201
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
202
|
A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis teff) and Other Cereal-Based Ethiopian Injera. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4419955. [PMID: 35368804 PMCID: PMC8970856 DOI: 10.1155/2022/4419955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Fermented foods and beverages are the product of the enzymaticcally transformed food components which are acived by different microorganisms. Fermented foods have grown in popularity in recent years because of their alleged health benefits. Biogenic amines, bioactive peptides, antinutrient reduction, and polyphenol conversion to physiologically active chemicals are all possible health benefits of fermentation process products. In Ethiopian-fermented foods, which are mostly processed using spontaneous fermentation process. Injera is one of the fermented food products consumed in all corners of the country which sourdough fermentation could be achieved using different LAB and yeast strains. Moreover, the kind and concentration of the substrate and the type of microbial flora, as well as temperature, air supply, and pH, all influence the fermentation process of injera. This review article gives an overview of factors influencing the fermentation process of teff ('Eragrostis tef.') and other cereal-based Ethiopian injera.
Collapse
|
203
|
Eroğlu FE, Sanlier N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Crit Rev Food Sci Nutr 2022; 63:8066-8082. [PMID: 35317694 DOI: 10.1080/10408398.2022.2053060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.
Collapse
Affiliation(s)
- Fatma Elif Eroğlu
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
204
|
From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the feasibly of using traditional milk kefir grains for the production of water kefir-like beverages and assess the changes in the physicochemical characteristics and the microbial populations of the fermented beverages. To this end, experiments of milk fermentation were primarily conducted at different temperatures and upon selection of the optimal, a gradual substitution of the substrate was performed by replacing milk from a sucrose-based solution. After the successful fermentation of the sucrose substrate, fruit juices were used as fermentation substrates. Sensory evaluation of the sugar-based beverages was also performed in order to access their acceptability for consumption. According to the results, the transition from milk to water kefir is indeed feasible, leading to the production of beverages with relatively higher ethanol concentrations (up to 2.14 ± 0.12% w/v) than milk kefir and much lower lactic acid concentrations (up to 0.16 ± 0.01% w/v). During the fermentation of the sugary substrates, yeasts seemed to be dominant over lactic acid bacteria, in contrast to what was observed in the case of milk kefir, where LAB dominated. The sensory evaluation revealed that all sugar-based beverages were acceptable for consumption, with the fruit-based ones obtaining, though, a better score in all attributes.
Collapse
|
205
|
González-González F, Delgado S, Ruiz L, Margolles A, Ruas-Madiedo P. Functional bacterial cultures for dairy applications: towards improving safety, quality, nutritional and health benefit aspects. J Appl Microbiol 2022; 133:212-229. [PMID: 35238463 PMCID: PMC9539899 DOI: 10.1111/jam.15510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Traditionally, fermentation was used to preserve the shelf life of food. Currently, in addition to favouring food preservation, well standardized and controlled industrial processes are also aimed at improving the functional characteristics of the final product. In this regard, starter cultures have become an essential cornerstone of food production. The selection of robust microorganisms, well adapted to the food environment, has been followed by the development of microbial consortia that provide some functional characteristics, beyond their acidifying capacity, achieving safer, high‐quality foods with improved nutritional and health‐promoting properties. In addition to starters, adjunct cultures and probiotics, which normally do not have a relevant role in fermentation, are added to the food in order to provide some beneficial characteristics. This review focuses on highlighting the functional characteristics of food starters, as well as adjunct and probiotic cultures (mainly lactic acid bacteria and bifidobacteria), with a specific focus on the synthesis of metabolites for preservation and safety aspects (e.g. bacteriocins), organoleptic properties (e.g. exopolysaccharides), nutritional (e.g. vitamins) and health improvement (e.g. neuroactive molecules). Literature reporting the application of these functional cultures in the manufacture of foods, mainly those related to dairy production, such as cheeses and fermented milks, has also been updated.
Collapse
Affiliation(s)
- F González-González
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - S Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - L Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - A Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - P Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
206
|
Lang F, Wen J, Wu Z, Pan D, Wang L. Evaluation of probiotic yoghurt by the mixed culture with Lactobacillus plantarum A3. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
207
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
208
|
African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling. NPJ Sci Food 2022; 6:15. [PMID: 35181677 PMCID: PMC8857253 DOI: 10.1038/s41538-022-00130-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Traditional fermented foods are of major importance with respect to the socio-economic growth, food security, nutrition, and health of African consumers. In several African countries, traditional fermentation processes provide a means of food preservation, improving the shelf life and adding to the nutrients in the food products. As with any fermented foods, the associated food microbiota is of great importance and interest. Recent studies on the microbiome of African fermented foods using high-throughput DNA sequencing techniques have revealed the presence of diverse microbial populations of fundamental, technological, and commercial interest that could be harnessed to further improve health, food safety, and quality. This review provides an overview of African fermented foods, their microbiota, and the health-promoting potential of these foods and microbes.
Collapse
|
209
|
Zhao H, Lu Z, Lu Y. The potential of probiotics in the amelioration of hyperuricemia. Food Funct 2022; 13:2394-2414. [PMID: 35156670 DOI: 10.1039/d1fo03206b] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperuricemia is a common disease caused by metabolic disorders or the excessive intake of high-purine foods. Persistent hyperuricemia in extreme cases induces gout, and asymptomatic hyperuricemia is probably linked to other metabolic diseases, such as hypertension. The typical damage caused by asymptomatic hyperuricemia includes inflammation, oxidative stress and gut dysbiosis. Probiotics have broad potential applications as food additives, not as drug therapies, in the amelioration of hyperuricemia. In this review, we describe novel methods for potential hyperuricemia amelioration with probiotics. The pathways through which probiotics may ameliorate hyperuricemia are discussed, including the decrease in uric acid production through purine assimilation and XOD (xanthine oxidase) inhibition as well as enhanced excretion of uric acid production by promoting ABCG2 (ATP binding cassette subfamily G member 2) activity, respectively. Three possible probiotic-related therapeutic pathways for alleviating the syndrome of hyperuricemia are also summarized. The first mechanism is to alleviate the oxidation and inflammation induced by hyperuricemia through the inhibition of NLRP3 inflammasome, the second is to restore damaged intestinal epithelium barriers and prevent gut microbiota dysbiosis, and the third is to enhance the innate immune system by increasing the secretion of immunoglobulin A (sIgA) to resist the stimulus by hyperuricemia. We propose that future research should focus on superior strain resource isolation and insight into the cause-effect mechanisms of probiotics for hyperuricemia amelioration. The safety and effects of the application of probiotics in clinical use also need verification.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
210
|
Ghosh N, Das A, Biswas N, Mahajan SP, Madeshiya AK, Khanna S, Sen CK, Roy S. MYO-Inositol In Fermented Sugar Matrix Improves Human Macrophage Function. Mol Nutr Food Res 2022; 66:e2100852. [PMID: 35073444 PMCID: PMC9420542 DOI: 10.1002/mnfr.202100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened hos-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolstered respiratory burst activity and improved wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. Additionally, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerges as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| |
Collapse
|
211
|
Kamarinou CS, Papadopoulou OS, Doulgeraki AI, Tassou CC, Galanis A, Chorianopoulos NG, Argyri AA. Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products. Microorganisms 2022; 10:246. [PMID: 35208701 PMCID: PMC8875946 DOI: 10.3390/microorganisms10020246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the current study was to isolate indigenous lactic acid bacteria (LAB) from traditional Greek cheeses and assess their biochemical, technological, and functional characteristics, so as to develop novel cultures with multi-functional properties. Hence, 109 LAB isolates were recovered from traditional fresh cheeses and were evaluated in vitro for their gas production; proteolytic, lipolytic, and haemolytic activity; exopolysaccharide production (EPS); enzymatic potential; and ability to grow at 6.5% NaCl and at different pH, temperature, and anaerobic conditions. Consequently, 48 selected isolates were further evaluated for their survival under simulated gastrointestinal tract conditions, partial bile salt hydrolase activity, antibiotic resistance, and antimicrobial activity against pathogens. These isolates were also incorporated as co-cultures in yogurt production to examine their sensory characteristics and their survival in the product. Some prominent isolates that showed favorable technological and functional characteristics (good survival rates at low pH and bile salts, ability to produce β-galactosidase, and EPS) and attributed desirable sensory characteristics to yogurt were Lactococcuslactis (SRX2, SRX3, SRX5, and SMX16), Lactobacillus paracasei SRX10, and Lactiplantibacillusplantarum (FRX7, FB1), while Leuconostoc mesenteroides FMX3 and L. lactis SMX2 showed an anti-listerial activity in vitro. The results of the present study are promising for the production of novel dairy functional products with an enhanced quality and safety.
Collapse
Affiliation(s)
- Christina S. Kamarinou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Olga S. Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| |
Collapse
|
212
|
Witkamp RF. Bioactive Components in Traditional Foods Aimed at Health Promotion: A Route to Novel Mechanistic Insights and Lead Molecules? Annu Rev Food Sci Technol 2022; 13:315-336. [PMID: 35041794 DOI: 10.1146/annurev-food-052720-092845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional foods and diets can provide health benefits beyond their nutrient composition because of the presence of bioactive compounds. In various traditional healthcare systems, diet-based approaches have always played an important role, which has often survived until today. Therefore, investigating traditional foods aimed at health promotion could render not only novel bioactive substances but also mechanistic insights. However, compared to pharmacologically focused research on natural products, investigating such nutrition-based interventions is even more complicated owing to interacting compounds, less potent and relatively subtle effects, the food matrix, and variations in composition and intake. At the same time, technical advances in 'omics' technologies, cheminformatics, and big data analysis create new opportunities, further strengthened by increasing insights into the biology of health and homeostatic resilience. These are to be combined with state-of-the-art ethnobotanical research, which is key to obtaining reliable and reproducible data. Unfortunately, socioeconomic developments and climate change threaten traditional use and knowledge as well as biodiversity. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
213
|
Chan M, Liu D, Wu Y, Yang F, Howell K. Microorganisms in Whole Botanical Fermented Foods Survive Processing and Simulated Digestion to Affect Gut Microbiota Composition. Front Microbiol 2022; 12:759708. [PMID: 35035384 PMCID: PMC8757042 DOI: 10.3389/fmicb.2021.759708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
Botanical fermented foods have been shown to improve human health, based on the activity of potentially beneficial lactic acid bacteria (LAB) and yeasts and their metabolic outputs. However, few studies have explored the effects of prolonged storage and functional spices on microbial viability of whole fermented foods from fermentation to digestion. Even fewer have assessed their impact on the gut microbiota. Our study investigated the effects of production processes on LAB and yeast microbial viability and gut microbiota composition. We achieved this by using physicochemical assessments and an in vitro gastrointestinal and a porcine gut microbiota model. In low-salt sauerkraut, we assessed the effects of salt concentration, starter cultures, and prolonged storage, and in tibicos, prolonged storage and the addition of spices cayenne, ginger, and turmeric. In both food matrices, LAB counts significantly increased (p<0.05), reaching a peak of 7–8 log cfu/g, declining to 6–6.5 log cfu/g by day 96. Yeast viability remained at 5–6 log cfu/g in tibicos. Ginger tibicos had significantly increased LAB and yeast viability during fermentation and storage (p<0.05). For maximum microbial consumption, tibicos should be consumed within 28days, and sauerkraut, 7weeks. Simulated upper GI digestion of both products resulted in high microbial survival rates of 70–80%. The 82% microbial survival rate of cayenne tibicos was significantly higher than other treatments (p<0.05). 16S rRNA sequencing of simulated porcine colonic microbiota showed that both spontaneously fermented sauerkraut and tibicos increase the relative abundance of Megasphaera 85-fold. These findings will inform researchers, producers, and consumers about the factors that affect the microbial content of fermented foods, and their potential effects on the gut.
Collapse
Affiliation(s)
- Miin Chan
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Di Liu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Yingying Wu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Fan Yang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Kate Howell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
214
|
Baruah R, Ray M, Halami PM. Preventive and Therapeutic aspects of Fermented Foods. J Appl Microbiol 2022; 132:3476-3489. [PMID: 35000256 DOI: 10.1111/jam.15444] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
In recent times, the status of some fermented foods which are considered as functional foods that confer health benefits in certain disease conditions has grown rapidly. The health benefits of fermented foods are due to the presence of probiotic microbes and the bioactive compound formed during fermentation. Microbes involved and metabolites produced by them are highly species-specific and contribute to the authenticity of the fermented foods. Several studies pertaining to the effect of fermented foods on various disease conditions have been conducted in recent years using both animal models and clinical trials on humans. This review focuses on the impact of fermented foods on conditions like diabetes, cardiovascular disease (CVD), obesity, gastrointestinal disorder, cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Rwivoo Baruah
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Mousumi Ray
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Prakash M Halami
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| |
Collapse
|
215
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
216
|
The Clash of Microbiomes: From the Food Matrix to the Host Gut. Microorganisms 2022; 10:microorganisms10010116. [PMID: 35056566 PMCID: PMC8780850 DOI: 10.3390/microorganisms10010116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Food fermentation has led to the improvement of the safety characteristics of raw materials and the production of new foodstuffs with elevated organoleptic characteristics. The empirical observation that these products could have a potential health benefit has garnered the attention of the scientific community. Therefore, several studies have been conducted in animal and human hosts to decipher which of these products may have a beneficial outcome against specific ailments. However, despite the accumulating literature, a relatively small number of products have been authorized as ‘functional foods’ by regulatory bodies. Data inconsistency and lack of in-depth preclinical characterization of functional products could heavily contribute to this issue. Today, the increased availability of omics platforms and bioinformatic algorithms for comprehensive data analysis can aid in the systematic characterization of microbe–microbe, microbe–matrix, and microbe–host interactions, providing useful insights about the maximization of their beneficial effects. The incorporation of these platforms in food science remains a challenge; however, coordinated efforts and interdisciplinary collaboration could push the field toward the dawn of a new era.
Collapse
|
217
|
Shao Y, Kang Q, Zhu J, Zhao C, Hao L, Huang J, Lu J, Jia S, Yi J. Antioxidant properties and digestion behaviors of polysaccharides from Chinese yam fermented by Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
218
|
The role of ferments in food sustainability. NUTR HOSP 2022; 39:56-59. [DOI: 10.20960/nh.04313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
219
|
NIE Y, JIA Y, ZHANG X, LU S, LI B. Screening of mixed lactic acid bacteria starter and its effects on the quality and flavor compounds of fermented Lentinus edodes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.39222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Sen LU
- School of Food Science, China
| | - Bo LI
- School of Food Science, China
| |
Collapse
|
220
|
Cavicchia LOA, Almeida MEFD. Health benefits of Kombucha: drink and its biocellulose production. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
221
|
Potential Role of African Fermented Indigenous Vegetables in Maternal and Child Nutrition in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:3400329. [PMID: 34957295 PMCID: PMC8695012 DOI: 10.1155/2021/3400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Hunger and malnutrition continue to affect Africa especially the vulnerable children and women in reproductive age. However, Africa has indigenous foods and associated traditional technologies that can contribute to alleviation of hunger, malnutrition, and communicable and noncommunicable diseases. The importance of African indigenous vegetables is undeniable, only that they are season-linked and considered as "food for poor" despite their high nutritional contents. The utilization of African indigenous vegetables (AIVs) is hindered by postharvest losses and antinutrients affecting the bioavailability of nutrients. In Africa, fermentation is among the oldest food processing technologies with long history of safe use. Apart from extending shelf life and improving food organoleptic properties, fermentation of African indigenous vegetables (AIVs) is known to improve food nutritional values such as proteins, minerals, vitamins, and other beneficial phytochemicals. It can also increase bioavailability of various vitamins, minerals, and phytochemicals and increase synthesis of vital blood pressure regulators thus protecting against cardiovascular diseases and cancer and further helping fight certain malnutrition deficiencies. Some lactic acid bacteria (LAB) involved in food fermentation are known to produce exopolysaccharides with cholesterol-lowering, immunomodulator, antioxidant, and anticancer properties. Fermented foods (vegetables) are superior in quality and safety since most microorganisms involved in fermentation are good starter cultures that can inhibit the growth of foodborne pathogens and detoxify harmful compounds in foods. Thus, fermented foods can boost growth and well-being in children and women due to their higher nutritional contents. Therefore, fermentation of AIVs can contribute to the attainment of food and nutrition security especially among women and children who rely on these vegetables as a staple source of micronutrients and income. These benefits have a positive impact on the implementation of the second sustainable development goals and African Union agenda 2063. This review is aimed at shedding light on the potential of African fermented indigenous vegetables in combating maternal and child malnutrition in Sub-Sahara Africa.
Collapse
|
222
|
Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiol Spectr 2021; 9:e0049421. [PMID: 34851178 PMCID: PMC8668080 DOI: 10.1128/spectrum.00494-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The contribution of sustainably food processing to healthy intestinal microbial functions is of recent acquisition. The sourdough fermentation fits well with the most sustainable bread making. We manufactured baker’s yeast (BYB) and sourdough (t-SB30) breads, which first underwent to an in-depth characterization. According to nutritional questionnaires, we selected 40 volunteers adhering to the Mediterranean diet. Data on their fecal microbiota and metabolome allowed the selection of two highly representative fecal donors to separately run the Twin Mucosal-SHIME (Twin M-SHIME) under 2-week feeding with BYB and t-SB30. Bread feeding did not affect the microbial composition at phylum and family levels of both donors, in all Twin M-SHIME colon tracts, and lumen and mucosal compartments. The genus core microbiota showed few significant fluctuations, which regarded the relative abundances of Lactobacillus and Leuconostoc according to feeding with BYB and t-SB30, respectively. Compared with BYB, the content of all short chain fatty acids (SCFA), and isovaleric and 2-methylbutyric acids significantly increased with t-SB30 feeding. This was evident for all Twin M-SHIME colon tracts and both donors. The same was found for the content of Asp, Thr, Glu, GABA, and Orn. The bread characterization made possible to identify the main features responsible for this metabolic response. Compared with BYB, t-SB30 had much higher contents of resistant starch, peptides, and free amino acids, and an inhomogeneous microstructure. We used the most efficient approach to investigate a staple food component, excluding interferences from other dietary factors and attenuating human physiology overlaps. The daily consumption of sourdough bread may promote the healthy microbiota metabolism at colon level. IMPORTANCE Knowledge on environmental factors, which may compose the gut microbiota, and drive the host physiology and health is of paramount importance. Human dietary habits and food compositions are pivotal drivers to assemble the human gut microbiota, but, inevitably, unmapped for many diet components, which are poorly investigated individually. Approximately 30% of the human diet consists of fermented foods and beverages. Bread, a fermented/leavened food, is a basic component of the human diet. Its potential effect on gut microbiota composition and functionality is challenging. In this study, we industrially made baker’s yeast and sourdough breads, which were used to feed the Twin Mucosal-SHIME, a worldwide scientifically validated gastrointestinal simulator. Only the consumption of sourdough bread has the potential to enhance the synthesis of short chain fatty acids and free amino acids at the colon level.
Collapse
|
223
|
Zhou WBS, Meng J, Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic Pain? Front Mol Neurosci 2021; 14:785214. [PMID: 34858140 PMCID: PMC8631544 DOI: 10.3389/fnmol.2021.785214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
One of the major clinical manifestations of peripheral neuropathy, either resulting from trauma or diseases, is chronic pain. While it significantly impacts patients’ quality of life, the underlying mechanisms remain elusive, and treatment is not satisfactory. Systemic chronic inflammation (SCI) that we are referring to in this perspective is a state of low-grade, persistent, non-infective inflammation, being found in many physiological and pathological conditions. Distinct from acute inflammation, which is a protective process fighting against intruders, SCI might have harmful effects. It has been associated with many chronic non-communicable diseases. We hypothesize that SCI could be a predisposing and/or precipitating factor in the development of chronic pain, as well as associated comorbidities. We reviewed evidence from human clinical studies indicating the coexistence of SCI with various types of chronic pain. We also collated existing data about the sources of SCI and who could have it, showing that those individuals or patients having SCI usually have higher prevalence of chronic pain and psychological comorbidities. We thus elaborate on the need for further research in the connection between SCI and chronic pain. Several hypotheses have been proposed to explain these complex interactions.
Collapse
Affiliation(s)
- Wen Bo Sam Zhou
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - JingWen Meng
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Ji Zhang
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University, Montreal, QC, Canada
| |
Collapse
|
224
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
225
|
Yang M, Li N, Tong L, Fan B, Wang L, Wang F, Liu L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
226
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [DOI: https:/doi.org/10.1186/s42779-021-00109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 09/01/2023]
Abstract
AbstractThe cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits.Bacillus(12 products),Lactobacillus(12 products),Micrococcus(9 products), andStaphylococcus(9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
|
227
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
228
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
229
|
Cardiovascular Effects of Chocolate and Wine-Narrative Review. Nutrients 2021; 13:nu13124269. [PMID: 34959821 PMCID: PMC8704773 DOI: 10.3390/nu13124269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
The consumption of food for pleasure is mainly associated with adverse health effects. This review was carried out to verify recent reports on the impact of chocolate and wine consumption on cardiovascular health, with a particular focus on atherosclerosis. On one side, these products have proven adverse effects on the cardiovascular system, but on the other hand, if consumed in optimal amounts, they have cardiovascular benefits. The submitted data suggest that the beneficial doses are 30–50 g and 130/250 mL for chocolate and wine, respectively, for women and men. The accumulated evidence indicates that the active ingredients in the products under consideration in this review are phenolic compounds, characterized by anti-inflammatory, antioxidant, and antiplatelet properties. However, there are also some reports of cardioprotective properties of other compounds such as esters, amines, biogenic amines, amino acids, fatty acids, mineral ingredients, and vitamins. Our narrative review has shown that in meta-analyses of intervention studies, consumption of chocolate and wine was positively associated with the beneficial outcomes associated with the cardiovascular system. In contrast, the assessment with the GRADE (Grading of Recommendations Assessment, Development and Evaluation) scale did not confirm this phenomenon. In addition, mechanisms of action of bioactive compounds present in chocolate and wine depend on some factors, such as age, sex, body weight, and the presence of additional medical conditions. Patients using cardiovascular drugs simultaneously with both products should be alert to the risk of pharmacologically relevant interactions during their use. Our narrative review leads to the conclusion that there is abundant evidence to prove the beneficial impact of consuming both products on cardiovascular health, however some evidence still remains controversial. Many authors of studies included in this review postulated that well-designed, longitudinal studies should be performed to determine the effects of these products and their components on atherosclerosis and other CVD (Cardiovascular Disease) disease.
Collapse
|
230
|
Buszewski B, Maślak E, Złoch M, Railean-Plugaru V, Kłodzińska E, Pomastowski P. A new approach to identifying pathogens, with particular regard to viruses, based on capillary electrophoresis and other analytical techniques. Trends Analyt Chem 2021; 139:116250. [PMID: 34776563 PMCID: PMC8573725 DOI: 10.1016/j.trac.2021.116250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fast determination, identification and characterization of pathogens is a significant challenge in many fields, from industry to medicine. Standard approaches (e.g., culture media and biochemical tests) are known to be very time-consuming and labor-intensive. Conversely, screening techniques demand a quick and low-cost grouping of microbial isolates, and current analysis call for broad reports of pathogens, involving the application of molecular, microscopy, and electromigration techniques, DNA fingerprinting and also MALDI-TOF methods. The present COVID-19 pandemic is a crisis that affects rich and poor countries alike. Detection of SARS-CoV-2 in patient samples is a critical tool for monitoring disease spread, guiding therapeutic decisions and devising social distancing protocols. The goal of this review is to present an innovative methodology based on preparative separation of pathogens by electromigration techniques in combination with simultaneous analysis of the proteome, lipidome, and genome using laser desorption/ionization analysis.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewa Kłodzińska
- Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, 01-982, Warsaw, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
231
|
Craig WJ, Brothers CJ. Nutritional Content and Health Profile of Non-Dairy Plant-Based Yogurt Alternatives. Nutrients 2021; 13:nu13114069. [PMID: 34836324 PMCID: PMC8619131 DOI: 10.3390/nu13114069] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Yogurt is considered a healthy, nutritious food in many cultures. With a significant number of people experiencing dairy intolerance, and support for a more sustainable diet, consumer demand for dairy alternatives has surged. The aim of this study was to conduct a cross-sectional survey of plant-based yogurt alternatives to assess their nutritional content and health profile. A total of 249 non-dairy yogurt alternatives were analyzed from the nutrition label listed on the commercial package. The various yogurt alternatives contained extracts of coconut (n = 79), almonds (n = 62), other nuts or seeds (n = 20), oats (n = 20), legumes (n = 16), and mixed blends (n = 52). At least one-third of the yogurt alternatives had 5 g or more of protein/serving. Only 45% of the yogurt alternatives had calcium levels fortified to at least 10% of daily value (DV), while only about one in five had adequate vitamin D and B12 fortification at the 10% DV level. One-half of the yogurt alternatives had high sugar levels, while 93% were low in sodium. Except for the coconut-based products, the yogurts were not high in fat or saturated fat. The yogurt alternatives were not fortified as frequently or to the same levels as the corresponding non-dairy, plant-based beverages.
Collapse
Affiliation(s)
- Winston J. Craig
- Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| | - Cecilia J. Brothers
- Department of Biology, Walla Walla University, College Place, WA 99324, USA;
| |
Collapse
|
232
|
Murphy F, Gathercole J, Lee E, Homewood I, Ross AB, Clerens S, Maes E. Discrimination of milk fermented with different starter cultures by MALDI-TOF MS and REIMS fingerprinting. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
233
|
Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021; 10:foods10112639. [PMID: 34828920 PMCID: PMC8620815 DOI: 10.3390/foods10112639] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. In this review, we aim to gather and discuss available information on the health-related effects of LAB-fermented foods. In particular, we focused on the most widely consumed LAB-fermented foods such as yoghurt, kefir, cheese, and plant-based products such as sauerkrauts and kimchi.
Collapse
|
234
|
Zhao D, Cao J, Jin H, Shan Y, Fang J, Liu F. Beneficial impacts of fermented celery ( Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food Funct 2021; 12:9151-9164. [PMID: 34606532 DOI: 10.1039/d1fo00560j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome caused obesity has long been recognized as a risk of health. Celery and celery extracts have various medicinal properties, such as anti-diabetes and anti-inflammatory properties and blood glucose and serum lipid reduction. However, the effect of probiotic fermentation on celery juice and the association between fermented celery juice (FCJ) and obesity were unclear. This study aimed to evaluate the beneficial effects of FCJ on high-fat diet (HFD) induced obesity and related metabolic syndromes. C57BL/6 mice were randomly divided into six groups (n = 15 per group) fed either a normal diet (ND) or HFD with or without CJ/FCJ (10 g kg-1 day-1) by oral gavage for 12 weeks. Here we demonstrated that the probiotic fermentation of celery juice (CJ) could enhance the active ingredients in celery, such as total polyphenols, flavonoids, vitamin C and SOD. Compared to the slight improvement induced by CJ ingestion, FCJ intake significantly inhibited body weight gain, prevented dyslipidemia and hyperglycemia, and suppressed visceral fat accumulation. Furthermore, 16S rRNA sequencing analysis revealed that FCJ intake altered the composition of gut microbiota, increasing the ratio of Firmicutes/Bacteroidetes and the relative abundance of beneficial bacteria (Lactobacillus, Ruminococcaceae_UCG-014, Faecalibaculum and Blautia), and decreasing the relative abundance of harmful bacteria (Alloprevotella and Helicobacter). These findings suggest that FCJ can prevent HFD-induced obesity and become a novel gut microbiota modulator to prevent HFD-induced gut dysbiosis and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dong Zhao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinhu Cao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huiqin Jin
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian Fang
- Weifang Bowei Agricultural Development Co., Ltd, Weifang 261000, Shandong, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
235
|
Roasa J, De Villa R, Mine Y, Tsao R. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
236
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
237
|
Khoirun Nisa A, Afifah DN, Djamiatun K, Syauqy A. The effect of Sorghum Tempeh (Sorghum bicolor L. Moench) on low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in atherogenic diet-induced rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An atherogenic diet induces oxidative stress leading to hypercholesterolemia. This condition causes atherosclerosis followed by increased LDL and MDA. Sorghum tempeh contains fiber and antioxidants that can protectively improve LDL and MDA levels. Therefore, this research aims to determine the effect of sorghum tempeh on LDL and MDA levels in atherogenic diet-induced rats compared to sorghum flour. It used a randomized pre-post test with a control group design. The test subjects were 30 male Sprague Dawley rats, consisting of 6 normal conditioned rats (C1), and 24 that were induced by an atherogenic diet (C2, T1, T2, T3) for 2 weeks. Sorghum flour was administered at a dose of 4.095 g (T1) and the sorghum tempeh at 3.041 g (T2) and 6.081 g (T3) for 4 weeks. Furthermore, C2 was constantly induced through an atherogenic diet. Total cholesterol and LDL levels were then analyzed using the CHOD-PAP method, and MDA levels, using the ELISA method. Meanwhile, statistical analysis for these variables was carried out using IBM SPSS Statistics 21 software. The results showed that the administration of sorghum flour and tempeh significantly reduced total cholesterol, LDL, MDA levels in each group (p = 0.001). Furthermore, it showed that there was a significantly strong correlation between LDL and MDA levels before and after treatment (r = 0.610, r = 0.805, and p = 0.001). The administration of sorghum tempeh at a dose of 6.081 g caused the greatest reduction (∆) in LDL levels at -44.19 ±2.58 mg.dL-1, although, it was not the same as normal control. Meanwhile, sorghum flour at a dose of 4.095 g was the most influential in reducing MDA levels to the same as normal control with delta (∆) at -7.67 ±0.37 ng.mL-1. In conclusion, sorghum tempeh and flour were the most effective at reducing LDL and MDA levels, respectively.
Collapse
|
238
|
Zhou X, Du HH, Jiang M, Zhou C, Deng Y, Long X, Zhao X. Antioxidant Effect of Lactobacillus fermentum CQPC04-Fermented Soy Milk on D-Galactose-Induced Oxidative Aging Mice. Front Nutr 2021; 8:727467. [PMID: 34513906 PMCID: PMC8429822 DOI: 10.3389/fnut.2021.727467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is to evaluate the changes in soy isoflavones and peptides in soy milk after lactic acid bacterial fermentation, and explore the positive effects of fermented soy milk on an oxidative aging mouse model induced with D-galactose. We found that free soybean isoflavones and peptides increased after soy milk was fermented by Lactobacillus fermentum CQPC04. The in vivo results indicated that L. fermentum CQPC04-fermented soy milk enhanced the organ index of the liver and spleen, and improved the pathological morphology of the liver, spleen, and skin. L. fermentum CQPC04-fermented soy milk increased the enzymatic activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT), increased glutathione (GSH), but decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in serum, liver, and brain tissues of oxidative aging mice. The above mentioned fermented soy milk also increased the levels of collagen I (Col I), hyaluronic acid (HA), and collagen III (Col III), and decreased the levels of advanced glycation End products (AGEs) and hydrogen peroxide (H2O2). The RT-qPCR results showed that L. fermentum CQPC04-fermented soy milk upregulated the mRNA expression of nuclear factor erythroid 2?related factor (Nrf2), heme oxygenase-1 (HMOX1), quinone oxido-reductase 1 (Nqo1), neuronal nitric oxide synthase (NOS1), endothelial nitric oxide synthase (NOS3), Cu/Zn–superoxide dismutase (Cu/Zn-SOD), Mn–superoxide dismutase (Mn-SOD), and CAT, but downregulated the expression of inducible nitric oxide synthase (NOS2) and glutamate cysteine ligase modifier subunit (Gclm) in liver and spleen tissues. Lastly, the fermented soy milk also increased the gene expression of Cu/Zn-SOD, Mn-SOD, CAT, GSH-Px, matrix metalloproteinases 1 (TIMP1), and matrix metalloproteinases 2 (TIMP2), and decreased the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) in skin tissue. In conclusion, L. fermentum CQPC04-fermented soy milk was able to satisfactorily delay oxidative aging effects, and its mechanism may be related to the increase in free soy isoflavones and peptides.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Meiqing Jiang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Chaolekang Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yuhan Deng
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
239
|
Li D, Han T, Xue J, Xu W, Xu J, Wu Q. Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of
trans
Fatty Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danyang Li
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Tao Han
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiadan Xue
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
240
|
Zhong A, Chen W, Duan Y, Li K, Tang X, Tian X, Wu Z, Li Z, Wang Y, Wang C. The potential correlation between microbial communities and flavors in traditional fermented sour meat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
241
|
Gupta S, Chen WN. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5124-5131. [PMID: 33608899 DOI: 10.1002/jsfa.11158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Okara is a major agri-industrial by-product of the tofu and soymilk industries. Employing food-wastes as substrates for the green production of natural functional compounds is a recent trend that addresses the dual concepts of sustainable production and a zero-waste ecosystem. RESULTS Extracts of unfermented okara and okara fermented with Rhizopus oligosporus were obtained using ethanol as extraction solvent, coupled with ultrasound sonication for enhanced extraction. Fermented extracts yielded significantly better results for total phenolic content (TPC) and total flavonoid content (TFC) than unfermented extracts. A qualitative liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis revealed a shift from glucoside forms to respective aglycone forms of the detected isoflavones, post-fermentation. Since the aglycone forms have been associated with numerous health benefits, a quantitative high-performance liquid chromatography (HPLC) analysis was performed. Fermented okara extracts had daidzein and genistein concentrations of 11.782 ± 0.325 μg mL-1 and 10.125 ± 1.028 μg mL-1 , as opposed to that of 6.7 ± 2.42 μg mL-1 and 4.55 ± 0.316 μg mL-1 in raw okara extracts, respectively. Lastly, the detected isoflavones were mapped to their metabolic pathways, to understand the biochemical reactions triggered during the fermentation process. CONCLUSION Fermented okara may be implemented as a sustainable solution for production of natural bioactive isoflavonoids genistein and daidzein. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sulagna Gupta
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- Residues and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
242
|
Nouioui I, Dye T. Heat-killed Mycolicibacterium aurum Aogashima: An environmental nonpathogenic actinobacteria under development as a safe novel food ingredient. Food Sci Nutr 2021; 9:4839-4854. [PMID: 34531996 PMCID: PMC8441333 DOI: 10.1002/fsn3.2413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Over the last few decades, a wealth of evidence has formed the basis for "the Old Friends hypothesis" suggesting that, in contrast to the past, increasingly people are living in environments with limited and less diverse microbial exposure, with potential consequences for their health. Hence, including safe live or heat-killed microbes in the diet may be beneficial in promoting and maintaining human health. In order to assess the safety of microbes beyond the current use of standardized cultures and probiotic supplements, new approaches are being developed. Here, we present evidence for the safety of heat-killed Mycolicibacterium aurum Aogashima as a novel food, utilizing the decision tree approach developed by Pariza and colleagues (2015). We provide evidence that the genome of M. aurum Aogashima is free of (1) genetic elements associated with pathogenicity or toxigenicity, (2) transferable antibiotic resistance gene DNA, and (3) genes coding for antibiotics used in human or veterinary medicine. Moreover, a 90-day oral toxicity study in rats showed that (4) the no observed adverse effect level (NOAEL) was the highest concentration tested, namely 2000 μg/kg BW/day. We conclude that oral consumption of heat-killed M. aurum Aogashima is safe and warrants further evaluation as a novel food ingredient.
Collapse
Affiliation(s)
- Imen Nouioui
- Devonshire BuildingNewcastle University School of Natural and Environmental SciencesNewcastle Upon TyneUnited Kingdom of Great Britain and Northern Ireland
| | | |
Collapse
|
243
|
Chan LP, Tseng YP, Liu C, Liang CH. Fermented pomegranate extracts protect against oxidative stress and aging of skin. J Cosmet Dermatol 2021; 21:2236-2245. [PMID: 34416060 DOI: 10.1111/jocd.14379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Punica granatum (pomegranate) potentially ameliorates skin inflammation and pain, including herpetic stromal keratitis. Fermentation is a biotechnological technique that may naturally induce health benefits by producing antioxidants. However, the anti-aging effect of fermented pomegranate extracts (FPE) on the skin is still unclear. AIM This investigation evaluates the effects of fermented pomegranate as a functional supplement (FPE drink, FPE-D) and a cosmetic ingredient (FPE serum, FPE-S) in vitro and in vivo. PATIENTS/METHODS The effects of FPE products for anti-oxidation, anti-tyrosinase, anti-inflammation, and anti-aging were examined. Forty subjects were randomly allocated to FPE-D or placebo drink groups (50 ml of a FPE-D /placebo drink daily for 8 weeks for each subject), and another 40 subjects were recruited to FPE-S or placebo serum groups (about 3 ml of a FPE-S /placebo serum daily and nightly/daily for 4 weeks for each subject) in a double-blind study. RESULTS The effects of FPE products on the DPPH, ABTS+ , and NO· free radical scavenging activities, their inhibiting of tyrosinase activity and their enhancement of the skin health of healthy subjects, were investigated. FPE-D improved the moisture, brightness, elasticity, and collagen density of the skin of most subjects at 8 weeks relative to the baseline without treatment (p < 0.05). After 4 weeks of FPE-S serum consumption, the moisture, brightness, elasticity, spots, UV spots, and collagen density of skin were slightly better than those at week 0 (p < 0.05). CONCLUSIONS The daily consumption of fermented pomegranate extracts can protect the skin against oxidative stress and slow skin aging.
Collapse
Affiliation(s)
- Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ping Tseng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cheng Liu
- Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
244
|
Vijayasarathy S, Gayathri P, Suneetha V. Fermented Foods and Their Abating Role in Gastric Ulcers. J Am Coll Nutr 2021; 41:826-830. [PMID: 34402418 DOI: 10.1080/07315724.2021.1962768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Helicobacter pylori plays a consequential role in gastric inflammations and ulceration. The cure for the same was researched and identified to be the triple therapy regime. Intensive research in the field also proved that altering the food habits during ulcers will be a major factor in the time period that is required for cure. Fermented foods usage dates back to ancient civilizations, but their role in maintaining gastric health are slowly being uncovered. One such major role reported will be the bacterial check that the probiotics in fermented food do in human gastrointestinal tract. Various species of bacteria present in the fermented products will lead to reduction of the H. Pylori infection in the GI tract.Key teaching pointsMicrobes that are active in fermented foods reduce inflammation and improve histological conditions of ulcers caused due to H. pylori.Microbes such as Lactobacillus that were in fermented products when tested showed inhibitory effects, decreasing infection density and reducing mucus depletion.Lactic fermented products showed a decrease in urease activity and reduces H. pylori adhesion through various organic acid secretions.Organisms in fermented products involve various mechanisms like lowering gut pH, improving immunological responses, scavenging free radicals and so on.Fermented foods have many modulatory effects that help fighting and curing gastric ulcers.
Collapse
Affiliation(s)
- S Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - P Gayathri
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - V Suneetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| |
Collapse
|
245
|
Gok I. Functional Potential of Several Turkish Fermented Traditional Foods: Biotic Properties, Bioactive Compounds, and Health Benefits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1962340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilkay Gok
- Faculty of Applied Sciences, Gastronomy Department, Istanbul Okan University, Tuzla, Istanbul, Turkey
| |
Collapse
|
246
|
Lee H, Lee S, Kyung S, Ryu J, Kang S, Park M, Lee C. Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study. Metabolites 2021; 11:524. [PMID: 34436465 PMCID: PMC8398186 DOI: 10.3390/metabo11080524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Rice koji, used as a starter for maximizing fermentation benefits, produces versatile end products depending on the inoculum microbes used. Here, we performed metabolite profiling to compare rice koji fermented with two important filamentous fungus, Aspergillus oryzae and A. cristatus, during 8 days. The multivariate analyses showed distinct patterns of primary and secondary metabolites in the two kojis. The rice koji fermented with A. oryzae (RAO) showed increased α-glucosidase activity and higher contents of sugar derivatives than the one fermented with A. cristatus (RAC). RAC showed enhanced β-glucosidase activity and increased contents of flavonoids and lysophospholipids, compared to RAO. Overall, at the final fermentation stage (8 days), the antioxidant activities and anti-aging effects were higher in RAC than in RAO, corresponding to the increased metabolites such as flavonoids and auroglaucin derivatives in RAC. This comparative metabolomic approach can be applied in production optimization and quality control analyses of koji products.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Jeoungjin Ryu
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Seunghyun Kang
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Myeongsam Park
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Choonghwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
247
|
Agbemavor WSK, Buys EM. Presumptive probiotic bacteria from traditionally fermented African food challenge the adhesion of enteroaggregative
E. coli
. J Food Saf 2021. [DOI: 10.1111/jfs.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wisdom Selorm Kofi Agbemavor
- Department of Consumer and Food Sciences University of Pretoria Lynnwood Rd, Hatfield, Pretoria, 0002 South Africa
| | - Elna Maria Buys
- Department of Consumer and Food Sciences University of Pretoria Lynnwood Rd, Hatfield, Pretoria, 0002 South Africa
| |
Collapse
|
248
|
Roselli M, Natella F, Zinno P, Guantario B, Canali R, Schifano E, De Angelis M, Nikoloudaki O, Gobbetti M, Perozzi G, Devirgiliis C. Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Front Nutr 2021; 8:689084. [PMID: 34395494 PMCID: PMC8360115 DOI: 10.3389/fnut.2021.689084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Fausta Natella
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| |
Collapse
|
249
|
Li D, Han T, Xue J, Xu W, Xu J, Wu Q. Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of trans Fatty Acids. Angew Chem Int Ed Engl 2021; 60:20695-20699. [PMID: 34288332 DOI: 10.1002/anie.202107694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Indexed: 11/08/2022]
Abstract
Due to the high risk of heart disease caused by the intake of trans fatty acids, a method to eliminate trans fatty acids from foods has become a critical issue. Herein, we engineered fatty acid photo-decarboxylase from Chlorella variabilis (CvFAP) to selectively catalyze the decarboxylation of trans fatty acids to yield readily-removed hydrocarbons and carbon dioxide, while cis fatty acids remained unchanged. An efficient protein engineering based on FRISM strategy was implemented to intensify the electronic interaction between the residues and the double bond of the substrate that stabilized the binding of elaidic acid in the channel. For the model compounds, oleic acid and elaidic acid, the best mutant, V453E, showed a one-thousand-fold improvement in the trans-over-cis (ToC) selectivity compared with wild type (WT). As the first report of the direct biocatalytic decarboxylation resolution of trans/cis fatty acids, this work offers a safe, facile, and eco-friendly process to eliminate trans fatty acids from edible oils.
Collapse
Affiliation(s)
- Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tao Han
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
250
|
Lactic Acid Fermented Green Tea with Levilactobacillus brevis Capable of Producing γ-Aminobutyric Acid. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The antioxidative activity and bioactive compounds content of lactic acid fermented green tea (LFG) fermented with an outstanding GABA-producing strain under optimised fermentation conditions were evaluated. Levilactobacillus strain GTL 79 was isolated from green tea leaves and selected based on acid production, growth potential, catechin resistance, and GABA production to be applied to LFG. Through 16S rRNA gene sequence analysis, the strain was identified as Levilactobacillus brevis. The optimised conditions were defined as fermentation at 37 °C with supplementation of 1% fermentation alcohol, 6% glucose, and 1% MSG and was determined to be most effective in increasing the lactic acid, acetic acid, and GABA content in LFG by 522.20%, 238.72% and 232.52% (or 247.58%), respectively. Initial DPPH scavenging activity of LFG fermented under the optimised conditions was 88.96% and rose to 94.38% by day 5. Polyphenols may contribute to the initial DPPH scavenging activity, while GABA and other bioactive compounds may contribute to the activity thereafter. Consequently, as GABA and other bioactive compounds found in green tea have been reported to have health benefits, future studies may prove that optimally fermented LFG by L. brevis GTL 79 could be useful in the food and health industries.
Collapse
|