201
|
Streptococcus pyogenes polymyxin B-resistant mutants display enhanced ExPortal integrity. J Bacteriol 2014; 196:2563-77. [PMID: 24794568 DOI: 10.1128/jb.01596-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The ExPortal protein secretion organelle in Streptococcus pyogenes is an anionic phospholipid-containing membrane microdomain enriched in Sec translocons and postsecretion protein biogenesis factors. Polymyxin B binds to and disrupts ExPortal integrity, resulting in defective secretion of several toxins. To gain insight into factors that influence ExPortal organization, a genetic screen was conducted to select for spontaneous polymyxin B-resistant mutants displaying enhanced ExPortal integrity. Whole-genome resequencing of 25 resistant mutants revealed from one to four mutations per mutant genome clustered primarily within a core set of 10 gene groups. Construction of mutants with individual deletions or insertions demonstrated that 7 core genes confer resistance and enhanced ExPortal integrity through loss of function, while 3 were likely due to gain of function and/or combinatorial effects. Core resistance genes include a transcriptional regulator of lipid biosynthesis, several genes involved in nutrient acquisition, and a variety of genes involved in stress responses. Two members of the latter class also function as novel regulators of the secreted SpeB cysteine protease. Analysis of the most frequently isolated mutation, a single nucleotide deletion in a track of 9 consecutive adenine residues in pstS, encoding a component of a high-affinity Pi transporter, suggests that this sequence functions as a molecular switch to facilitate stress adaptation. Together, these data suggest the existence of a membrane stress response that promotes enhanced ExPortal integrity and resistance to cationic antimicrobial peptides.
Collapse
|
202
|
Tadmor K, Pozniak Y, Burg Golani T, Lobel L, Brenner M, Sigal N, Herskovits AA. Listeria monocytogenes MDR transporters are involved in LTA synthesis and triggering of innate immunity during infection. Front Cell Infect Microbiol 2014; 4:16. [PMID: 24611134 PMCID: PMC3933815 DOI: 10.3389/fcimb.2014.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022] Open
Abstract
Multi-drug resistance (MDR) transporters are known eponymously for their ability to confer resistance to various antimicrobial drugs. However, it is likely that this is not their primary function and that MDR transporters evolved originally to play additional roles in bacterial physiology. In Listeria monocytogenes a set of MDR transporters was identified to mediate activation of innate immune responses during mammalian cell infection. This phenotype was shown to be dependent on c-di-AMP secretion, but the physiological processes underlying this phenomenon were not completely resolved. Here we describe a genetic approach taken to screen for L. monocytogenes genes or physiological pathways involved in MDR transporter-dependent triggering of the type I interferon response. We found that disruption of L. monocytogenes lipoteichoic acid (LTA) synthesis results in enhanced triggering of type I interferon responses in infected macrophage cells yet does not impact bacterial intracellular growth. This innate immune response required the MDR transporters and could be recapitulated by exposing macrophage cells to culture supernatants derived from LTA mutant bacteria. Notably, we found that the MDR transporters themselves are required for full production of LTA, an observation that links MDR transporters to LTA synthesis for the first time. In light of our findings, we propose that the MDR transporters play a role in regulating LTA synthesis, possibly via c-di-AMP efflux, a physiological function in cell wall maintenance that triggers the host innate immune system.
Collapse
Affiliation(s)
- Keren Tadmor
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Yair Pozniak
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Tamar Burg Golani
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Moran Brenner
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Nadejda Sigal
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Anat A Herskovits
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
203
|
DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence. Infect Immun 2014; 82:1840-9. [PMID: 24566626 DOI: 10.1128/iai.00030-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn(2+)- or Mg(2+)-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σ(S) factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence.
Collapse
|
204
|
Zhou J, Sayre DA, Zheng Y, Szmacinski H, Sintim HO. Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger. Anal Chem 2014; 86:2412-20. [PMID: 24494631 PMCID: PMC3983017 DOI: 10.1021/ac403203x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Cyclic
diadenosine monophosphate (c-di-AMP) has emerged as an important
dinucleotide that is involved in several processes in bacteria, including
cell wall remodeling (and therefore resistance to antibiotics that
target bacterial cell wall). Small molecules that target c-di-AMP
metabolism enzymes have the potential to be used as antibiotics. Coralyne
is known to form strong complexes with polyadenine containing eight
or more adenine stretches but not with short polyadenine oligonucleotides.
Using a panel of techniques (UV, both steady state fluorescence and
fluorescence lifetime measurements, circular dichroism (CD), NMR,
and Job plots), we demonstrate that c-di-AMP, which contains only
two adenine bases is an exception to this rule and that it can form
complexes with coralyne, even at low micromolar concentrations. Interestingly,
pApA (the linear analog of c-di-AMP that also contains two adenines)
or cyclic diguanylate (c-di-GMP, another nucleotide second messenger
in bacteria) did not form any complex with coralyne. Unlike polyadenine,
which forms a 2:1 complex with coralyne, c-di-AMP forms a higher order
complex with coralyne (≥6:1). Additionally, whereas polyadenine
reduces the fluorescence of coralyne when bound, c-di-AMP enhances
the fluorescence of coralyne. We use the quenching property of halides
to selectively quench the fluorescence of unbound coralyne but not
that of coralyne bound to c-di-AMP. Using this simple selective quenching
strategy, the assay could be used to monitor the synthesis of c-di-AMP
by DisA or the degradation of c-di-AMP by YybT. Apart from the practical
utility of this assay for c-di-AMP research, this work also demonstrates
that, when administered to cells, intercalators might not only associate
with polynucleotides, such as DNA or RNA, but also could associate
with cyclic dinucleotides to disrupt or modulate signal transduction
processes mediated by these nucleotides.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | |
Collapse
|
205
|
Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133-42. [PMID: 24415723 DOI: 10.1128/jb.01155-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria.
Collapse
|
206
|
|
207
|
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 2013; 9:834-9. [PMID: 24141192 PMCID: PMC3830699 DOI: 10.1038/nchembio.1363] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered bacterial second messenger implicated in the control of cell wall metabolism, osmotic stress responses and sporulation. However, the mechanisms by which c-di-AMP triggers these physiological responses have remained largely unknown. Notably, a candidate riboswitch class called ydaO associates with numerous genes involved in these same processes. Although a representative ydaO motif RNA recently was reported to weakly bind ATP, we report that numerous members of this noncoding RNA class selectively respond to c-di-AMP with subnanomolar affinity. Our findings resolve the mystery regarding the primary ligand for this extremely common riboswitch class and expose a major portion of the super-regulon of genes that are controlled by the widespread bacterial second messenger c-di-AMP.
Collapse
Affiliation(s)
- James W. Nelson
- Department of Chemistry, Yale University, Box 208107, New Haven, CT 06520, USA
| | - Narasimhan Sudarsan
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Zasha Weinberg
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Joy X. Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520, USA
| |
Collapse
|
208
|
Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J Bacteriol 2013; 196:614-23. [PMID: 24272783 DOI: 10.1128/jb.01041-13] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) has been shown to play important roles as a second messenger in bacterial physiology and infections. However, understanding of how the signal is transduced is still limited. Previously, we have characterized a diadenylate cyclase and two c-di-AMP phosphodiesterases in Streptococcus pneumoniae, a Gram-positive pathogen. In this study, we identified a c-di-AMP binding protein (CabP) in S. pneumoniae using c-di-AMP affinity chromatography. We demonstrated that CabP specifically bound c-di-AMP and that this interaction could not be interrupted by competition with other nucleotides, including ATP, cAMP, AMP, phosphoadenylyl adenosine (pApA), and cyclic di-GMP (c-di-GMP). By using a bacterial two-hybrid system and genetic mutagenesis, we showed that CabP directly interacted with a potassium transporter (SPD_0076) and that both proteins were required for pneumococcal growth in media with low concentrations of potassium. Interestingly, the interaction between CabP and SPD_0076 and the efficiency of potassium uptake were impaired by elevated c-di-AMP in pneumococci. These results establish a direct c-di-AMP-mediated signaling pathway that regulates pneumococcal potassium uptake.
Collapse
|
209
|
Abstract
Cyclic dinucleotides (CDNs) have been previously recognized as important secondary signaling molecules in bacteria and, more recently, in mammalian cells. In the former case, they represent secondary messengers affecting numerous responses of the prokaryotic cell, whereas in the latter, they act as agonists of the innate immune response. Remarkable new discoveries have linked these two patterns of utilization of CDNs as secondary messengers and have revealed unexpected influences they likely had on shaping human genetic variation. This Review summarizes these recent insights and provides a perspective on future unanswered questions in this exciting field.
Collapse
|
210
|
Abstract
Staphylococcus aureus is a hardy organism that can survive high-salt conditions better than many other bacteria. This characteristic is thought to help S. aureus survive in the nares and on the skin of the human host and is used to selectively propagate and identify Staphylococcus species. However, the mechanism that allows S. aureus to tolerate such high-salt conditions is not well understood. A recent study in mBio by A. Price-Whelan et al. [mBio 4(4):e00407-13, 2013, doi:10.1128/mBio.00407-13] highlights the importance of potassium uptake in this process. This commentary provides a perspective of the study by Price-Whelan et al. as well as other recently reported work on potassium uptake and transport systems in S. aureus.
Collapse
|
211
|
Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J Bacteriol 2013; 195:5250-61. [PMID: 24056102 DOI: 10.1128/jb.00794-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular bacterial pathogen Listeria monocytogenes activates a robust type I interferon response upon infection. This response is partially dependent on the multidrug resistance (MDR) transporter MdrM and relies on cyclic-di-AMP (c-di-AMP) secretion, yet the functions of MdrM and cyclic-di-AMP that lead to this response are unknown. Here we report that it is not MdrM alone but a cohort of MDR transporters that together contribute to type I interferon induction during infection. In a search for a physiological function of these transporters, we revealed that they play a role in cell wall stress responses. A mutant with deletion of four transporter genes (ΔmdrMTAC) was found to be sensitive to sublethal concentrations of vancomycin due to an inability to produce and shed peptidoglycan under this stress. Remarkably, c-di-AMP is involved in this phenotype, as overexpression of the c-di-AMP phosphodiesterase (PdeA) resulted in increased susceptibility of the ΔmdrMTAC mutant to vancomycin, whereas overexpression of the c-di-AMP diadenylate cyclase (DacA) reduced susceptibility to this drug. These observations suggest a physiological association between c-di-AMP and the MDR transporters and support the model that MDR transporters mediate c-di-AMP secretion to regulate peptidoglycan synthesis in response to cell wall stress.
Collapse
|
212
|
Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J Bacteriol 2013; 195:5123-32. [PMID: 24013631 DOI: 10.1128/jb.00769-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) and cyclic di-GMP (c-di-GMP) are signaling molecules that play important roles in bacterial biology and pathogenesis. However, these nucleotides have not been explored in Streptococcus pneumoniae, an important bacterial pathogen. In this study, we characterized the c-di-AMP-associated genes of S. pneumoniae. The results showed that SPD_1392 (DacA) is a diadenylate cyclase that converts ATP to c-di-AMP. Both SPD_2032 (Pde1) and SPD_1153 (Pde2), which belong to the DHH subfamily 1 proteins, displayed c-di-AMP phosphodiesterase activity. Pde1 cleaved c-di-AMP into phosphoadenylyl adenosine (pApA), whereas Pde2 directly hydrolyzed c-di-AMP into AMP. Additionally, Pde2, but not Pde1, degraded pApA into AMP. Our results also demonstrated that both Pde1 and Pde2 played roles in bacterial growth, resistance to UV treatment, and virulence in a mouse pneumonia model. These results indicate that c-di-AMP homeostasis is essential for pneumococcal biology and disease.
Collapse
|
213
|
Dengler V, McCallum N, Kiefer P, Christen P, Patrignani A, Vorholt JA, Berger-Bächi B, Senn MM. Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLoS One 2013; 8:e73512. [PMID: 24013956 PMCID: PMC3754961 DOI: 10.1371/journal.pone.0073512] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/22/2013] [Indexed: 01/28/2023] Open
Abstract
Faster growing and more virulent strains of methicillin resistant Staphylococcus aureus (MRSA) are increasingly displacing highly resistant MRSA. Elevated fitness in these MRSA is often accompanied by decreased and heterogeneous levels of methicillin resistance; however, the mechanisms for this phenomenon are not yet fully understood. Whole genome sequencing was used to investigate the genetic basis of this apparent correlation, in an isogenic MRSA strain pair that differed in methicillin resistance levels and fitness, with respect to growth rate. Sequencing revealed only one single nucleotide polymorphism (SNP) in the diadenylate cyclase gene dacA in the faster growing but less resistant strain. Diadenylate cyclases were recently discovered to synthesize the new second messenger cyclic diadenosine monophosphate (c-di-AMP). Introduction of this mutation into the highly resistant but slower growing strain reduced resistance and increased its growth rate, suggesting a direct connection between the dacA mutation and the phenotypic differences of these strains. Quantification of cellular c-di-AMP revealed that the dacA mutation decreased c-di-AMP levels resulting in reduced autolysis, increased salt tolerance and a reduction in the basal expression of the cell wall stress stimulon. These results indicate that c-di-AMP affects cell envelope-related signalling in S. aureus. The influence of c-di-AMP on growth rate and methicillin resistance in MRSA indicate that altering c-di-AMP levels could be a mechanism by which MRSA strains can increase their fitness levels by reducing their methicillin resistance levels.
Collapse
Affiliation(s)
- Vanina Dengler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Nadine McCallum
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Sydney Emerging Infectious Diseases and Biosecurity Institute (SEIB), University of Sydney, Sydney, Australia
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Andrea Patrignani
- Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | | | | | - Maria M. Senn
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
214
|
Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ, Krulwich TA. Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K+ uptake systems. mBio 2013; 4:e00407-13. [PMID: 23963175 PMCID: PMC3747578 DOI: 10.1128/mbio.00407-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/24/2013] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Staphylococcus aureus exhibits an unusually high level of osmotolerance and Na(+) tolerance, properties that support survival in various host niches and in preserved foods. The genetic basis of these traits is not well understood. We compared the transcriptional profiles of S. aureus grown in complex medium with and without 2 M NaCl. The stimulon for growth in high-osmolality media and Na(+) included genes involved in uptake of K(+), other compatible solutes, sialic acid, and sugars; capsule biosynthesis; and amino acid and central metabolism. Quantitative PCR analysis revealed that the loci responded differently from each other to high osmolality imposed by elevated NaCl versus sucrose. High-affinity K(+) uptake (kdp) genes and capsule biosynthesis (cap5) genes required the two-component system KdpDE for full induction by osmotic stress, with kdpA induced more by NaCl and cap5B induced more by sucrose. Focusing on K(+) importers, we identified three S. aureus genes belonging to the lower-affinity Trk/Ktr family that encode two membrane proteins (KtrB and KtrD) and one accessory protein (KtrC). In the absence of osmotic stress, the ktr gene transcripts were much more abundant than the kdpA transcript. Disruption of S. aureus kdpA caused a growth defect under low-K(+) conditions, disruption of ktrC resulted in a significant defect in 2 M NaCl, and a ΔktrC ΔkdpA double mutant exhibited both phenotypes. Protective effects of S. aureus Ktr transporters at elevated NaCl are consistent with previous indications that both Na(+) and osmolality challenges are mitigated by the maintenance of a high cytoplasmic K(+) concentration. IMPORTANCE There is general agreement that the osmotolerance and Na(+) tolerance of Staphylococcus aureus are unusually high for a nonhalophile and support its capacity for human colonization, pathogenesis, and growth in food. Nonetheless, the molecular basis for these properties is not well defined. The genome-wide response of S. aureus to a high concentration, 2 M, of NaCl revealed the upregulation of expected genes, such as those for transporters of compatible solutes that are widely implicated in supporting osmotolerance. A high-affinity potassium uptake system, KdpFABC, was upregulated, although it generally plays a physiological role under very low K(+) conditions. At higher K(+) concentrations, a lower-affinity and more highly expressed type of K(+) transporter system, Ktr transporters, was shown to play a significant role in high Na(+) tolerance. This study illustrates the importance of the K(+) status of the cell for tolerance of Na(+) by S. aureus and underscores the importance of monovalent cation cycles in this pathogen.
Collapse
Affiliation(s)
- Alexa Price-Whelan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chun Kit Poon
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meredith A. Benson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Tess T. Eidem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Christelle M. Roux
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
215
|
Gries CM, Bose JL, Nuxoll AS, Fey PD, Bayles KW. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Mol Microbiol 2013; 89:760-73. [PMID: 23815639 DOI: 10.1111/mmi.12312] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 02/05/2023]
Abstract
Potassium (K(+) ) plays a vital role in bacterial physiology, including regulation of cytoplasmic pH, turgor pressure and transmembrane electrical potential. Here, we examine the Staphylococcus aureus Ktr system uniquely comprised of two ion-conducting proteins (KtrB and KtrD) and only one regulator (KtrA). Growth of Ktr system mutants was severely inhibited under K(+) limitation, yet detectable after an extended lag phase, indicating the presence of a secondary K(+) transporter. Disruption of both ktrA and the Kdp-ATPase system, important for K(+) uptake in other organisms, eliminated regrowth in 0.1 mM K(+) , demonstrating a compensatory role for Kdp to the Ktr system. Consistent with K(+) transport mutations, S. aureus devoid of the Ktr system became sensitive to hyperosmotic conditions, exhibited a hyperpolarized plasma membrane, and increased susceptibility to aminoglycoside antibiotics and cationic antimicrobials. In contrast to other organisms, the S. aureus Ktr system was shown to be important for low-K(+) growth under alkaline conditions, but played only a minor role in neutral and acidic conditions. In a mouse competitive index model of bacteraemia, the ktrA mutant was significantly outcompeted by the parental strain. Combined, these results demonstrate a primary mechanism of K(+) uptake in S. aureus and a role for this system in pathogenesis.
Collapse
Affiliation(s)
- Casey M Gries
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | |
Collapse
|
216
|
Corrigan RM, Gründling A. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 2013; 11:513-24. [PMID: 23812326 DOI: 10.1038/nrmicro3069] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleotide signalling molecules contribute to the regulation of cellular pathways in all forms of life. In recent years, the discovery of new signalling molecules in bacteria and archaea, as well as the elucidation of the pathways they regulate, has brought insights into signalling mechanisms not only in bacterial and archaeal cells but also in eukaryotic host cells. Here, we provide an overview of the synthesis and regulation of cyclic di-AMP (c-di-AMP), one of the latest cyclic nucleotide second messengers to be discovered in bacteria. We also discuss the currently known receptor proteins and pathways that are directly or indirectly controlled by c-di-AMP, the domain structure of the enzymes involved in its production and degradation, and the recognition of c-di-AMP by the eukaryotic host.
Collapse
Affiliation(s)
- Rebecca M Corrigan
- Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | | |
Collapse
|