulated miR-200b/Kindlin-2 signaling mediated the oncogenic activity of lnc-ATB in ESCC. Our results suggest that lnc-ATB predicts poor prognosis and may serve as a potential therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Zhongwen Li
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoliang Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China.,State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Gu
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Puer University, Puer, China
| | - Qi Shen
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wen Luo
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chuangzhong Deng
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qianghua Zhou
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinru Chen
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanjie Li
- The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ZuanFu Lim
- WVU Cancer Institute, Mary Babb Randolph Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Xing Wang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahong Wang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xianzi Yang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
205
|
Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, Zhang L, Sun X, Zhi E, Wang H, Li H, Jin L, Luo Y, Wang J, Yang S, Zhang F. Biallelic Mutations in CFAP43 and CFAP44 Cause Male Infertility with Multiple Morphological Abnormalities of the Sperm Flagella. Am J Hum Genet 2017; 100:854-864. [PMID: 28552195 DOI: 10.1016/j.ajhg.2017.04.012] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023] Open
Abstract
Sperm motility is vital to human reproduction. Malformations of sperm flagella can cause male infertility. Men with multiple morphological abnormalities of the flagella (MMAF) have abnormal spermatozoa with absent, short, coiled, bent, and/or irregular-caliber flagella, which impair sperm motility. The known human MMAF-associated genes, such as DNAH1, only account for fewer than 45% of affected individuals. Pathogenic mechanisms in the genetically unexplained MMAF remain to be elucidated. Here, we conducted genetic analyses by using whole-exome sequencing and genome-wide comparative genomic hybridization microarrays in a multi-center cohort of 30 Han Chinese men affected by MMAF. Among them, 12 subjects could not be genetically explained by any known MMAF-associated genes. Intriguingly, we identified compound-heterozygous mutations in CFAP43 in three subjects and a homozygous frameshift mutation in CFAP44 in one subject. All of these recessive mutations were parentally inherited from heterozygous carriers but were absent in 984 individuals from three Han Chinese control populations. CFAP43 and CFAP44, encoding two cilia- and flagella-associated proteins (CFAPs), are specifically or preferentially expressed in the testis. Using CRISPR/Cas9 technology, we generated two knockout models each deficient in mouse ortholog Cfap43 or Cfap44. Notably, both Cfap43- and Cfap44-deficient male mice presented with MMAF phenotypes, whereas the corresponding female mice were fertile. Our experimental observations on human subjects and animal models strongly suggest that biallelic mutations in either CFAP43 or CFAP44 can cause sperm flagellar abnormalities and impair sperm motility. Further investigations on other CFAP-encoding genes in more genetically unexplained MMAF-affected individuals could uncover novel mechanisms underlying sperm flagellar formation.
Collapse
|
206
|
Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol Psychiatry 2017; 22:836-849. [PMID: 27240531 PMCID: PMC5508252 DOI: 10.1038/mp.2016.84] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts' maps could uncover functionally and clinically related genes.
Collapse
|
207
|
Zhang L, Wang J, Zhang C, Li D, Carvalho CM, Ji H, Xiao J, Wu Y, Zhou W, Wang H, Jin L, Luo Y, Wu X, Lupski JR, Zhang F, Jiang Y. Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage-sensitive genes with clinical severity in genomic disorders. Hum Mol Genet 2017; 26:1927-1941. [PMID: 28334874 PMCID: PMC6075079 DOI: 10.1093/hmg/ddx102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/13/2023] Open
Abstract
Genomic disorders are the clinical conditions manifested by submicroscopic genomic rearrangements including copy number variants (CNVs). The CNVs can be identified by array-based comparative genomic hybridization (aCGH), the most commonly used technology for molecular diagnostics of genomic disorders. However, clinical aCGH only informs CNVs in the probe-interrogated regions. Neither orientational information nor the resulting genomic rearrangement structure is provided, which is a key to uncovering mutational and pathogenic mechanisms underlying genomic disorders. Long-range polymerase chain reaction (PCR) is a traditional approach to obtain CNV breakpoint junction, but this method is inefficient when challenged by structural complexity such as often found at the PLP1 locus in association with Pelizaeus-Merzbacher disease (PMD). Here we introduced 'capture and single-molecule real-time sequencing' (cap-SMRT-seq) and newly developed 'asymmetry linker-mediated nested PCR walking' (ALN-walking) for CNV breakpoint sequencing in 49 subjects with PMD-associated CNVs. Remarkably, 29 (94%) of the 31 CNV breakpoint junctions unobtainable by conventional long-range PCR were resolved by cap-SMRT-seq and ALN-walking. Notably, unexpected CNV complexities, including inter-chromosomal rearrangements that cannot be resolved by aCGH, were revealed by efficient breakpoint sequencing. These sequence-based structures of PMD-associated CNVs further support the role of DNA replicative mechanisms in CNV mutagenesis, and facilitate genotype-phenotype correlation studies. Intriguingly, the lengths of gained segments by CNVs are strongly correlated with clinical severity in PMD, potentially reflecting the functional contribution of other dosage-sensitive genes besides PLP1. Our study provides new efficient experimental approaches (especially ALN-walking) for CNV breakpoint sequencing and highlights their importance in uncovering CNV mutagenesis and pathogenesis in genomic disorders.
Collapse
Affiliation(s)
- Ling Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Cheng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Dongxiao Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jianqiu Xiao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Weichen Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
| | - Yang Luo
- MOE Key Laboratory of Medical Cell Biology, The Research Center for Medical Genomics, College of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
208
|
Chondrocyte-Specific Knockout of TSC-1 Leads to Congenital Spinal Deformity in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8215805. [PMID: 28523278 PMCID: PMC5420956 DOI: 10.1155/2017/8215805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/17/2022]
Abstract
Congenital spinal deformity is the most severe clinical orthopedic issue worldwide. Among all the pathological processes of congenital spinal deformity, the imbalance of endochondral ossification is considered to be the most important developmental cause of spinal dysplasia. We established chondrocyte-specific TSC-1 knockout (KO) mice to overactivate the energy metabolic component, mammalian target of rapamycin complex 1 (mTORC1), and measured the spinal development by general, imaging, histological, and Western-blot assessments. In addition to skeletal dysplasia, the KO mice displayed severe congenital spinal deformity and significant intervertebral disc changes. This study suggests that, in the process of endochondral ossification, excessive activation of mTORC1 signaling in chondrocytes induces obvious spinal deformity, and the chondrocytes may be the cell type responsible for congenital spinal deformity.
Collapse
|
209
|
Lefebvre M, Duffourd Y, Jouan T, Poe C, Jean-Marçais N, Verloes A, St-Onge J, Riviere JB, Petit F, Pierquin G, Demeer B, Callier P, Thauvin-Robinet C, Faivre L, Thevenon J. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin Genet 2017; 91:908-912. [PMID: 27861764 DOI: 10.1111/cge.12918] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022]
Abstract
Proximal 16p11.2 microdeletions are recurrent microdeletions with an overall prevalence of 0.03%. In patients with segmentation defects of the vertebra (SDV), a burden of this microdeletion was observed with TBX6 as a candidate gene for SDV. In a published cohort of patients with congenital scoliosis (CS), TBX6 haploinsufficiency was compound heterozygous with a common haplotype. Besides, a single three-generation family with spondylocostal dysostosis (SCD) was reported with a heterozygous stop-loss of TBX6. These observations questioned both on the inheritance mode and on the variable expressivity associated with TBX6-associated SDV. Based on a national recruitment of 56 patients with SDV, we describe four patients with variable SDV ranging from CS to SCD associated with biallelic variations of TBX6. Two patients with CS were carrying a proximal 16p11.2 microdeletion associated with the previously reported haplotype. One patient with extensive SDV was carrying a proximal 16p11.2 microdeletion associated with a TBX6 rare missense change. One patient with a clinical diagnosis of SCD was compound heterozygous for two TBX6 rare missense changes. The three rare variants were affecting the chromatin-binding domain. Our data illustrate the variable expressivity of recessive TBX6 ranging from CS to SCD.
Collapse
Affiliation(s)
- M Lefebvre
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Y Duffourd
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France
| | - T Jouan
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France
| | - C Poe
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France
| | - N Jean-Marçais
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - A Verloes
- Département de Génétique, Hôpital Robert Debré, APHP, Paris, France
| | - J St-Onge
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France
| | - J-B Riviere
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France
| | - F Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHRU, Lille, France
| | - G Pierquin
- Service de Génétique Clinique, Hôpital Sart Tilman, Liège, Belgium
| | - B Demeer
- Service de génétique clinique, CLAD Nord de France, CHU Amiens, Amiens, France
| | - P Callier
- Service de Cytogénétique, Plateau technique de Biologie, CHU Dijon, Dijon, France
| | - C Thauvin-Robinet
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - L Faivre
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - J Thevenon
- GAD EA4271 «Génétique des Anomalies du Développement» (GAD), Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| |
Collapse
|
210
|
Wangler MF, Hu Y, Shulman JM. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech 2017; 10:77-88. [PMID: 28151408 PMCID: PMC5312009 DOI: 10.1242/dmm.027680] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human genome-wide association studies (GWAS) have successfully identified thousands of susceptibility loci for common diseases with complex genetic etiologies. Although the susceptibility variants identified by GWAS usually have only modest effects on individual disease risk, they contribute to a substantial burden of trait variation in the overall population. GWAS also offer valuable clues to disease mechanisms that have long proven to be elusive. These insights could lead the way to breakthrough treatments; however, several challenges hinder progress, making innovative approaches to accelerate the follow-up of results from GWAS an urgent priority. Here, we discuss the largely untapped potential of the fruit fly, Drosophila melanogaster, for functional investigation of findings from human GWAS. We highlight selected examples where strong genomic conservation with humans along with the rapid and powerful genetic tools available for flies have already facilitated fine mapping of association signals, elucidated gene mechanisms, and revealed novel disease-relevant biology. We emphasize current research opportunities in this rapidly advancing field, and present bioinformatic analyses that systematically explore the applicability of Drosophila for interrogation of susceptibility signals implicated in more than 1000 human traits, based on all GWAS completed to date. Thus, our discussion is targeted at both human geneticists seeking innovative strategies for experimental validation of findings from GWAS, as well as the Drosophila research community, by whom ongoing investigations of the implicated genes will powerfully inform our understanding of human disease.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
211
|
Takeda K, Kou I, Kawakami N, Iida A, Nakajima M, Ogura Y, Imagawa E, Miyake N, Matsumoto N, Yasuhiko Y, Sudo H, Kotani T, Nakamura M, Matsumoto M, Watanabe K, Ikegawa S. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis. Hum Mutat 2017; 38:317-323. [PMID: 28054739 DOI: 10.1002/humu.23168] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022]
Abstract
Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS.
Collapse
Affiliation(s)
- Kazuki Takeda
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 160-8582, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 108-8639, Japan
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 160-8582, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, 460-0001, Japan
| | - Aritoshi Iida
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 160-8582, Japan
| | - Masahiro Nakajima
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 160-8582, Japan
| | - Yoji Ogura
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 160-8582, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 108-8639, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yukuto Yasuhiko
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, 060-8648, Japan
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, 285-0825, Japan
| | | | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 108-8639, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 108-8639, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, 108-8639, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 160-8582, Japan
| |
Collapse
|
212
|
Abstract
During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio) embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.
Collapse
|
213
|
Liu J, Zhou Y, Qi X, Chen J, Chen W, Qiu G, Wu Z, Wu N. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet 2016; 136:1-12. [PMID: 27807677 PMCID: PMC5214880 DOI: 10.1007/s00439-016-1739-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
The next-generation sequencing identifies a growing number of candidate genes associated with human genetic diseases, which inevitably requires efficient methods to validate the causal links between genotype and phenotype. Recently, zebrafish, with sufficiently high-throughput capabilities, has become a favored option to study human pathogenesis. In addition, CRISPR/Cas9-based approaches have radically reduced the efforts to introduce targeted genome engineering in various organisms. Here, we systemically review the basic considerations in the design of gene editing in zebrafish with CRISPR/Cas9, and explore the potential of the combination of these two to support efficient functional analysis of human genetic variants.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua University Medical School, Beijing, China
| | - Xiaolong Qi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
214
|
Abstract
T-box genes are important development regulators in vertebrates with specific patterns of expression and precise roles during embryogenesis. They encode transcription factors that regulate gene transcription, often in the early stages of development. The hallmark of this family of proteins is the presence of a conserved DNA binding motif, the "T-domain." Mutations in T-box genes can cause developmental disorders in humans, mostly due to functional deficiency of the relevant proteins. Recent studies have also highlighted the role of some T-box genes in cancer and in cardiomyopathy, extending their role in human disease. In this review, we focus on ten T-box genes with a special emphasis on their roles in human disease.
Collapse
Affiliation(s)
- T K Ghosh
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - J D Brook
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - A Wilsdon
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
215
|
Yuan B, Neira J, Gu S, Harel T, Liu P, Briceño I, Elsea SH, Gómez A, Potocki L, Lupski JR. Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy. Hum Genet 2016; 135:1161-74. [PMID: 27386852 DOI: 10.1007/s00439-016-1703-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith-Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
216
|
Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A 2016; 170:2141-72. [PMID: 27273803 DOI: 10.1002/ajmg.a.37775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Ranging from aplastic uterus (including Mayer-Rokitansky-Kuster-Hauser syndrome) to incomplete septate uterus, uterine malformations as a group are relatively frequent in the general population. Specific causes remain largely unknown. Although most occurrences ostensibly seem sporadic, familial recurrences have been observed, which strongly implicate genetic factors. Through the study of animal models, human syndromes, and structural chromosomal variation, several candidate genes have been proposed and subsequently tested with targeted methods in series of individuals with isolated, non-isolated, or syndromic uterine malformations. To date, a few genes have garnered strong evidence of causality, mainly in syndromic presentations (HNF1B, WNT4, WNT7A, HOXA13). Sequencing of candidate genes in series of individuals with isolated uterine abnormalities has been able to suggest an association for several genes, but confirmation of a strong causative effect is still lacking for the majority of them. We review the current state of knowledge about the developmental origins of uterine malformations, with a focus on the genetic variants that have been implicated or associated with these conditions in humans, and we discuss potential reasons for the high rate of negative results. The evidence for various environmental and epigenetic factors is also reviewed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Center for Human Genetics, Centre Hospitalier Universitaire and University of Liège, Liège, Belgium
| | - Debra Millar
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
217
|
Rosenfeld JA, Patel A. Chromosomal Microarrays: Understanding Genetics of Neurodevelopmental Disorders and Congenital Anomalies. J Pediatr Genet 2016; 6:42-50. [PMID: 28180026 DOI: 10.1055/s-0036-1584306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/23/2016] [Indexed: 01/09/2023]
Abstract
Chromosomal microarray (CMA) testing, used to identify DNA copy number variations (CNVs), has helped advance knowledge about genetics of human neurodevelopmental disease and congenital anomalies. It has aided in discovering new CNV syndromes and uncovering disease genes. It has discovered CNVs that are not fully penetrant and/or cause a spectrum of phenotypes, including intellectual disability, autism, schizophrenia, and dysmorphisms. Such CNVs can pose challenges to genetic counseling. They also have helped increase knowledge of genetic risk factors for neurodevelopmental disease and raised awareness of possible shared etiologies among these variable phenotypes. Advances in CMA technology allow CNV identification at increasingly finer scales, improving detection of pathogenic changes, although these sometimes are difficult to distinguish from normal population variation. This paper confronts some of the challenges uncovered by CMA testing while reviewing advances in genetics and the clinical use of this test that has replaced standard karyotyping in most genetic evaluations.
Collapse
Affiliation(s)
- Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, Texas, United States
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
218
|
Lupski JR. Clinical genomics: from a truly personal genome viewpoint. Hum Genet 2016; 135:591-601. [PMID: 27221143 DOI: 10.1007/s00439-016-1682-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
The path to Clinical Genomics is punctuated by our understanding of what types of DNA structural and sequence variation contribute to disease, the many technical challenges to detect such variation genome-wide, and the initial struggles to interpret personal genome variation in the context of disease. This review describes one perspective of the development of clinical genomics; whereas the experimental challenges, and hurdles to overcoming them, might be deemed readily apparent, the non-technical issues for clinical implementation may be less obvious. Some of these latter challenges, including: (1) informed consent, (2) privacy, (3) what constitutes potentially pathogenic variation contributing to disease, (4) disease penetrance in populations, and (5) the genetic architecture of disease, and the struggles sometimes faced for solutions, are highlighted using illustrative examples.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, 604B, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
219
|
Chen Y, Liu Z, Chen J, Zuo Y, Liu S, Chen W, Liu G, Qiu G, Giampietro PF, Wu N, Wu Z. The genetic landscape and clinical implications of vertebral anomalies in VACTERL association. J Med Genet 2016; 53:431-7. [PMID: 27084730 PMCID: PMC4941148 DOI: 10.1136/jmedgenet-2015-103554] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
Abstract
VACTERL association is a condition comprising multisystem congenital malformations, causing severe physical disability in affected individuals. It is typically defined by the concurrence of at least three of the following component features: vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities (L). Vertebral anomaly is one of the most important and common defects that has been reported in approximately 60–95% of all VACTERL patients. Recent breakthroughs have suggested that genetic factors play an important role in VACTERL association, especially in those with vertebral phenotypes. In this review, we summarised the genetic studies of the VACTERL association, especially focusing on the genetic aetiology of patients with vertebral anomalies. Furthermore, genetic reports of other syndromes with vertebral phenotypes overlapping with VACTERL association are also included. We aim to provide a further understanding of the genetic aetiology and a better evidence for genetic diagnosis of the association and vertebral anomalies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Philip F Giampietro
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
220
|
Priest JR, Osoegawa K, Mohammed N, Nanda V, Kundu R, Schultz K, Lammer EJ, Girirajan S, Scheetz T, Waggott D, Haddad F, Reddy S, Bernstein D, Burns T, Steimle JD, Yang XH, Moskowitz IP, Hurles M, Lifton RP, Nickerson D, Bamshad M, Eichler EE, Mital S, Sheffield V, Quertermous T, Gelb BD, Portman M, Ashley EA. De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genet 2016; 12:e1005963. [PMID: 27058611 PMCID: PMC4825975 DOI: 10.1371/journal.pgen.1005963] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.
Collapse
Affiliation(s)
- James R. Priest
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Kazutoyo Osoegawa
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Nebil Mohammed
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Vivek Nanda
- Department of Vascular Surgery, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ramendra Kundu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Kathleen Schultz
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Edward J. Lammer
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Santhosh Girirajan
- Departments of Biochemistry, Molecular Biology, and Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Todd Scheetz
- College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Daryl Waggott
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Francois Haddad
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Sushma Reddy
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Trudy Burns
- College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey D. Steimle
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Xinan H. Yang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Ivan P. Moskowitz
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard P. Lifton
- Department of Genetics, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Evan E. Eichler
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Seema Mital
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Val Sheffield
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Division of Medical Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Quertermous
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, New York, United States of America
| | - Michael Portman
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Euan A. Ashley
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
221
|
Auffray C, Caulfield T, Griffin JL, Khoury MJ, Lupski JR, Schwab M. From genomic medicine to precision medicine: highlights of 2015. Genome Med 2016; 8:12. [PMID: 26825779 PMCID: PMC4733269 DOI: 10.1186/s13073-016-0265-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, 69007, Lyon, France.
| | - Timothy Caulfield
- Faculty of Law and School of Public Health, Health Law Institute, University of Alberta, Alberta, T6G 2HS, Canada.
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK. .,Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK.
| | - Muin J Khoury
- Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| | - James R Lupski
- Department of Molecular and Human Genetics, Department of Pediatrics, and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, 77030, TX, USA. .,Texas Children's Hospital, Houston, 77030, TX, USA.
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany. .,Department of Clinical Pharmacology, University Hospital, 72076, Tübingen, Germany. .,Department of Pharmacy and Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
222
|
Duyzend M, Nuttle X, Coe B, Baker C, Nickerson D, Bernier R, Eichler E. Maternal Modifiers and Parent-of-Origin Bias of the Autism-Associated 16p11.2 CNV. Am J Hum Genet 2016; 98:45-57. [PMID: 26749307 DOI: 10.1016/j.ajhg.2015.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023] Open
Abstract
Recurrent deletions and duplications at chromosomal region 16p11.2 are a major genetic contributor to autism but also associate with a wider range of pediatric diagnoses, including intellectual disability, coordination disorder, and language disorder. In order to investigate the potential genetic basis for phenotype variability, we assessed the parent of origin of the 16p11.2 copy-number variant (CNV) and the presence of additional CNVs in 126 families for which detailed phenotype data were available. Among de novo cases, we found a strong maternal bias for the origin of deletions (59/66, 89.4% of cases, p = 2.38 × 10(-11)), the strongest such effect so far observed for a CNV associated with a microdeletion syndrome. In contrast to de novo events, we observed no transmission bias for inherited 16p11.2 CNVs, consistent with a female meiotic hotspot of unequal crossover driving this maternal bias. We analyzed this 16p11.2 CNV cohort for the presence of secondary CNVs and found a significant maternal transmission bias for secondary deletions (32 maternal versus 14 paternal, p = 1.14 × 10(-2)). Of the secondary deletions that disrupted a gene, 82% were either maternally inherited or de novo (p = 4.3 × 10(-3)). Nine probands carry secondary CNVs that disrupt genes associated with autism and/or intellectual disability risk variants. Our findings demonstrate a strong bias toward maternal origin of 16p11.2 de novo deletions as well as a maternal transmission bias for secondary deletions that contribute to the clinical outcome on a background sensitized by the 16p11.2 CNV.
Collapse
|
223
|
Gu S, Posey JE, Yuan B, Carvalho CMB, Luk HM, Erikson K, Lo IFM, Leung GKC, Pickering CR, Chung BHY, Lupski JR. Mechanisms for the Generation of Two Quadruplications Associated with Split-Hand Malformation. Hum Mutat 2015; 37:160-4. [PMID: 26549411 DOI: 10.1002/humu.22929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023]
Abstract
Germline copy-number variants (CNVs) involving quadruplications are rare and the mechanisms generating them are largely unknown. Previously, we reported a 20-week gestation fetus with split-hand malformation; clinical microarray detected two maternally inherited triplications separated by a copy-number neutral region at 17p13.3, involving BHLHA9 and part of YWHAE. Here, we describe an 18-month-old male sibling of the previously described fetus with split-hand malformation. Custom high-density microarray and digital droplet PCR revealed the copy-number gains were actually quadruplications in the mother, the fetus, and her later born son. This quadruplication-normal-quadruplication pattern was shown to be expanded from the triplication-normal-triplication CNV at the same loci in the maternal grandmother. We mapped two breakpoint junctions and demonstrated that both are mediated by Alu repetitive elements and identical in these four individuals. We propose a three-step process combining Alu-mediated replicative-repair-based mechanism(s) and intergenerational, intrachromosomal nonallelic homologous recombination to generate the quadruplications in this family.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Bo Yuan
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Claudia M B Carvalho
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - H M Luk
- Clinical Genetic Service, Department of Health, Hong Kong, China
| | - Kelly Erikson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong, China
| | - Gordon K C Leung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Brian H Y Chung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, 77030.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030.,Texas Children's Hospital, Houston, Texas, 77030
| |
Collapse
|
224
|
Chen S, Hu X, Shen Y. Sequence Variant Interpretation 2.0: Perspective on New Guidelines for Sequence Variant Classification. Clin Chem 2015; 61:1317-9. [PMID: 26044508 DOI: 10.1373/clinchem.2015.240812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Shaoke Chen
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, GuangXi, P.R. China
| | - Xuyun Hu
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, GuangXi, P.R. China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, GuangXi, P.R. China
- Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
- Department of Laboratory Medicine, Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Claritas Genomics, Cambridge, MA
| |
Collapse
|
225
|
Neira-Fresneda J, Potocki L. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes. J Pediatr Genet 2015; 4:159-67. [PMID: 27617127 DOI: 10.1055/s-0035-1564443] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid-inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome.
Collapse
Affiliation(s)
- Juanita Neira-Fresneda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
226
|
Chong J, Buckingham K, Jhangiani S, Boehm C, Sobreira N, Smith J, Harrell T, McMillin M, Wiszniewski W, Gambin T, Coban Akdemir Z, Doheny K, Scott A, Avramopoulos D, Chakravarti A, Hoover-Fong J, Mathews D, Witmer P, Ling H, Hetrick K, Watkins L, Patterson K, Reinier F, Blue E, Muzny D, Kircher M, Bilguvar K, López-Giráldez F, Sutton V, Tabor H, Leal S, Gunel M, Mane S, Gibbs R, Boerwinkle E, Hamosh A, Shendure J, Lupski J, Lifton R, Valle D, Nickerson D, Bamshad M, Bamshad MJ. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet 2015; 97:199-215. [PMID: 26166479 DOI: 10.1016/j.ajhg.2015.06.009] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
227
|
Karaca E, Yuregir OO, Bozdogan ST, Aslan H, Pehlivan D, Jhangiani SN, Akdemir ZC, Gambin T, Bayram Y, Atik MM, Erdin S, Muzny D, Gibbs RA, Lupski JR. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome. Am J Med Genet A 2015; 167A:2795-9. [PMID: 26238661 DOI: 10.1002/ajmg.a.37263] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
Klippel-Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel-Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel-Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left-right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel-Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel's deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel-Feil syndrome, and in addition-from a mechanistic standpoint-suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ozge O Yuregir
- Department of Medical Genetics, Numune Training and Research Hospital, Adana, Turkey
| | | | - Huseyin Aslan
- Department of Medical Genetics, Medical Faculty of Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mehmed M Atik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Serkan Erdin
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | | |
Collapse
|
228
|
Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet 2015; 24:R102-10. [PMID: 26152199 DOI: 10.1093/hmg/ddv259] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/03/2015] [Indexed: 01/16/2023] Open
Abstract
Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA and Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
229
|
Precision Medicine for Continuing Phenotype Expansion of Human Genetic Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:745043. [PMID: 26137492 PMCID: PMC4475565 DOI: 10.1155/2015/745043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Determining the exact genetic causes for a patient and providing definite molecular diagnoses are core elements of precision medicine. Individualized patient care is often limited by our current knowledge of disease etiologies and commonly used phenotypic-based diagnostic approach. The broad and incompletely understood phenotypic spectrum of a disease and various underlying genetic heterogeneity also present extra challenges to our clinical practice. With the rapid adaptation of new sequence technology in clinical setting for diagnostic purpose, phenotypic expansions of disease spectrum are becoming increasingly common. Understanding the underlying molecular mechanisms will help us to integrate genomic information into the workup of individualized patient care and make better clinical decisions.
Collapse
|
230
|
Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:419-36. [PMID: 25892534 PMCID: PMC4609214 DOI: 10.1002/em.21943] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 05/19/2023]
Abstract
Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. Environ. Mol. Mutagen. 56:419-436, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, Texas
| |
Collapse
|
231
|
Affiliation(s)
- James R Lupski
- Molecular and Human Genetics, Department of Pediatrics, and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas2Texas Children's Hospital, Houston
| |
Collapse
|
232
|
English AC, Salerno WJ, Hampton OA, Gonzaga-Jauregui C, Ambreth S, Ritter DI, Beck CR, Davis CF, Dahdouli M, Ma S, Carroll A, Veeraraghavan N, Bruestle J, Drees B, Hastie A, Lam ET, White S, Mishra P, Wang M, Han Y, Zhang F, Stankiewicz P, Wheeler DA, Reid JG, Muzny DM, Rogers J, Sabo A, Worley KC, Lupski JR, Boerwinkle E, Gibbs RA. Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genomics 2015; 16:286. [PMID: 25886820 PMCID: PMC4490614 DOI: 10.1186/s12864-015-1479-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/23/2015] [Indexed: 01/19/2023] Open
Abstract
Background Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods. Results We demonstrate Parliament’s efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus. Conclusions HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1479-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam C English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - William J Salerno
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Oliver A Hampton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Claudia Gonzaga-Jauregui
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Shruthi Ambreth
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Deborah I Ritter
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Caleb F Davis
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Mahmoud Dahdouli
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Singer Ma
- DNAnexus, Mountain View, CA, 94040, USA.
| | | | | | | | - Becky Drees
- Spiral Genetics Inc, Seattle, WA, 98117, USA.
| | - Alex Hastie
- BioNano Genomics Inc, San Diego, CA, 92121, USA.
| | - Ernest T Lam
- BioNano Genomics Inc, San Diego, CA, 92121, USA.
| | - Simon White
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Pamela Mishra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Min Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Feng Zhang
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Jeffrey G Reid
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. .,Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|