201
|
Zhao Q, Zhang Y, Shao S, Sun Y, Lin Z. Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis. PeerJ 2021; 9:e10594. [PMID: 33552715 PMCID: PMC7821758 DOI: 10.7717/peerj.10594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), the main type of liver cancer in human, is one of the most prevalent and deadly malignancies in the world. The present study aimed to identify hub genes and key biological pathways by integrated bioinformatics analysis. Methods A bioinformatics pipeline based on gene co-expression network (GCN) analysis was built to analyze the gene expression profile of HCC. Firstly, differentially expressed genes (DEGs) were identified and a GCN was constructed with Pearson correlation analysis. Then, the gene modules were identified with 3 different community detection algorithms, and the correlation analysis between gene modules and clinical indicators was performed. Moreover, we used the Search Tool for the Retrieval of Interacting Genes (STRING) database to construct a protein protein interaction (PPI) network of the key gene module, and we identified the hub genes using nine topology analysis algorithms based on this PPI network. Further, we used the Oncomine analysis, survival analysis, GEO data set and random forest algorithm to verify the important roles of hub genes in HCC. Lastly, we explored the methylation changes of hub genes using another GEO data (GSE73003). Results Firstly, among the expression profiles, 4,130 up-regulated genes and 471 down-regulated genes were identified. Next, the multi-level algorithm which had the highest modularity divided the GCN into nine gene modules. Also, a key gene module (m1) was identified. The biological processes of GO enrichment of m1 mainly included the processes of mitosis and meiosis and the functions of catalytic and exodeoxyribonuclease activity. Besides, these genes were enriched in the cell cycle and mitotic pathway. Furthermore, we identified 11 hub genes, MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 which played key roles in HCC. The results of multiple verification methods indicated that the 11 hub genes had highly diagnostic efficiencies to distinguish tumors from normal tissues. Lastly, the methylation changes of gene CDC20, TOP2A, TK1, FEN1 in HCC samples had statistical significance (P-value < 0.05). Conclusion MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 could be potential biomarkers or therapeutic targets for HCC. Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played vital roles in the progression of HCC.
Collapse
Affiliation(s)
- Qian Zhao
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| | - Yan Zhang
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| | - Shichun Shao
- College of Environmental Science and Engineering, Dalian Martime University, Dalian, Liaoning, China
| | - Yeqing Sun
- College of Environmental Science and Engineering, Dalian Martime University, Dalian, Liaoning, China
| | - Zhengkui Lin
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| |
Collapse
|
202
|
Li Y, Zhang Q, Di Zhang, Cai Q, Fan J, Venners SA, Jiang S, Li J, Xu X. The effect of ABCA1 gene DNA methylation on blood pressure levels in a Chinese hyperlipidemic population. J Hum Hypertens 2021; 35:1139-1148. [PMID: 33462393 DOI: 10.1038/s41371-020-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Hypertension is an important public health challenge worldwide. Epigenetic studies are providing novel insight into the underlying mechanisms of hypertension. We investigated the effect of DNA methylation in ATP-binding cassette transporter 1 (ABCA1) gene on blood pressure levels in a Chinese hyperlipidemic population. We randomly selected 211 individuals with hyperlipidemia who had not received any lipid-lowering treatment at baseline from our previous statin pharmacogenetics study (n = 734). DNA methylation loci at the ABCA1 gene were measured by MethylTarget, a next generation bisulfite sequencing-based multiple targeted cytosine-guanine dinucleotide methylation analysis method. Mean DNA methylation level was used in statistical analysis. In all subjects, higher mean ABCA1_B methylation was positively associated with systolic blood pressure (SBP) (β = 8.27, P = 0.008; β = 8.78, P = 0.005) and explained 2.7% and 5.8% of SBP variation before and after adjustment for lipids, respectively. We further divided all patients into three groups based on the tertile of body mass index (BMI) distribution. In the middle tertile of BMI, there was a significantly positive relationship between mean ABCA1_A methylation and SBP (β = 0.89, P = 0.003) and DBP (β = 0.32, P = 0.030). Mean ABCA1_A methylation explained 11.0% of SBP variation and 5.3% of DBP variation, respectively. Furthermore, mean ABCA1_A methylation (β = 0.79; P = 0.007) together with age and gender explained up to 24.1% of SBP variation. Our study provides new evidence that the ABCA1 DNA methylation profile is associated with blood pressure levels, which highlights that DNA methylation might be a significant molecular mechanism involved in the pathophysiological process of hypertension.
Collapse
Affiliation(s)
- Yajie Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Qian Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, China
| | - Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China. .,Institute of Biomedicine, Anhui Medical University, Hefei, China.
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
203
|
Huang HY, Li J, Tang Y, Huang YX, Chen YG, Xie YY, Zhou ZY, Chen XY, Ding SY, Luo MF, Jin CN, Zhao LS, Xu JT, Zhou Y, Lin YCD, Hong HC, Zuo HL, Hu SY, Xu PY, Li X, Huang HD. MethHC 2.0: information repository of DNA methylation and gene expression in human cancer. Nucleic Acids Res 2021; 49:D1268-D1275. [PMID: 33270889 PMCID: PMC7779066 DOI: 10.1093/nar/gkaa1104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
DNA methylation is an important epigenetic regulator in gene expression and has several roles in cancer and disease progression. MethHC version 2.0 (MethHC 2.0) is an integrated and web-based resource focusing on the aberrant methylomes of human diseases, specifically cancer. This paper presents an updated implementation of MethHC 2.0 by incorporating additional DNA methylomes and transcriptomes from several public repositories, including 33 human cancers, over 50 118 microarray and RNA sequencing data from TCGA and GEO, and accumulating up to 3586 manually curated data from >7000 collected published literature with experimental evidence. MethHC 2.0 has also been equipped with enhanced data annotation functionality and a user-friendly web interface for data presentation, search, and visualization. Provided features include clinical-pathological data, mutation and copy number variation, multiplicity of information (gene regions, enhancer regions, and CGI regions), and circulating tumor DNA methylation profiles, available for research such as biomarker panel design, cancer comparison, diagnosis, prognosis, therapy study and identifying potential epigenetic biomarkers. MethHC 2.0 is now available at http://awi.cuhk.edu.cn/∼MethHC.
Collapse
Affiliation(s)
- Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yi-Xian Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yi-Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yue-Yang Xie
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Zhe-Yuan Zhou
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xin-Yi Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Si-Yuan Ding
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Meng-Fan Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Chen-Nan Jin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Le-Shan Zhao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Jia-Tong Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Ying Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Si-Yao Hu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Pei-Yi Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xin Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| |
Collapse
|
204
|
Yang Q, Guo X, Xu Y, Duan C, Wang H, Feng Q, Zhang N. Involvement of DNA methyltransferase 1 (DNMT1) and multidrug resistance-associated proteins in 2-methoxyestradiol-induced cytotoxicity in EC109/Taxol cells. Transl Cancer Res 2021; 10:10-21. [PMID: 35116235 PMCID: PMC8797790 DOI: 10.21037/tcr-20-2678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Due to acquired drug resistance, paclitaxel-based chemotherapy has limited clinical effects in the treatment of various tumors including esophageal cancer. This study analyzes the hypothesis that paclitaxel resistance is related to changes in the expression of DNA methyltransferase 1 (DNMT1). The thesis also studies multidrug resistance-related proteins and the mechanism underlying 2-methoxyestradiol (2-ME)-induced cytotoxicity in EC109/Taxol cells was examined. METHODS In this study, the mechanisms of 2-ME-induced cytotoxicity in EC109/Taxol cells was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, DNA ladder assay, DNMT activity assay, and Western blotting. The result of 2-ME-induced cytotoxicity EC109/Taxol cells is compared with that of EC109 parental cells. RESULTS The results show that low concentrations of 2-ME (0.5-10 µM) inhibited cell growth, with IC50 values of 2.04 and 5.38 µmol/L in EC109/Taxol cells and EC109 parental cells after 72 hours of treatment, respectively. Exposure to 2-ME could increase G2/M cell cycle arrest and could increase apoptosis more effectively in EC109/Taxol cells than that observed in the EC109 parental cells. Furthermore, it is observed that paclitaxel resistance is associated with decreased DNMT activity. This study shows that 2-ME decreases DNMT1-mediated paclitaxel resistance by simultaneously reducing the expression of ATP-binding cassette (ABC) transporters, including phosphoglycoprotein (P-gp), breast cancer resistance protein (BCRP), and multi-drug resistance protein 1 (MRP1), in EC109/Taxol cells. CONCLUSIONS In this study, the co-treatment of Taxol and 2-ME to EC109 could significantly induce cytotoxic effects, whose mechanism might be associated with DNMT1 and multidrug resistance-associated proteins.
Collapse
Affiliation(s)
- Qingqing Yang
- China School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojing Guo
- China School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yue Xu
- China School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chang Duan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haofan Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanling Feng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Zhang
- China School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
205
|
Deshmukh P, Nair P, Trivedi A, Thomas J. Oral cancer and genomics. JOURNAL OF THE INTERNATIONAL CLINICAL DENTAL RESEARCH ORGANIZATION 2021. [DOI: 10.4103/jicdro.jicdro_23_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
206
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
207
|
Zeng J, Tao J, Xia L, Zeng Z, Chen J, Wang Z, Meng J, Liu L. Melatonin inhibits vascular endothelial cell pyroptosis by improving mitochondrial function via up-regulation and demethylation of UQCRC1. Biochem Cell Biol 2020; 99:339-347. [PMID: 33332241 DOI: 10.1139/bcb-2020-0279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that involves cell death and endothelial dysfunction. Melatonin is an endocrine hormone with anti-inflammatory and anti-AS effects. However, the underlying molecular mechanisms for the anti-AS effects of melatonin are unknown. A previous study has shown that pyroptosis plays a detrimental role in the development of AS, therefore, this study was designed to investigate the anti-pyroptotic effects and potential mechanisms of melatonin in atherosclerotic endothelium. Our results show that melatonin attenuated the expression of genes related to pyroptosis, including NLRP3, caspase-1, and IL-1β, in human umbilical vein endothelial cells treated with oxidized low-density lipoprotein. Furthermore, melatonin up-regulated the expression of ten-eleven translocation 2 (TET2), inhibited the methylation of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), and reduced pyroptosis. The up-regulation of UQCRC1 by melatonin improved mitochondrial function, thereby inhibiting oxidative stress and endothelial cell pyroptosis. Collectively, our results indicate that melatonin prevents endothelial cell pyroptosis by up-regulating TET2 to inhibit the methylation of UQCRC1 and improving mitochondrial function.
Collapse
Affiliation(s)
- Junfa Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.,The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Linzhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zhaolin Zeng
- Department of Cardiology, People's Hospital of Nanchuan, Chongqing Medical University, Chongqing 408499, China
| | - Jiaojiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jun Meng
- Functional Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Lushan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
208
|
Leng X, Liu M, Tao D, Yang B, Zhang Y, He T, Xie S, Wang Z, Liu Y, Yang Y. Epigenetic modification-dependent androgen receptor occupancy facilitates the ectopic TSPY1 expression in prostate cancer cells. Cancer Sci 2020; 112:691-702. [PMID: 33185915 PMCID: PMC7894013 DOI: 10.1111/cas.14731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Testis‐specific protein Y‐encoded 1 (TSPY1), a Y chromosome‐linked oncogene, is frequently activated in prostate cancers (PCa) and its expression is correlated with the poor prognosis of PCa. However, the cause of the ectopic transcription of TSPY1 in PCa remains unclear. Here, we observed that the methylation status in the CpG islands (CGI) of the TSPY1 promoter was negatively correlated with its expression level in different human samples. The acetyl‐histone H4 and trimethylated histone H3‐lysine 4, two post–translational modifications of histones occupying the TSPY1 promoter, facilitated the TSPY1 expression in PCa cells. In addition, we found that androgen accelerated the TSPY1 transcription on the condition of hypomethylated of TSPY1‐CGI and promoted PCa cell proliferation. Moreover, the binding of androgen receptor (AR) to the TSPY1 promoter, enhancing TSPY1 transcription, was detected in PCa cells. Taken together, our findings identified the regulation of DNA methylation, acting as a primary mechanism, on TSPY1 expression in PCa, and revealed that TSPY1 is an androgen‐AR axis‐regulated oncogene, suggesting a novel and potential target for PCa therapy.
Collapse
Affiliation(s)
- Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tianrong He
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
209
|
Ehrlich KC, Baribault C, Ehrlich M. Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. Int J Mol Sci 2020; 21:E8394. [PMID: 33182325 PMCID: PMC7672584 DOI: 10.3390/ijms21218394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
KLHL and the related KBTBD genes encode components of the Cullin-E3 ubiquitin ligase complex and typically target tissue-specific proteins for degradation, thereby affecting differentiation, homeostasis, metabolism, cell signaling, and the oxidative stress response. Despite their importance in cell function and disease (especially, KLHL40, KLHL41, KBTBD13, KEAP1, and ENC1), previous studies of epigenetic factors that affect transcription were predominantly limited to promoter DNA methylation. Using diverse tissue and cell culture whole-genome profiles, we examined 17 KLHL or KBTBD genes preferentially expressed in skeletal muscle or brain to identify tissue-specific enhancer and promoter chromatin, open chromatin (DNaseI hypersensitivity), and DNA hypomethylation. Sixteen of the 17 genes displayed muscle- or brain-specific enhancer chromatin in their gene bodies, and most exhibited specific intergenic enhancer chromatin as well. Seven genes were embedded in super-enhancers (particularly strong, tissue-specific clusters of enhancers). The enhancer chromatin regions typically displayed foci of DNA hypomethylation at peaks of open chromatin. In addition, we found evidence for an intragenic enhancer in one gene upregulating expression of its neighboring gene, specifically for KLHL40/HHATL and KLHL38/FBXO32 gene pairs. Many KLHL/KBTBD genes had tissue-specific promoter chromatin at their 5' ends, but surprisingly, two (KBTBD11 and KLHL31) had constitutively unmethylated promoter chromatin in their 3' exons that overlaps a retrotransposed KLHL gene. Our findings demonstrate the importance of expanding epigenetic analyses beyond the 5' ends of genes in studies of normal and abnormal gene regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Carl Baribault
- Center for Research and Scientific Computing (CRSC), Tulane University Information Technology, Tulane University, New Orleans, LA 70112, USA;
| | - Melanie Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane Cancer Center, Hayward Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
210
|
Proceedings from the Fourth International Symposium on σ-2 Receptors: Role in Health and Disease. eNeuro 2020; 7:ENEURO.0317-20.2020. [PMID: 33028631 PMCID: PMC7643771 DOI: 10.1523/eneuro.0317-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/04/2023] Open
Abstract
The σ-2 receptor (S2R) complex has been implicated in CNS disorders ranging from anxiety and depression to neurodegenerative disorders such as Alzheimer's disease (AD). The proteins comprising the S2R complex impact processes including autophagy, cholesterol synthesis, progesterone signaling, lipid membrane-bound protein trafficking, and receptor stabilization at the cell surface. While there has been much progress in understanding the role of S2R in cellular processes and its potential therapeutic value, a great deal remains unknown. The International Symposium on Sigma-2 Receptors is held in conjunction with the annual Society for Neuroscience (SfN) conference to promote collaboration and advance the field of S2R research. This review summarizes updates presented at the Fourth International Symposium on Sigma-2 Receptors: Role in Health and Disease, a Satellite Symposium held at the 2019 SfN conference. Interdisciplinary members of the S2R research community presented both previously published and preliminary results from ongoing studies of the role of S2R in cellular metabolism, the anatomic and cellular expression patterns of S2R, the relationship between S2R and amyloid β (Aβ) in AD, the role of S2R complex protein PGRMC1 in health and disease, and the efforts to design new S2R ligands for the purposes of research and drug development. The proceedings from this symposium are reported here as an update on the field of S2R research, as well as to highlight the value of the symposia that occur yearly in conjunction with the SfN conference.
Collapse
|
211
|
Neja SA. Site-Specific DNA Demethylation as a Potential Target for Cancer Epigenetic Therapy. Epigenet Insights 2020; 13:2516865720964808. [PMID: 35036833 PMCID: PMC8756105 DOI: 10.1177/2516865720964808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant promoter DNA hypermethylation is a typical characteristic of cancer and it is often seen in malignancies. Recent studies showed that regulatory cis-elements found up-stream of many tumor suppressor gene promoter CpG island (CGI) attract DNA methyltransferases (DNMT) that hypermethylates and silence the genes. As epigenetic alterations are potentially reversible, they make attractive targets for therapeutic intervention. The currently used decitabine (DAC) and azacitidine (AZA) are DNMT inhibitors that follow the passive demethylation pathway. However, they lead to genome-wide demethylation of CpGs in cells, which makes difficult to use it for causal effect analysis and treatment of specific epimutations. Demethylation through specific demethylase enzymes is thus critical for epigenetic resetting of silenced genes and modified chromatins. Yet DNA-binding factors likely play a major role to guide the candidate demethylase enzymes upon its fusion. Before the advent of clustered regulatory interspaced short palindromic repeats (CRISPR), both zinc finger proteins (ZNFs) and transcription activator-like effector protein (TALEs) were used as binding platforms for ten-eleven translocation (TET) enzymes and both systems were able to induce transcription at targeted loci in an in vitro as well as in vivo model. Consequently, the development of site-specific and active demethylation molecular trackers becomes more than hypothetical to makes a big difference in the treatment of cancer in the future. This review is thus to recap the novel albeit distinct studies on the potential use of site-specific demethylation for the development of epigenetic based cancer therapy.
Collapse
|
212
|
Li TT, Zhu HB. LKB1 and cancer: The dual role of metabolic regulation. Biomed Pharmacother 2020; 132:110872. [PMID: 33068936 DOI: 10.1016/j.biopha.2020.110872] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver kinase B1 (LKB1) is an essential serine/threonine kinase frequently associated with Peutz-Jeghers syndrome (PJS). In this review, we provide an overview of the role of LKB1 in conferring protection to cancer cells against metabolic stress and promoting cancer cell survival and invasion. This carcinogenic effect contradicts the previous conclusion that LKB1 is a tumor suppressor gene. Here we try to explain the contradictory effect of LKB1 on cancer from a metabolic perspective. Upon deletion of LKB1, cancer cells experience increased energy as well as oxidative stress, thereby causing genomic instability. Meanwhile, mutated LKB1 cooperates with other metabolic regulatory genes to promote metabolic reprogramming that subsequently facilitates adaptation to strong metabolic stress, resulting in development of a more aggressive malignant phenotype. We aim to specifically discuss the contradictory role of LKB1 in cancer by reviewing the mechanism of LKB1 with an emphasis on metabolic stress and metabolic reprogramming.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hai-Bin Zhu
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
213
|
Epigenetic mechanisms underlying stress-induced depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:87-126. [PMID: 33461666 DOI: 10.1016/bs.irn.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stressful life events are a major contributor to the development of major depressive disorder. Environmental perturbations like stress change gene expression in the brain, leading to altered behavior. Gene expression is ultimately regulated by chromatin structure and the epigenetic modifications of DNA and the histone proteins that make up chromatin. Studies over the past two decades have demonstrated that stress alters the epigenetic landscape in several brain regions relevant for depressive-like behavior in rodents. This chapter will discuss epigenetic mechanisms of brain histone acetylation, histone methylation, and DNA methylation that contribute to adult stress-induced depressive-like behavior in rodents. Several biological themes have emerged from the examination of the brain transcriptome after stress such as alterations in the neuroimmune response, neurotrophic factors, and synaptic structure. The epigenetic mechanisms regulating these processes will be highlighted. Finally, pharmacological and genetic manipulations of epigenetic enzymes in rodent models of depression will be discussed as these approaches have demonstrated the ability to reverse stress-induced depressive-like behaviors and provide proof-of-concept as novel avenues for the treatment of clinical depression.
Collapse
|
214
|
Ni C, Qian M, Geng J, Qu Y, Tian Y, Yang N, Li S, Zheng H. DNA Methylation Manipulation of Memory Genes Is Involved in Sevoflurane Induced Cognitive Impairments in Aged Rats. Front Aging Neurosci 2020; 12:211. [PMID: 33013350 PMCID: PMC7461785 DOI: 10.3389/fnagi.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an essential epigenetic mechanism involving in gene transcription modulation. An age-related increase in promoter methylation has been observed for neuronal activity and memory genes, and participates in neurological disorders. However, the position and precise mechanism of DNA methylation for memory gene modulation in anesthesia related cognitive impairment remained to be determined. Here, we studied the effects of sevoflurane anesthesia on the transcription of memory genes in the aged rat hippocampus. Then, we investigated changes in DNA methylation of involved genes and verified whether dysregulated DNA methylation would contribute to anesthesia induced cognitive impairment. The results indicated that sevoflurane anesthesia down-regulated the mRNA and protein levels of three memory genes, Arc, Bdnf, and Reln, which were accompanied with promoter hypermethylation and increased Dnmt1, Dnmt3a, and Mecp2 expression, and finally impaired hippocampus dependent memory. Furthermore, inhibition of DNA hypermethylation by 5-Aza rescued sevoflurane induced memory gene expression decrease and cognitive impairment. These findings provide an epigenetic understanding for the pathophysiology of cognitive impairment induced by general anesthesia in aged brain.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Qian
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiao Geng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
215
|
Lin Y, Chen H, Wang X, Xiang J, Wang H, Peng J. Mining the role of RECQL5 in gastric cancer and seeking potential regulatory network by bioinformatics analysis. Exp Mol Pathol 2020; 115:104477. [DOI: 10.1016/j.yexmp.2020.104477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
|
216
|
Diefenbach RJ, Lee JH, Rizos H. Methylated circulating tumor DNA as a biomarker in cutaneous melanoma. Melanoma Manag 2020; 7:MMT46. [PMID: 32922728 PMCID: PMC7475794 DOI: 10.2217/mmt-2020-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Russell J Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Jenny H Lee
- Department of Biomedical Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| |
Collapse
|
217
|
Yang D, Holsten T, Börnigen D, Frank S, Mawrin C, Glatzel M, Schüller U. Ependymoma relapse goes along with a relatively stable epigenome, but a severely altered tumor morphology. Brain Pathol 2020; 31:33-44. [PMID: 32633004 PMCID: PMC8018105 DOI: 10.1111/bpa.12875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 11/30/2022] Open
Abstract
The molecular biology of ependymomas is not well understood and this is particularly true for ependymoma relapses. We aimed at finding out if and to which extent, relapses differ from their corresponding primary tumors on the morphological, chromosomal and epigenetic level. We investigated 24 matched ependymoma primary and relapsed tumor samples and, as a first step, compared cell density, necrosis, vessel proliferation, Ki67 proliferative index, trimethylation at H3K27 and expression of CXorf67. For the investigation of global methylation profiles, we used public data in order to analyze copy number variation profiles, differential methylation, methylation status and fractions of hypo‐ and hypermethylated CpGs in different epigenomic substructures. Morphologically, we found a significant increase with relapse in cell density and proliferation. H3K27 trimethylation and CXorf67 expression remained stable between primary and relapse tumor samples, and the analysis of DNA methylation profiles neither revealed significant differences in copy number variations nor differentially methylated regions. Significant differences in the methylation status were found for CpG islands, but also in N Shelves or S Shelves, depending on the molecular subgroup. The fraction of probes changing their methylation in the epigenomic substructures appeared subgroup‐specific. Most changes occur in CpG islands, for which relapsed tumors demonstrate higher methylation values than primary tumors. The morphological differences reflect increased aggressiveness upon ependymoma relapse, but, despite slight changes, this observation does not appear to be sufficiently explained by epigenetic changes.
Collapse
Affiliation(s)
- Denise Yang
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Daniela Börnigen
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Division for Neuropathology, University Hospital Basel, Basel, Switzerland
| | - Christian Mawrin
- Institute for Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
218
|
Li Y, Wang L, Zhang M, Huang K, Yao Z, Rao P, Cai X, Xiao J. Advanced glycation end products inhibit the osteogenic differentiation potential of adipose-derived stem cells by modulating Wnt/β-catenin signalling pathway via DNA methylation. Cell Prolif 2020; 53:e12834. [PMID: 32468637 PMCID: PMC7309593 DOI: 10.1111/cpr.12834] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/05/2023] Open
Abstract
Objectives Advanced glycation end products (AGEs) are considered a cause of diabetic osteoporosis. Although adipose‐derived stem cells (ASCs) are widely used in the research of bone regeneration, the mechanisms of the osteogenic differentiation of ASCs from diabetic osteoporosis model remain unclear. This work aimed to investigate the influence and the molecular mechanisms of AGEs on the osteogenic potential of ASCs. Materials and methods Enzyme‐linked immunosorbent assay was used to measure the change of AGEs in diabetic osteoporotic and control C57BL/6 mice. ASCs were obtained from the inguinal fat of C57BL/6 mice. AGEs, 5‐aza2′‐deoxycytidine (5‐aza‐dC) and DKK‐1 were used to treat ASCs. Real‐time cell analysis and cell counting kit‐8 were used to monitor the proliferation of ASCs within and without AGEs. Real‐time PCR, Western blot and Immunofluorescence were used to analyse the genes and proteins expression of osteogenic factors, DNA methylation factors and Wnt/β‐catenin signalling pathway among the different groups. Results The AGEs and DNA methylation were increased in the adipose and bone tissue of the diabetic osteoporosis group. Untreated ASCs had higher cell proliferation activity than AGEs‐treatment group. The expression levels of osteogenic genes, Opn and Runx2, were lower, and mineralized nodules were less in AGEs‐treatment group. Meanwhile, DNA methylation was increased, and the Wnt signalling pathway markers, including β‐Catenin, Lef1 and P‐GSK‐3β, were inhibited. After treatment with 5‐aza‐dC, the osteogenic differentiation capacity of ASCs in the AGEs environment was restored and the Wnt signalling pathway was activated during this process. Conclusions Advanced glycation end products inhibit the osteogenic differentiation ability of ASCs by activating DNA methylation and inhibiting Wnt/β‐catenin pathway in vitro. Therefore, DNA methylation may be promising targets for the bone regeneration of ASCs with diabetic osteoporosis.
Collapse
Affiliation(s)
- Yong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Maorui Zhang
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Kui Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Zhihao Yao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Pengcheng Rao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
219
|
A Novel Schizophrenia Diagnostic Model Based on Statistically Significant Changes in Gene Methylation in Specific Brain Regions. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8047146. [PMID: 32104705 PMCID: PMC7037884 DOI: 10.1155/2020/8047146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Objective The present study identified methylation patterns of schizophrenia- (SCZ-) related genes in different brain regions and used them to construct a novel DNA methylation-based SCZ diagnostic model. Methods Four DNA methylation datasets representing different brain regions were downloaded from the Gene Expression Omnibus. The common differentially methylated genes (CDMGs) in all datasets were identified to perform functional enrichment analysis. The differential methylation sites of 10 CDMGs involved in the largest numbers of neurological or psychiatric-related biological processes were used to construct a DNA methylation-based diagnostic model for SCZ in the respective datasets. Results A total of 849 CDMGs were identified in the four datasets, but the methylation sites as well as degree of methylation differed across the brain regions. Functional enrichment analysis showed CDMGs were significantly involved in biological processes associated with neuronal axon development, intercellular adhesion, and cell morphology changes and, specifically, in PI3K-Akt, AMPK, and MAPK signaling pathways. Four DNA methylation-based classifiers for diagnosing SCZ were constructed in the four datasets, respectively. The sample recognition efficiency of the classifiers showed an area under the receiver operating characteristic curve of 1.00 in three datasets and >0.9 in one dataset. Conclusion DNA methylation patterns in SCZ vary across different brain regions, which may be a useful epigenetic characteristic for diagnosing SCZ. Our novel model based on SCZ-gene methylation shows promising diagnostic power.
Collapse
|
220
|
LINE-1 retrotransposon encoded ORF1p expression and promoter methylation in oral squamous cell carcinoma: a pilot study. Cancer Genet 2020; 244:21-29. [PMID: 32088612 DOI: 10.1016/j.cancergen.2020.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is highly predominant in India due to excessive use of tobacco. Here we investigated Long INterpersed Element 1 (LINE or L1) retrotransposon activity in OSCC samples in the same population. There are almost 500,000 copies of L1 occupied around 30% of the human genome. Although most of them are inactive, around 150-200 copies are actively jumping in a human genome. L1 encodes two proteins designated as ORF1p and ORF2p and expression of both proteins are critical for the process of retrotransposition. Here we have analyzed L1 ORF1p expression in a small cohort (n = 15) of paired cancer-normal tissues obtained from operated oral cancer patients. Immunohistochemistry (IHC) with the human ORF1 antibody showed the presence of ORF1p in almost 60% cancer samples, and few of them also showed aberrant p53 expression. Investigating L1 promoter methylation status, showed certain trends towards hypomethylation of the L1 promoter in cancer tissues compared to its normal counterpart. Our data raise the possibility that L1ORF1p expression might have some role in the onset and progression of this particular type of cancer.
Collapse
|
221
|
Weng H, Pei Q, Yang M, Zhang J, Cheng Z, Yi Q. Hypomethylation of C1q/tumor necrosis factor-related protein-1 promoter region in whole blood and risks for coronary artery aneurysms in Kawasaki disease. Int J Cardiol 2020; 307:159-163. [PMID: 32081468 DOI: 10.1016/j.ijcard.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is characterized as a self-limited systemic vasculitis. C1q/tumor necrosis factor-related protein-1 (CTRP1) had been associated with the occurrence of vasculitis in KD. Methylation at the promoter region of certain genes was reported to be involved in the development process of KD. This study aims to investigate the methylation levels of CTRP1 in KD, as well as, its potential to predict coronary artery aneurysms (CAAs). METHODS 31 patients with KD and 14 healthy controls (HCs) were recruited into this study. The KD group was further divided into KD with CAA (KD-CAAs) group and KD without NCAAs (KD-NCAAs) group. Methylation levels of CpG sites were determined by MethylTarget sequencing, a method that uses multiple targeted CpG methylation analysis. RESULTS The methylation levels of CTRP1 promoter region in the KD group were lower than that in the HC group at all predicted CpG sites, especially at sites 34, 51, 69, 79, 176 and 206. Compared with KD-CAAs group, the methylation levels of almost every CpG sites of CTRP1 were increased in the KD-NCAAs group, with site 69 and 154 found to be strongly related to the occurrence of CAAs. CONCLUSIONS The difference in methylation levels of CTRP1 promoter may be involved in the development process of KD, and may be a potential predictive marker for the occurrence of CAAs.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Jing Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|
222
|
Dwi Putra SE, Reichetzeder C, Hasan AA, Slowinski T, Chu C, Krämer BK, Kleuser B, Hocher B. Being Born Large for Gestational Age is Associated with Increased Global Placental DNA Methylation. Sci Rep 2020; 10:927. [PMID: 31969597 PMCID: PMC6976643 DOI: 10.1038/s41598-020-57725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/31/2019] [Indexed: 02/01/2023] Open
Abstract
Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p < 0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p < 0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p = 0.001).
Collapse
Affiliation(s)
- S E Dwi Putra
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - C Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| | - A A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,UP Transfer GmbH, University of Potsdam, Potsdam, Germany
| | - T Slowinski
- Department of Nephrology, Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - C Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - B K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - B Kleuser
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany. .,Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
223
|
Kobayashi M, Matsubara N, Nakachi Y, Okazaki Y, Uchino M, Ikeuchi H, Song J, Kimura K, Yasuhara M, Babaya A, Yamano T, Ikeda M, Nishikawa H, Matsuda I, Hirota S, Tomita N. Hypermethylation of Corticotropin Releasing Hormone Receptor-2 Gene in Ulcerative Colitis Associated Colorectal Cancer. In Vivo 2020; 34:57-63. [PMID: 31882463 PMCID: PMC6984071 DOI: 10.21873/invivo.11745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM The difficulty of early diagnosis of colitis associated colorectal cancer (CACRC) due to colonic mucosal changes in long-standing ulcerative colitis (UC) patients is often experienced in daily clinical practice. Noninvasive objective monitoring for cancer development is advantageous for optimizing treatment strategies in UC patients. We aimed to examine the epigenetic alterations occurring in CACRC, focusing on DNA hypermethylation of CpG islands. MATERIALS AND METHODS The level of DNA methylation in CpG cites was compared between CACRC and the counterpart non-tumorous mucosa using Infinium HumanMethylation 450K BeadChip. RESULTS Our subjects included 3 males and 3 females (median age, 49.5 years). The 450K CpG site DNA methylation microarray revealed that the difference in β value (level of hypermethylation) was the highest for corcicotropin releasing hormone receptor 2 (CRHR2) between CACRC and counterpart non-tumorous mucosa. CONCLUSION Detection of hypermethylation of CRHR2 may be promising for cancer screening in UC patients.
Collapse
Affiliation(s)
- Masayoshi Kobayashi
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nagahide Matsubara
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yutaka Nakachi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Motoi Uchino
- Department of Inflammatory Bowel Disease, Division of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroki Ikeuchi
- Department of Inflammatory Bowel Disease, Division of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jihyng Song
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kei Kimura
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michiko Yasuhara
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akihito Babaya
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomoki Yamano
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masataka Ikeda
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroki Nishikawa
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ikuo Matsuda
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naohiro Tomita
- Division of Lower Gastrointestinal Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
224
|
Ectopic Methylation of a Single Persistently Unmethylated CpG in the Promoter of the Vitellogenin Gene Abolishes Its Inducibility by Estrogen through Attenuation of Upstream Stimulating Factor Binding. Mol Cell Biol 2019; 39:MCB.00436-19. [PMID: 31548262 DOI: 10.1128/mcb.00436-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
The enhancer/promoter of the vitellogenin II gene (VTG) has been extensively studied as a model system of vertebrate transcriptional control. While deletion mutagenesis and in vivo footprinting identified the transcription factor (TF) binding sites governing its tissue specificity, DNase hypersensitivity and DNA methylation studies revealed the epigenetic changes accompanying its hormone-dependent activation. Moreover, upon induction with estrogen (E2), the region flanking the estrogen-responsive element (ERE) was reported to undergo active DNA demethylation. We now show that although the VTG ERE is methylated in embryonic chicken liver and in LMH/2A hepatocytes, its induction by E2 was not accompanied by extensive demethylation. In contrast, E2 failed to activate a VTG enhancer/promoter-controlled luciferase reporter gene methylated by SssI. Surprisingly, this inducibility difference could be traced not to the ERE but rather to a single CpG in an E-box (CACGTG) sequence upstream of the VTG TATA box, which is unmethylated in vivo but methylated by SssI. We demonstrate that this E-box binds the upstream stimulating factor USF1/2. Selective methylation of the CpG within this binding site with an E-box-specific DNA methyltransferase, Eco72IM, was sufficient to attenuate USF1/2 binding in vitro and abolish the hormone-induced transcription of the VTG gene in the reporter system.
Collapse
|
225
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
226
|
Leiro-Fernandez V, De Chiara L, Rodríguez-Girondo M, Botana-Rial M, Valverde D, Núñez-Delgado M, Fernández-Villar A. Methylation Assessment for the Prediction of Malignancy in Mediastinal Adenopathies Obtained by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Lung Cancer. Cancers (Basel) 2019; 11:cancers11101408. [PMID: 31547177 PMCID: PMC6826358 DOI: 10.3390/cancers11101408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
The evaluation of mediastinal lymph nodes is critical for the correct staging of patients with lung cancer (LC). Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive technique for mediastinal staging, though unfortunately lymph node micrometastasis is often missed by cytological analysis. The aim of this study was to evaluate the predictive capacity of methylation biomarkers and provide a classification rule for predicting malignancy in false negative EBUS-TBNA samples. The study included 112 patients with a new or suspected diagnosis of LC that were referred to EBUS-TBNA. Methylation of p16/INK4a, MGMT, SHOX2, E-cadherin, DLEC1, and RASSF1A was quantified by nested methylation-specific qPCR in 218 EBUS-TBNA lymph node samples. Cross-validated linear regression models were evaluated to predict malignancy. According to EBUS-TBNA and final diagnosis, 90 samples were true positives for malignancy, 110 were true negatives, and 18 were false negatives. MGMT, SHOX2, and E-cadherin were the methylation markers that better predicted malignancy. The model including sex, age, short axis diameter and standard uptake value of adenopathy, and SHOX2 showed 82.7% cross-validated sensitivity and 82.4% specificity for the detection of malignant lymphadenopathies among negative cytology samples. Our results suggest that the predictive model approach proposed can complement EBUS-TBNA for mediastinal staging.
Collapse
Affiliation(s)
- Virginia Leiro-Fernandez
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, 36312 Vigo, Spain; (M.B.-R.); (M.N.-D.); (A.F.-V.)
- NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), 36312 Vigo, Spain
- Correspondence: (L.D.C.); (V.L.-F.)
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Correspondence: (L.D.C.); (V.L.-F.)
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- SiDOR Research Group, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| | - Maribel Botana-Rial
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, 36312 Vigo, Spain; (M.B.-R.); (M.N.-D.); (A.F.-V.)
- NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), 36312 Vigo, Spain
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain;
| | - Manuel Núñez-Delgado
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, 36312 Vigo, Spain; (M.B.-R.); (M.N.-D.); (A.F.-V.)
- NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), 36312 Vigo, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, 36312 Vigo, Spain; (M.B.-R.); (M.N.-D.); (A.F.-V.)
- NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), 36312 Vigo, Spain
| |
Collapse
|
227
|
An H, Ma X, Liu M, Wang X, Wei X, Yuan W, Ma J. Stomatin plays a suppressor role in non-small cell lung cancer metastasis. Chin J Cancer Res 2019; 31:930-944. [PMID: 31949395 PMCID: PMC6955161 DOI: 10.21147/j.issn.1000-9604.2019.06.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective Metastasis is one of the key causes of high mortality in lung cancer. Aberrant DNA methylation is a common event in metastatic lung cancer. We aimed to identify new epigenetic regulation of metastasis-associated genes and characterize their effects on lung cancer progression. Methods We screened genes associated with non-small cell lung cancer (NSCLC) metastasis by integrating datasets from the Gene Expression Omnibus (GEO) database. We obtained epigenetic-regulated candidate genes by analyzing the expression profile of demethylation genes. By overlapping analysis, epigenetically modulated metastasis-associated genes were obtained. Kaplan-Meier plotter (KM plotter) was utilized to assess the overall survival (OS) of stomatin in lung cancer. Immunohistochemistry (IHC) was conducted to determine the association between stomatin and metastasis-associated clinical indicators. Both in vitro and in vivo assays were performed to investigate the potential role of stomatin in metastasis. The regulation mechanisms of transforming growth factor β1 (TGFβ1) on stomatin were determined by Sequenom MassARRAY quantitative methylation and western blot assays.
Results A series of bioinformatic analyses revealed stomatin as the metastasis-associated gene regulated by DNA methylation. The KM plotter analysis showed a positive association between stomatin and the OS of lung cancer. IHC analysis indicated that the decreased stomatin expression is linked with advanced TNM stage. Loss- and gain-of-function experiments displayed that stomatin could inhibit the migration and invasion of NSCLC cells. Furthermore, TGFβ1 repressed stomatin expression during epithelial-to-mesenchymal transition (EMT). The negative correlation between stomatin and TGFβ1 was also validated in advanced stage III lung tumor samples. The underlying mechanism by which TGFβ1 inhibits stomatin is due in part to DNA methylation. Conclusions Our results suggest that stomatin may be a target for epigenetic regulation and can be used to prevent metastatic diseases.
Collapse
Affiliation(s)
- Huaying An
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingyi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|