201
|
Biochemical membrane lipidomics during Drosophila development. Dev Cell 2012; 24:98-111. [PMID: 23260625 DOI: 10.1016/j.devcel.2012.11.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 09/18/2012] [Accepted: 11/19/2012] [Indexed: 12/15/2022]
Abstract
Lipids play critical roles in energy homeostasis, membrane structure, and signaling. Using liquid chromatography and mass spectrometry, we provide a comprehensive semiquantification of lipids during the life cycle of Drosophila melanogaster (230 glycerophospholipids, 210 sphingolipids, 6 sterols and sterol esters, and 60 glycerolipids) and obtain biological insights through this biochemical resource. First, we find a high and constant triacylglycerol-to-membrane lipid ratio during pupal stage, which is nonobvious in the absence of nutrient uptake and tissue remodeling. Second, sphingolipids undergo specific changes in headgroup (glycosylation) and tail configurations (unsaturation and hydroxylation on sphingoid base and fatty acyls, respectively), which correlate with gene expression of known (GlcT/CG6437; FA2H/ CG30502) and putative (Cyt-b5-r/CG13279) enzymes. Third, we identify a gender bias in phosphoethanolamine-ceramides as a lead for future investigation into sexual maturation. Finally, we partially characterize ghiberti, required for male meiotic cytokinesis, as a homolog of mammalian serine palmitoyltransferase.
Collapse
|
202
|
Schilling JD, Machkovech HM, He L, Sidhu R, Fujiwara H, Weber K, Ory DS, Schaffer JE. Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J Biol Chem 2012; 288:2923-32. [PMID: 23250746 DOI: 10.1074/jbc.m112.419978] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Macrophages play a key role in host defense and in tissue repair after injury. Emerging evidence suggests that macrophage dysfunction in states of lipid excess can contribute to the development of insulin resistance and may underlie inflammatory complications of diabetes. Ceramides are sphingolipids that modulate a variety of cellular responses including cell death, autophagy, insulin signaling, and inflammation. In this study we investigated the intersection between TLR4-mediated inflammatory signaling and saturated fatty acids with regard to ceramide generation. Primary macrophages treated with lipopolysaccharide (LPS) did not produce C16 ceramide, whereas palmitate exposure led to a modest increase in this sphingolipid. Strikingly, the combination of LPS and palmitate led to a synergistic increase in C16 ceramide. This response occurred via cross-talk at the level of de novo ceramide synthesis in the ER. The synergistic response required TLR4 signaling via MyD88 and TIR-domain-containing adaptor-inducing interferon beta (TRIF), whereas palmitate-induced ceramide production occurred independent of these inflammatory molecules. This ceramide response augmented IL-1β and TNFα release, a process that may contribute to the enhanced inflammatory response in metabolic diseases characterized by dyslipidemia.
Collapse
Affiliation(s)
- Joel D Schilling
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Thomas GD, Rückerl D, Maskrey BH, Whitfield PD, Blaxter ML, Allen JE. The biology of nematode- and IL4Rα-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics. Blood 2012; 120:e93-e104. [PMID: 23074280 PMCID: PMC4314526 DOI: 10.1182/blood-2012-07-442640] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/10/2012] [Indexed: 01/01/2023] Open
Abstract
Alternatively activated macrophages (AAMϕ) are a major component of the response to helminth infection; however, their functions remain poorly defined. To better understand the helminth-induced AAMϕ phenotype, we performed a systems-level analysis of in vivo derived AAMϕ using an established mouse model. With next-generation RNA sequencing, we characterized the transcriptomes of peritoneal macrophages from BALB/c and IL4Rα(-/-) mice elicited by the nematode Brugia malayi, or via intraperitoneal thioglycollate injection. We defined expression profiles of AAMϕ-associated cytokines, chemokines, and their receptors, providing evidence that AAMϕ contribute toward recruitment and maintenance of eosinophilia. Pathway analysis highlighted complement as a potential AAMϕ-effector function. Up-regulated mitochondrial genes support in vitro evidence associating mitochondrial metabolism with alternative activation. We mapped macrophage transcription start sites, defining over-represented cis-regulatory motifs within AAMϕ-associated promoters. These included the binding site for PPAR transcription factors, which maintain mitochondrial metabolism. Surprisingly PPARγ, implicated in the maintenance of AAMϕ, was down-regulated on infection. PPARδ expression, however, was maintained. To explain how PPAR-mediated transcriptional activation could be maintained, we used lipidomics to quantify AAMϕ-derived eicosanoids, potential PPAR ligands. We identified the PPARδ ligand PGI(2) as the most abundant AAMϕ-derived eicosanoid and propose a PGI(2)-PPARδ axis maintains AAMϕ during B malayi implantation.
Collapse
Affiliation(s)
- Graham D Thomas
- Institute of Immunology and Infection Research and Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
204
|
Garrett TA, O'Neill AC, Hopson ML. Quantification of cardiolipin molecular species in Escherichia coli lipid extracts using liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2267-2274. [PMID: 22956318 DOI: 10.1002/rcm.6350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Cardiolipin (CL), a glycerophospholipid containing four acyl chains, is found in most organisms including Gram-negative bacteria such as Escherichia coli. While CL composes only a fraction of the total glycerophospholipids, the four acyl chains lead to a large number of possible molecular species as defined by the total number of carbons and unsaturations in the acyl chains. Understanding the molecular composition of CL, and how it changes under different growth conditions, will aid in understanding the complex role of CL in E. coli. METHODS Normal-phase liquid chromatography/electrospray ionization mass spectrometry was used to quantify the CL molecular species (as defined by the total number of carbons:unsaturations in the acyl chains) in lipid extracts prepared from E. coli grown at 15 °C, 30 °C, 37 °C and 42 °C. RESULTS Fifty-six different CL species were identified as [M-2H](2-) ions in E. coli lipid extracts ranging from 60:0 to 72:4. CL species with an increased total number of unsaturations were more abundant in lipid extracts prepared from cells grown at 15 °C as compared to higher temperatures. CONCLUSIONS This work characterizes the CL composition of E. coli cells grown at various temperatures. By quantifying CL species at a molecular level we have illuminated the molecular complexity of the CL in this relatively simple model organism. This data will be useful for understanding CL function in E. coli and other organisms.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, Box 580, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA.
| | | | | |
Collapse
|
205
|
Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem 2012; 84:8917-26. [PMID: 23039336 DOI: 10.1021/ac302154g] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A "shotgun" lipidomics strategy consisting of sequential functional group selective chemical modification reactions coupled with high-resolution/accurate mass spectrometry and "targeted" tandem mass spectrometry (MS/MS) analysis has been developed and applied toward the comprehensive identification, characterization and quantitative analysis of changes in relative abundances of >600 individual glycerophospholipid, glycerolipid, sphingolipid and sterol lipids between a primary colorectal cancer (CRC) cell line, SW480, and its isogenic lymph node metastasized derivative, SW620. Selective chemical derivatization of glycerophosphoethanolamine and glycerophosphoserine lipids using a "fixed charge" sulfonium ion containing, d(6)-S,S'-dimethylthiobutanoylhydroxysuccinimide ester (d(6)-DMBNHS) reagent was used to eliminate the possibility of isobaric mass overlap of these species with the precursor ions of all other lipids in the crude extracts, thereby enabling their unambiguous assignment, while subsequent selective mild acid hydrolysis of plasmenyl (vinyl-ether) containing lipids using formic acid enabled these species to be readily differentiated from isobaric mass plasmanyl (alkyl-ether) containing lipids. Using this approach, statistically significant differences in the abundances of numerous lipid species previously identified as being associated with cancer progression or that play known roles as mediators in a range of physiological and pathological processes were observed between the SW480 and SW620 cells. Most notably, these included increased plasmanylcholine and triglyceride lipid levels, decreased plasmenylethanolamine lipids, decreased C-16 containing sphingomyelin and ceramide lipid levels, and a dramatic increase in the abundances of total cholesterol ester and triglyceride lipids in the SW620 cells compared to those in the SW480 cells.
Collapse
Affiliation(s)
- Cassie J Fhaner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | | | | | | | | |
Collapse
|
206
|
Ecker J. Profiling eicosanoids and phospholipids using LC-MS/MS: principles and recent applications. J Sep Sci 2012; 35:1227-35. [PMID: 22733504 DOI: 10.1002/jssc.201200056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eicosanoids are potent lipid mediators involved in numerous physiological and pathophysiological processes. Precursors are polyunsaturated fatty acids liberated from membrane phospholipids. Thus, profiling and quantification of these molecules has gained a lot of attention during last years. Eicosanoids and phospholipids are commonly profiled by LC-MS/MSbecause this technique allows accurate quantification within acceptable run-times. This article therefore focuses on liquid chromatography and the ESI-MS/MS analysis of proinflammatory lipid mediators, particularly arachidonic acid (C20:4) derived eicosanoids and their precursors phospholipids. Recent analytical developments for quantification of these compounds are highlighted and analytical challenges are discussed. Furthermore, applications such as the use of these molecules as biomarkers are presented.
Collapse
Affiliation(s)
- Josef Ecker
- ABF Analytisch-Biologisches Forschungslabor GmbH, Munich, Germany.
| |
Collapse
|
207
|
Lipidomic profiling of model organisms and the world's major pathogens. Biochimie 2012; 95:109-15. [PMID: 22971440 DOI: 10.1016/j.biochi.2012.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023]
Abstract
Lipidomics is a subspecialty of metabolomics that focuses on water insoluble metabolites that form membrane barriers. Most lipidomic databases catalog lipids from common model organisms, like humans or Escherichia coli. However, model organisms' lipid profiles show surprisingly little overlap with those of specialized pathogens, creating the need for organism-specific lipidomic databases. Here we review rapid progress in lipidomic platform development with regard to chromatography, detection and bioinformatics. We emphasize new methods of comparative lipidomics, which use aligned datasets to identify lipids changed after introducing a biological variable. These new methods provide an unprecedented ability to broadly and quantitatively describe lipidic change during biological processes and identify changed lipids with low error rates.
Collapse
|
208
|
Chitraju C, Trötzmüller M, Hartler J, Wolinski H, Thallinger GG, Lass A, Zechner R, Zimmermann R, Köfeler HC, Spener F. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res 2012; 53:2141-2152. [PMID: 22872753 DOI: 10.1194/jlr.m028902] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver steatosis can be induced by fasting or high-fat diet. We investigated by lipidomic analysis whether such metabolic states are reflected in the lipidome of hepatocyte lipid droplets (LDs) from mice fed normal chow diet (FED), fasted (FAS), or fed a high-fat diet (HFD). LC-MS/MS at levels of lipid species profiles and of lipid molecular species uncovered a FAS phenotype of LD enriched in triacylglycerol (TG) molecular species with very long-chain (VLC)-PUFA residues and an HFD phenotype with less unsaturated TG species in addition to characteristic lipid marker species. Nutritional stress did not result in dramatic structural alterations in diacylglycerol (DG) and phospholipid (PL) classes. Moreover, molecular species of bulk TG and of DG indicated concomitant de novo TG synthesis and lipase-catalyzed degradation to be active in LDs. DG species with VLC-PUFA residues would be preferred precursors for phosphatidylcholine (PC) species, the others for TG molecular species. In addition, molecular species of PL classes fitted the hepatocyte Kennedy and phosphatidylethanolamine methyltransferase pathways. We demonstrate that lipidomic analysis of LDs enables phenotyping of nutritional stress. TG species are best suited for such phenotyping, whereas structural analysis of TG, DG, and PL molecular species provides metabolic insights.
Collapse
Affiliation(s)
- Chandramohan Chitraju
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Jürgen Hartler
- Institute for Genomics and Bioinformatics, Graz University of Technology, and Core Facility Bioinformatics, Austrian Centre for Industrial Biotechnology, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, and Core Facility Bioinformatics, Austrian Centre for Industrial Biotechnology, 8010 Graz, Austria
| | - Achim Lass
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Rudolf Zechner
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Robert Zimmermann
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Harald C Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria.
| |
Collapse
|
209
|
Hartler J, Tharakan R, Köfeler HC, Graham DR, Thallinger GG. Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform 2012; 14:375-90. [PMID: 22764120 DOI: 10.1093/bib/bbs030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipidomics, the systematic study of the lipid composition of a cell or tissue, is an invaluable complement to knowledge gained by genomics and proteomics research. Mass spectrometry provides a means to detect hundreds of lipids in parallel, and this includes low abundance species of lipids. Nevertheless, frequently occurring isobaric and isomeric lipid species complicate lipidomics analyses from an analytical and bioinformatics perspective. Various MS/MS strategies have evolved to resolve ambiguous identifications of lipid species, and these strategies have been supported by corresponding bioinformatics analysis tools. This review intends to familiarize readers with available bioinformatics MS/MS analysis tools and databases, the structural information obtainable from these, and their applicability to different MS/MS strategies. Finally, future challenges in detecting double bond positions are investigated from a bioinformatics perspective.
Collapse
|
210
|
Abstract
Inflammation and lipid signaling are intertwined modulators of homeostasis and immunity. In addition to the extensively studied eicosanoids and inositol phospholipids, emerging studies indicate that many other lipid species act to positively and negatively regulate inflammatory responses. Conversely, inflammatory signaling can significantly alter lipid metabolism in the liver, adipose tissue, skeletal muscle, and macrophage in the context of infection, diabetes, and atherosclerosis. Here, we review recent findings related to this interconnected network from the perspective of immunity and metabolic disease.
Collapse
Affiliation(s)
- Christopher K Glass
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0673, USA.
| | | |
Collapse
|
211
|
Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, Cheng TY, Annand JW, Kim K, Shamputa IC, McConnell MJ, Debono CA, Behar SM, Minnaard AJ, Murray M, Barry CE, Matsunaga I, Moody DB. A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2012; 18:1537-49. [PMID: 22195556 DOI: 10.1016/j.chembiol.2011.10.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/18/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
Abstract
The lipidic envelope of Mycobacterium tuberculosis promotes virulence in many ways, so we developed a lipidomics platform for a broad survey of cell walls. Here we report two new databases (MycoMass, MycoMap), 30 lipid fine maps, and mass spectrometry datasets that comprise a static lipidome. Further, by rapidly regenerating lipidomic datasets during biological processes, comparative lipidomics provides statistically valid, organism-wide comparisons that broadly assess lipid changes during infection or among clinical strains of mycobacteria. Using stringent data filters, we tracked more than 5,000 molecular features in parallel with few or no false-positive molecular discoveries. The low error rates allowed chemotaxonomic analyses of mycobacteria, which describe the extent of chemical change in each strain and identified particular strain-specific molecules for use as biomarkers.
Collapse
Affiliation(s)
- Emilie Layre
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K. Flexibility of a eukaryotic lipidome--insights from yeast lipidomics. PLoS One 2012; 7:e35063. [PMID: 22529973 PMCID: PMC3329542 DOI: 10.1371/journal.pone.0035063] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022] Open
Abstract
Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism.
Collapse
Affiliation(s)
- Christian Klose
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michal A. Surma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mathias J. Gerl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Felix Meyenhofer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
213
|
Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab 2012; 15:432-7. [PMID: 22482726 DOI: 10.1016/j.cmet.2011.11.013] [Citation(s) in RCA: 441] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/22/2011] [Indexed: 10/28/2022]
Abstract
Metabolic adaptation is a key component of macrophage plasticity and polarization, instrumental to their function in homeostasis, immunity, and inflammation. Macrophage products also impact metabolism, as illustrated by obesity-associated pathologies. Defining the mechanisms regulating macrophage metabolic activity and orchestration of metabolism by macrophages is crucial to pathology and therapeutic intervention.
Collapse
Affiliation(s)
- Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology, and Research, #04-06 Immunos, 8A Biomedical Grove, Singapore, Republic of Singapore.
| | | |
Collapse
|
214
|
Horn PJ, Chapman KD. Lipidomics in tissues, cells and subcellular compartments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:69-80. [PMID: 22117762 DOI: 10.1111/j.1365-313x.2011.04868.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mass spectrometry (MS) advances in recent years have revolutionized the biochemical analysis of lipids in plants, and made possible new theories about the structural diversity and functional complexity of lipids in plant cells. Approaches have been developed to profile the lipidome of plants with increasing chemical and spatial resolution. Here we highlight a variety of methods for lipidomics analysis at the tissue, cellular and subcellular levels. These procedures allow the simultaneous identification and quantification of hundreds of lipids species in tissue extracts by direct-infusion MS, localization of lipids in tissues and cells by laser desorption/ionization MS, and even profiling of lipids in individual subcellular compartments by direct-organelle MS. Applications of these approaches to achieve improved understanding of plant lipid metabolism, compartmentation and function are discussed.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | | |
Collapse
|
215
|
Sabidó E, Quehenberger O, Shen Q, Chang CY, Shah I, Armando AM, Andreyev A, Vitek O, Dennis EA, Aebersold R. Targeted proteomics of the eicosanoid biosynthetic pathway completes an integrated genomics-proteomics-metabolomics picture of cellular metabolism. Mol Cell Proteomics 2012; 11:M111.014746. [PMID: 22361236 DOI: 10.1074/mcp.m111.014746] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eicosanoids constitute a diverse class of bioactive lipid mediators that are produced from arachidonic acid and play critical roles in cell signaling and inflammatory aspects of numerous diseases. We have previously quantified eicosanoid metabolite production in RAW264.7 macrophage cells in response to Toll-like receptor 4 signaling and analyzed the levels of transcripts coding for the enzymes involved in the eicosanoid metabolite biosynthetic pathways. We now report the quantification of changes in protein levels under similar experimental conditions in RAW264.7 macrophages by multiple reaction monitoring mass spectrometry, an accurate targeted protein quantification method. The data complete the first fully integrated genomic, proteomic, and metabolomic analysis of the eicosanoid biochemical pathway.
Collapse
Affiliation(s)
- Eduard Sabidó
- Department of Biology, Institute of Molecular Systems Biology and Competence Center for Systems Physiology and Metabolic Disease, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Farwanah H, Kolter T. Lipidomics of glycosphingolipids. Metabolites 2012; 2:134-64. [PMID: 24957371 PMCID: PMC3901200 DOI: 10.3390/metabo2010134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 01/14/2023] Open
Abstract
Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed.
Collapse
Affiliation(s)
- Hany Farwanah
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| | - Thomas Kolter
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
217
|
Herzog R, Schuhmann K, Schwudke D, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A. LipidXplorer: a software for consensual cross-platform lipidomics. PLoS One 2012; 7:e29851. [PMID: 22272252 PMCID: PMC3260173 DOI: 10.1371/journal.pone.0029851] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023] Open
Abstract
LipidXplorer is the open source software that supports the quantitative characterization of complex lipidomes by interpreting large datasets of shotgun mass spectra. LipidXplorer processes spectra acquired on any type of tandem mass spectrometers; it identifies and quantifies molecular species of any ionizable lipid class by considering any known or assumed molecular fragmentation pathway independently of any resource of reference mass spectra. It also supports any shotgun profiling routine, from high throughput top-down screening for molecular diagnostic and biomarker discovery to the targeted absolute quantification of low abundant lipid species. Full documentation on installation and operation of LipidXplorer, including tutorial, collection of spectra interpretation scripts, FAQ and user forum are available through the wiki site at: https://wiki.mpi-cbg.de/wiki/lipidx/index.php/Main_Page.
Collapse
Affiliation(s)
- Ronny Herzog
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Internal Medicine III, Carl Gustav Carus Clinics of Dresden University of Technology, Dresden, Germany
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Internal Medicine III, Carl Gustav Carus Clinics of Dresden University of Technology, Dresden, Germany
| | - Dominik Schwudke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Julio L. Sampaio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Clinics of Dresden University of Technology, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Centre, Dresden University of Technology, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
218
|
Sud M, Fahy E, Cotter D, Dennis EA, Subramaniam S. LIPID MAPS-Nature Lipidomics Gateway: An Online Resource for Students and Educators Interested in Lipids. JOURNAL OF CHEMICAL EDUCATION 2012; 89:291-292. [PMID: 24764601 PMCID: PMC3995124 DOI: 10.1021/ed200088u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The LIPID MAPS-Nature Lipidomics Gateway is a free, comprehensive online resource providing tutorials and instructional material, experimental data for lipids and genes along with protocols and standards, databases of lipid structures and lipid-associated genes or proteins, and a variety of lipidomics tools.
Collapse
Affiliation(s)
- Manish Sud
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093 United States
| | - Eoin Fahy
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093 United States
| | - Dawn Cotter
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093 United States
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093 United States
| | - Shankar Subramaniam
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093 United States
- Departments of Bioengineering, Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 United States
| |
Collapse
|
219
|
Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:249-56. [PMID: 22155285 DOI: 10.1016/j.bbalip.2011.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023]
Abstract
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.
Collapse
|
220
|
Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: A tool for monitoring PE metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1081-9. [DOI: 10.1016/j.bbalip.2011.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/17/2011] [Accepted: 09/29/2011] [Indexed: 11/23/2022]
|
221
|
Affiliation(s)
- Jane Stock
- European Atherosclerosis Society, Kronhusgatan 11, Kronhusgatan 11, 411 05 Gothenburg, Sweden.
| |
Collapse
|
222
|
Affiliation(s)
- Oswald Quehenberger
- Departments of Medicine and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
223
|
Brouwers JF. Liquid chromatographic–mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:763-75. [DOI: 10.1016/j.bbalip.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
|
224
|
A systems biology approach to nutritional immunology - focus on innate immunity. Mol Aspects Med 2011; 33:14-25. [PMID: 22061966 DOI: 10.1016/j.mam.2011.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
Innate immunity and nutrient metabolism are complex biological systems that must work in concert to sustain and preserve life. The effector cells of the innate immune system rely on essential nutrients to generate energy, produce metabolic precursors for macromolecule biosynthesis and tune their responses to infectious agents. Thus disruptions to nutritional status have a substantial impact on immune competence and can result in increased susceptibility to infection in the case of nutrient deficiency, or chronic inflammation in the case of over-nutrition. The traditional, reductionist methods used in the study of nutritional immunology are incapable of exploring the extremely complex interactions between nutrient metabolism and innate immunity. Here, we review a relatively new analytical approach, systems biology, and highlight how it can be applied to nutritional immunology to provide a comprehensive view of the mechanisms behind nutritional regulation of the innate immune system.
Collapse
|
225
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
226
|
Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, Dinasarapu AR, Maurya MR. Bioinformatics and systems biology of the lipidome. Chem Rev 2011; 111:6452-90. [PMID: 21939287 PMCID: PMC3383319 DOI: 10.1021/cr200295k] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Subramaniam
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
- Departments of Chemistry and Biochemistry, and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Eoin Fahy
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Manish Sud
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Robert W. Byrnes
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Dawn Cotter
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Ashok Reddy Dinasarapu
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Mano Ram Maurya
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
227
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 588] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
228
|
Abstract
Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the "comprehensive lipidomics analysis by separation simplification" (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues.
Collapse
Affiliation(s)
- Richard Harkewicz
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093-0601, USA.
| | | |
Collapse
|
229
|
Garzón B, Oeste CL, Díez-Dacal B, Pérez-Sala D. Proteomic studies on protein modification by cyclopentenone prostaglandins: Expanding our view on electrophile actions. J Proteomics 2011; 74:2243-63. [DOI: 10.1016/j.jprot.2011.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|
230
|
Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:648-56. [PMID: 21787881 DOI: 10.1016/j.bbalip.2011.07.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/21/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022]
Abstract
Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids are achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. .
Collapse
Affiliation(s)
- Oswald Quehenberger
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA.
| | | | | |
Collapse
|
231
|
Jung HR, Sylvänne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K. High throughput quantitative molecular lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:925-34. [PMID: 21767661 DOI: 10.1016/j.bbalip.2011.06.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
Abstract
Applications in biomedical research increasingly demand detailed lipid molecule information acquired at high throughput. Although the recent advances in lipidomics offer to delineate the lipidomes in detail, the challenge remains in performing such analyses at the requested quality and to maintain the quality also in a high throughput setting. In this review we describe a high throughput molecular lipidomic solution based on robotic assisted sample preparation and lipid extraction and multiple lipidomic platforms integrated with a sophisticated bioinformatics system. As demonstrated, the virtue of this lipidomic toolkit lies in its high throughput delivery of comprehensive quantitative lipidomic outputs at the molecular lipid level, its ease of scalability and its capability to serve in a regulatory setting. We anticipate that this toolkit will contribute to basic research, nutritional research and promote the discovery of new disease biomarkers, disease related mechanisms of actions and drug targets.
Collapse
|
232
|
Murphy RC, Leiker TJ, Barkley RM. Glycerolipid and cholesterol ester analyses in biological samples by mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:776-83. [PMID: 21757029 DOI: 10.1016/j.bbalip.2011.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Neutral lipids are a diverse family of hydrophobic biomolecules that have important roles in cellular biochemistry of all living species but have in common the property of charge neutrality. A large component of neutral lipids is the glycerolipids composed of triacylglycerols, diacylglycerols, and monoacylglycerols that can serve as cellular energy stores as well as signaling molecules. Another abundant lipid class in many cells is the cholesterol esters that are on one hand sterols and the other fatty acyl lipids, but in either case are neutral lipids involved in cholesterol homeostasis and transport in the blood. The analysis of these molecules in the context of lipidomics remains challenging because of their charge neutrality and the complex mixtures of molecular species present in cells. Various techniques have been used to ionize these neutral lipids prior to mass spectrometric analysis including electron ionization, atmospheric chemical ionization, electrospray ionization and matrix assisted laser desorption/ionization. Various approaches to deal with the complex mixture of molecular species have been developed including shotgun lipidomics and chromatographic-based separations such as gas chromatography, reversed phase liquid chromatography, and normal phase liquid chromatography. Several applications of these approaches are discussed. .
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado, Denver, CO, USA.
| | | | | |
Collapse
|
233
|
Fernando H, Bhopale KK, Kondraganti S, Kaphalia BS, Shakeel Ansari GA. Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicol Appl Pharmacol 2011; 255:127-37. [PMID: 21736892 DOI: 10.1016/j.taap.2011.05.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022]
Abstract
Alcoholic liver disease (ALD) is a serious health problem with significant morbidity and mortality. In this study we examined the progression of ALD along with lipidomic changes in rats fed ethanol for 2 and 3 months to understand the mechanism, and identify possible biomarkers. Male Fischer 344 rats were fed 5% ethanol or caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet. Animals were killed at the end of 2 and 3 months and plasma and livers were collected. Portions of the liver were fixed for histological and immunohistological studies. Plasma and the liver lipids were extracted and analyzed by nuclear magnetic resonance (NMR) spectroscopy. A time dependent fatty infiltration was observed in the livers of ethanol-fed rats. Mild inflammation and oxidative stress were observed in some ethanol-fed rats at 3 months. The multivariate and principal component analysis of proton and phosphorus NMR spectroscopy data of extracted lipids from the plasma and livers showed segregation of ethanol-fed groups from the pair-fed controls. Significant hepatic lipids that were increased by ethanol exposure included fatty acids and triglycerides, whereas phosphatidylcholine (PC) decreased. However, both free fatty acids and PC decreased in the plasma. In liver lipids unsaturation of fatty acyl chains increased, contrary to plasma, where it decreased. Our studies confirm that over-accumulation of lipids in ethanol-induced liver steatosis accompanied by mild inflammation on long duration of ethanol exposure. Identified metabolic profile using NMR lipidomics could be further explored to establish biomarker signatures representing the etiopathogenesis, progression and/or severity of ALD.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
234
|
Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:637-47. [PMID: 21704189 DOI: 10.1016/j.bbalip.2011.06.009] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 01/22/2023]
Abstract
The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinformatics core in pursuit of these objectives.
Collapse
Affiliation(s)
- Eoin Fahy
- University of California, San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
235
|
Current world literature. Curr Opin Lipidol 2011; 22:231-6. [PMID: 21562387 DOI: 10.1097/mol.0b013e328347aeca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
236
|
Abstract
PURPOSE OF REVIEW The metabolic syndrome incorporating obesity, hypertension, dyslipidaemia and elevated plasma glucose has reached epidemic proportions in many Western countries leading to a dramatic increase in insulin resistance, steatosis and type 2 diabetes. Lipidomics presents a new set of tools to unravel the relationship between hyper-caloric diets and other environmental and genetic factors with the metabolic syndrome and disease progression. RECENT FINDINGS Plasma lipidomic studies are providing detailed characterisation of the dyslipidaemia associated with obesity and the metabolic syndrome. Combined with lipoprotein fractionation and dynamic modelling we are gaining a new comprehension of lipoprotein composition structure and function. At the population level genome-wide association studies are identifying potential loci linking lipid metabolism with disease pathogenesis. Analysis of tissue, cell and even organelle lipidomes are unravelling the complex relationships between lipotoxicity, inflammation, oxidative stress and cellular function. SUMMARY The global view of lipid metabolism offered by lipidomics is accelerating our understanding of disease processes and identifying new avenues of research into metabolic syndrome and its sequelae. The ongoing identification and validation of lipid biomarkers will likely see their introduction into clinical practice for improved quantification of disease risk, earlier identification of disease and improved patient management in the near future.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute and Department of Medicine, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
237
|
Murphy RC, Gaskell SJ. New applications of mass spectrometry in lipid analysis. J Biol Chem 2011; 286:25427-33. [PMID: 21632539 DOI: 10.1074/jbc.r111.233478] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry has emerged as a powerful tool for the analysis of all lipids. Lipidomic analysis of biological systems using various approaches is now possible with a quantitative measurement of hundreds of lipid molecular species. Although availability of reference and internal standards lags behind the field, approaches using stable isotope-labeled derivative tagging permit precise determination of specific phospholipids in an experimental series. The use of reactivity of ozone has enabled assessment of double bond positions in fatty acyl groups even when species remain in complex lipid mixtures. Rapid scanning tandem mass spectrometers are capable of quantitative analysis of hundreds of targeted lipids at high sensitivity in a single on-line chromatographic separation. Imaging mass spectrometry of lipids in tissues has opened new insights into the distribution of lipid molecular species with promising application to study pathophysiological events and diseases.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
238
|
Gross RW, Han X. Lipidomics at the interface of structure and function in systems biology. CHEMISTRY & BIOLOGY 2011; 18:284-91. [PMID: 21439472 PMCID: PMC3132894 DOI: 10.1016/j.chembiol.2011.01.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 12/11/2022]
Abstract
Cells, tissues, and biological fluids contain a diverse repertoire of many tens of thousands of structurally distinct lipids that play multiple roles in cellular signaling, bioenergetics, and membrane structure and function. In an era where lipid-related disease states predominate, lipidomics has assumed a prominent role in systems biology through its unique ability to directly identify functional alterations in multiple lipid metabolic and signaling networks. The development of shotgun lipidomics has led to the facile accrual of high density information on alterations in the lipidome mediating physiologic cellular adaptation during health and pathologic alterations during disease. Through both targeted and nontargeted investigations, lipidomics has already revealed the chemical mechanisms underlying many lipid-related disease states.
Collapse
Affiliation(s)
- Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
239
|
Integration of lipidomics and transcriptomics data towards a systems biology model of sphingolipid metabolism. BMC SYSTEMS BIOLOGY 2011; 5:26. [PMID: 21303545 PMCID: PMC3047436 DOI: 10.1186/1752-0509-5-26] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/08/2011] [Indexed: 12/15/2022]
Abstract
Background Sphingolipids play important roles in cell structure and function as well as in the pathophysiology of many diseases. Many of the intermediates of sphingolipid biosynthesis are highly bioactive and sometimes have antagonistic activities, for example, ceramide promotes apoptosis whereas sphingosine-1-phosphate can inhibit apoptosis and induce cell growth; therefore, quantification of the metabolites and modeling of the sphingolipid network is imperative for an understanding of sphingolipid biology. Results In this direction, the LIPID MAPS Consortium is developing methods to quantitate the sphingolipid metabolites in mammalian cells and is investigating their application to studies of the activation of the RAW264.7 macrophage cell by a chemically defined endotoxin, Kdo2-Lipid A. Herein, we describe a model for the C16-branch of sphingolipid metabolism (i.e., for ceramides with palmitate as the N-acyl-linked fatty acid, which is selected because it is a major subspecies for all categories of complex sphingolipids in RAW264.7 cells) integrating lipidomics and transcriptomics data and using a two-step matrix-based approach to estimate the rate constants from experimental data. The rate constants obtained from the first step are further refined using generalized constrained nonlinear optimization. The resulting model fits the experimental data for all species. The robustness of the model is validated through parametric sensitivity analysis. Conclusions A quantitative model of the sphigolipid pathway is developed by integrating metabolomics and transcriptomics data with legacy knowledge. The model could be used to design experimental studies of how genetic and pharmacological perturbations alter the flux through this important lipid biosynthetic pathway.
Collapse
|
240
|
Abstract
Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet.
Collapse
|
241
|
Sims K, Haynes CA, Kelly S, Allegood JC, Wang E, Momin A, Leipelt M, Reichart D, Glass CK, Sullards MC, Merrill AH. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 2010; 285:38568-79. [PMID: 20876532 PMCID: PMC2992289 DOI: 10.1074/jbc.m110.170621] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo2-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 109 molecules per cell in 24 h, based on the sum of subspecies analyzed by “lipidomic” mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function connected with it? The sphingolipids arise primarily from de novo biosynthesis based on [U-13C]palmitate labeling, inhibition by ISP1 (myriocin), and an apparent induction of many steps of the pathway (according to the distribution of metabolites and microarray analysis), with the exception of ceramide, which is also produced from pre-existing sources. Nonetheless, the activated RAW264.7 cells have a higher number of sphingolipids per cell because KLA inhibits cell division; thus, the cells are larger and contain increased numbers of membrane vacuoles termed autophagosomes, which were detected by the protein marker GFP-LC3. Indeed, de novo biosynthesis of sphingolipids performs an essential structural and/or signaling function in autophagy because autophagosome formation was eliminated by ISP1 in KLA-stimulated RAW264.7 cells (and mutation of serine palmitoyltransferase in CHO-LYB cells); furthermore, an anti-ceramide antibody co-localizes with autophagosomes in activated RAW264.7 cells versus the Golgi in unstimulated or ISP1-inhibited cells. These findings establish that KLA induces profound changes in sphingolipid metabolism and content in this macrophage-like cell line, apparently to produce sphingolipids that are necessary for formation of autophagosomes, which are thought to play important roles in the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Kacee Sims
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|