201
|
Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ, Bullmore ET, Baron-Cohen S, Suckling J. A shift to randomness of brain oscillations in people with autism. Biol Psychiatry 2010; 68:1092-9. [PMID: 20728872 DOI: 10.1016/j.biopsych.2010.06.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/20/2010] [Accepted: 06/26/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (fMRI) enables investigation of the intrinsic functional organization of the brain. Fractal parameters such as the Hurst exponent, H, describe the complexity of endogenous low-frequency fMRI time series on a continuum from random (H = .5) to ordered (H = 1). Shifts in fractal scaling of physiological time series have been associated with neurological and cardiac conditions. METHODS Resting-state fMRI time series were recorded in 30 male adults with an autism spectrum condition (ASC) and 33 age- and IQ-matched male volunteers. The Hurst exponent was estimated in the wavelet domain and between-group differences were investigated at global and voxel level and in regions known to be involved in autism. RESULTS Complex fractal scaling of fMRI time series was found in both groups but globally there was a significant shift to randomness in the ASC (mean H = .758, SD = .045) compared with neurotypical volunteers (mean H = .788, SD = .047). Between-group differences in H, which was always reduced in the ASC group, were seen in most regions previously reported to be involved in autism, including cortical midline structures, medial temporal structures, lateral temporal and parietal structures, insula, amygdala, basal ganglia, thalamus, and inferior frontal gyrus. Severity of autistic symptoms was negatively correlated with H in retrosplenial and right anterior insular cortex. CONCLUSIONS Autism is associated with a small but significant shift to randomness of endogenous brain oscillations. Complexity measures may provide physiological indicators for autism as they have done for other medical conditions.
Collapse
Affiliation(s)
- Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Spengler S, Bird G, Brass M. Hyperimitation of actions is related to reduced understanding of others' minds in autism spectrum conditions. Biol Psychiatry 2010; 68:1148-55. [PMID: 21130224 DOI: 10.1016/j.biopsych.2010.09.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/27/2010] [Accepted: 09/03/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Anecdotal evidence has noted that individuals with autism spectrum conditions (ASC) frequently exhibit heightened spontaneous imitative behavior, with symptoms of echolalia and echopraxia. This is contrasted by empiric reports that ASC results in decreased imitation and an underlying deficit in the mirror system, leading to impaired social understanding. Thus, it remains unclear whether automatic imitation is enhanced in ASC and how this is related to poorer social abilities. METHODS This study investigated spontaneous imitation in 18 high-functioning adults with ASC and 18 age- and IQ-matched control participants during a simple imitation inhibition task. Mentalizing was experimentally assessed in the same participants using both behavioral and functional magnetic resonance imaging measures, as was social interaction using an observational measure. RESULTS Individuals with ASC showed increased imitation of hand actions compared with control participants and this was associated with reduced mentalizing and poorer reciprocal social interaction abilities. In the functional magnetic resonance imaging mentalizing paradigm, ASC participants with increased imitation scores showed less brain activation in areas often found to be active in mental state attribution, namely the medial prefrontal cortex and temporoparietal junction. CONCLUSIONS The results confirm the presence of hyperimitation in ASC, which is accompanied by reduced social cognition, suggesting that a general imitation impairment and a global mirror system deficit are absent. These findings offer an explanation for echopractic features based on theories of atypical functioning of top-down modulation processes in autism.
Collapse
Affiliation(s)
- Stephanie Spengler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | |
Collapse
|
203
|
Dichter GS, Felder JN, Green SR, Rittenberg AM, Sasson NJ, Bodfish JW. Reward circuitry function in autism spectrum disorders. Soc Cogn Affect Neurosci 2010; 7:160-72. [PMID: 21148176 DOI: 10.1093/scan/nsq095] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Social interaction deficits and restricted repetitive behaviors and interests that characterize autism spectrum disorders (ASDs) may both reflect aberrant functioning of brain reward circuits. However, no neuroimaging study to date has investigated the integrity of reward circuits using an incentive delay paradigm in individuals with ASDs. In the present study, we used functional magnetic resonance imaging to assess blood-oxygen level-dependent activation during reward anticipation and outcomes in 15 participants with an ASD and 16 matched control participants. Brain activation was assessed during anticipation of and in response to monetary incentives and object image incentives previously shown to be visually salient for individuals with ASDs (e.g., trains, electronics). Participants with ASDs showed decreased nucleus accumbens activation during monetary anticipation and outcomes, but not during object anticipation or outcomes. Group × reward-type-interaction tests revealed robust interaction effects in bilateral nucleus accumbens during reward anticipation and in ventromedial prefrontal cortex during reward outcomes, indicating differential responses contingent on reward type in these regions. Results suggest that ASDs are characterized by reward-circuitry hypoactivation in response to monetary incentives but not in response to autism-relevant object images. The clinical implications of the double dissociation of reward type and temporal phase in reward circuitry function in ASD are discussed.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 3366, 101 Manning Drive, Chapel Hill, NC 27599-3366, USA.
| | | | | | | | | | | |
Collapse
|
204
|
|
205
|
Zwickel J, White SJ, Coniston D, Senju A, Frith U. Exploring the building blocks of social cognition: spontaneous agency perception and visual perspective taking in autism. Soc Cogn Affect Neurosci 2010; 6:564-71. [PMID: 20934986 DOI: 10.1093/scan/nsq088] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individuals with autism spectrum disorders have highly characteristic impairments in social interaction and this is true also for those with high functioning autism or Asperger syndrome (AS). These social cognitive impairments are far from global and it seems likely that some of the building blocks of social cognition are intact. In our first experiment, we investigated whether high functioning adults who also had a diagnosis of AS would be similar to control participants in terms of their eye movements when watching animated triangles in short movies that normally evoke mentalizing. They were. Our second experiment using the same movies, tested whether both groups would spontaneously adopt the visuo-spatial perspective of a triangle protagonist. They did. At the same time autistic participants differed in their verbal accounts of the story line underlying the movies, confirming their specific difficulties in on-line mentalizing. In spite of this difficulty, two basic building blocks of social cognition appear to be intact: spontaneous agency perception and spontaneous visual perspective taking.
Collapse
Affiliation(s)
- Jan Zwickel
- Department of Psychology, Ludwig Maximilians University Munich, Leopoldstrasse 13, 80802 Munich, Germany.
| | | | | | | | | |
Collapse
|
206
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1232] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
207
|
Shih P, Shen M, Ottl B, Keehn B, Gaffrey MS, Müller RA. Atypical network connectivity for imitation in autism spectrum disorder. Neuropsychologia 2010; 48:2931-9. [PMID: 20558187 DOI: 10.1016/j.neuropsychologia.2010.05.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/28/2010] [Accepted: 05/28/2010] [Indexed: 11/18/2022]
Abstract
Imitation has been considered as one of the precursors for sociocommunicative development. Impairments of imitation in autism spectrum disorder (ASD) could be indicative of dysfunctional underlying neural processes. Neuroimaging studies have found reduced activation in areas associated with imitation, but a functional connectivity MRI network perspective of these regions in autism is unavailable. Functional and effective connectivity was examined in 14 male participants with ASD and 14 matched typically developing (TD) participants. We analyzed intrinsic, low-frequency blood oxygen level dependent (BOLD) fluctuations of three regions in literature found to be associated with imitation (inferior frontal gyrus [IFG], inferior parietal lobule [IPL], superior temporal sulcus [STS]). Direct group comparisons did not show significantly reduced functional connectivity within the imitation network in ASD. Conversely, we observed greater connectivity with frontal regions, particularly superior frontal and anterior cingulate gyri, in the ASD compared to TD group. Structural equation modeling of effective connectivity revealed a significantly reduced effect of IPL on IFG together with an increased influence of a region in dorsal prefrontal cortex (dPFC) on IFG in the ASD group. Our results suggest atypical connectivity of the imitation network with an enhanced role of dPFC, which may relate to behavioral impairments.
Collapse
Affiliation(s)
- Patricia Shih
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA 92120, United States
| | | | | | | | | | | |
Collapse
|
208
|
Abstract
PURPOSE OF REVIEW Functional magnetic resonance imaging studies have had a profound impact on the delineation of the neurobiologic basis for autism. Advances in fMRI technology for investigating functional connectivity, resting state connectivity, and a default mode network have provided further detail about disturbances in brain organization and brain-behavior relationships in autism to be reviewed in this article. RECENT FINDINGS Recent fMRI studies have provided evidence of enhanced activation and connectivity of posterior, or parietal-occipital, networks and enhanced reliance on visuospatial abilities for visual and verbal reasoning in high functioning individuals with autism. Evidence also indicates altered activation in frontostriatal networks for cognitive control, particularly involving anterior cingulate cortex, and altered connectivity in the resting state and the default mode network. The findings suggest that the specialization of many cortical networks of the human brain has failed to develop fully in high functioning individuals with autism. SUMMARY This research provides a growing specification of to the neurobiologic basis for this complex syndrome and for the co-occurrence of the signs and symptoms as a syndrome. With this knowledge has come new neurobiologically based opportunities for intervention.
Collapse
|
209
|
Santos NS, Kuzmanovic B, David N, Rotarska-Jagiela A, Eickhoff SB, Shah JN, Fink GR, Bente G, Vogeley K. Animated brain: a functional neuroimaging study on animacy experience. Neuroimage 2010; 53:291-302. [PMID: 20570742 DOI: 10.1016/j.neuroimage.2010.05.080] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/21/2010] [Accepted: 05/27/2010] [Indexed: 01/21/2023] Open
Abstract
Previous research used animated geometric figures to investigate social cognitive processes involved in ascribing mental states to others (e.g. mentalizing). The relationship between animacy perception and brain areas commonly involved in social cognition, as well as the influence of particular motion patterns on animacy experience, however, remains to be further elucidated. We used a recently introduced paradigm for the systematic variation of motion properties, and employed functional magnetic resonance imaging to identify the neural mechanisms underlying animacy experience. Based on individual ratings of increased animacy experience the following brain regions of the "social neural network" (SNN), known to be involved in social cognitive processes, were recruited: insula, superior temporal gyrus, fusiform gyrus, parahippocampal gyrus and the ventromedial prefrontal cortex bilaterally. Decreased animacy experience was associated with increased neural activity in the inferior parietal and inferior frontal gyrus, key constituents of the human "mirror neuron system" (hMNS). These findings were corroborated when analyses were based on movement patterns alone, irrespective of subjective experience. Additionally to the areas found for increased animacy experience, an increase in interactive movements elicited activity in the amygdala and the temporal pole. In conclusion, the results suggest that the hMNS is recruited during a low-level stage of animacy judgment representing a basic disposition to detect the salience of movements, whereas the SNN appears to be a high-level processing component serving evaluation in social and mental inference.
Collapse
|
210
|
Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O'Boyle JG, Schultz RT, Pearlson GD. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 2010; 53:247-56. [PMID: 20621638 DOI: 10.1016/j.neuroimage.2010.05.067] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/23/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode sub-networks (DM-SNs) in 16 patients with high-functioning ASD compared to 16 matched healthy controls of short resting fMRI scans using independent component analysis (ICA). ICA is a multivariate data-driven approach that identifies temporally coherent networks, providing a natural measure of FC. Results show that compared to controls, patients showed decreased FC between the precuneus and medial prefrontal cortex/anterior cingulate cortex, DMN core areas, and other DM-SNs areas. FC magnitude in these regions inversely correlated with the severity of patients' social and communication deficits as measured by the Autism Diagnostic Observational Schedule and the Social Responsiveness Scale. Importantly, supplemental analyses suggest that these results were independent of treatment status. These results support the hypothesis that DM-SNs under-connectivity contributes to the core deficits seen in ASD. Moreover, these data provide further support for the use of data-driven analysis with resting-state data for illuminating neural systems that differ between groups. This approach seems especially well suited for populations where compliance with and performance of active tasks might be a challenge, as it requires minimal cooperation.
Collapse
Affiliation(s)
- Michal Assaf
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT 06106,USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Losh M, Esserman D, Piven J. Rapid automatized naming as an index of genetic liability to autism. J Neurodev Disord 2010; 2:109-16. [PMID: 20721307 PMCID: PMC2922764 DOI: 10.1007/s11689-010-9045-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 04/01/2010] [Indexed: 11/20/2022] Open
Abstract
This study investigated rapid automatized naming (RAN) ability in high functioning individuals with autism and parents of individuals with autism. Findings revealed parallel patterns of performance in parents and individuals with autism, where both groups had longer naming times than controls. Significant parent-child correlations were also detected, along with associations with language and personality features of the broad autism phenotype (retrospective reports of early language delay, socially reticent personality). Together, findings point towards RAN as a potential marker of genetic liability to autism.
Collapse
|
212
|
Current World Literature. Curr Opin Neurol 2010; 23:194-201. [DOI: 10.1097/wco.0b013e328338cade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
213
|
Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proc Natl Acad Sci U S A 2010; 107:6753-8. [PMID: 20351278 DOI: 10.1073/pnas.0914826107] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When we judge an action as morally right or wrong, we rely on our capacity to infer the actor's mental states (e.g., beliefs, intentions). Here, we test the hypothesis that the right temporoparietal junction (RTPJ), an area involved in mental state reasoning, is necessary for making moral judgments. In two experiments, we used transcranial magnetic stimulation (TMS) to disrupt neural activity in the RTPJ transiently before moral judgment (experiment 1, offline stimulation) and during moral judgment (experiment 2, online stimulation). In both experiments, TMS to the RTPJ led participants to rely less on the actor's mental states. A particularly striking effect occurred for attempted harms (e.g., actors who intended but failed to do harm): Relative to TMS to a control site, TMS to the RTPJ caused participants to judge attempted harms as less morally forbidden and more morally permissible. Thus, interfering with activity in the RTPJ disrupts the capacity to use mental states in moral judgment, especially in the case of attempted harms.
Collapse
|
214
|
Frith U, Frith C. The social brain: allowing humans to boldly go where no other species has been. Philos Trans R Soc Lond B Biol Sci 2010; 365:165-76. [PMID: 20008394 PMCID: PMC2842701 DOI: 10.1098/rstb.2009.0160] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biological basis of complex human social interaction and communication has been illuminated through a coming together of various methods and disciplines. Among these are comparative studies of other species, studies of disorders of social cognition and developmental psychology. The use of neuroimaging and computational models has given weight to speculations about the evolution of social behaviour and culture in human societies. We highlight some networks of the social brain relevant to two-person interactions and consider the social signals between interacting partners that activate these networks. We make a case for distinguishing between signals that automatically trigger interaction and cooperation and ostensive signals that are used deliberately. We suggest that this ostensive signalling is needed for 'closing the loop' in two-person interactions, where the partners each know that they have the intention to communicate. The use of deliberate social signals can serve to increase reputation and trust and facilitates teaching. This is likely to be a critical factor in the steep cultural ascent of mankind.
Collapse
|
215
|
Chura LR, Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Bullmore ET, Baron-Cohen S. Organizational effects of fetal testosterone on human corpus callosum size and asymmetry. Psychoneuroendocrinology 2010; 35:122-32. [PMID: 19833443 DOI: 10.1016/j.psyneuen.2009.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Previous theory and research in animals has identified the critical role that fetal testosterone (FT) plays in organizing sexually dimorphic brain development. However, to date there are no studies in humans directly testing the organizational effects of FT on structural brain development. In the current study we investigated the effects of FT on corpus callosum size and asymmetry. High-resolution structural magnetic resonance images (MRI) of the brain were obtained on 28 8-11-year-old boys whose exposure to FT had been previously measured in utero via amniocentesis conducted during the second trimester. Although there was no relationship between FT and midsaggital corpus callosum size, increasing FT was significantly related to increasing rightward asymmetry (e.g., Right>Left) of a posterior subsection of the callosum, the isthmus, that projects mainly to parietal and superior temporal areas. This potential organizational effect of FT on rightward callosal asymmetry may be working through enhancing the neuroprotective effects of FT and result in an asymmetric distribution of callosal axons. We suggest that this possible organizational effect of FT on callosal asymmetry may also play a role in shaping sexual dimorphism in functional and structural brain development, cognition, and behavior.
Collapse
Affiliation(s)
- Lindsay R Chura
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
We outline the basis of how functional disconnection with reduced activity and coherence in the right hemisphere would explain all of the symptoms of autistic spectrum disorder as well as the observed increases in sympathetic activation. If the problem of autistic spectrum disorder is primarily one of desynchronization and ineffective interhemispheric communication, then the best way to address the symptoms is to improve coordination between areas of the brain. To do that the best approach would include multimodal therapeusis that would include a combination of somatosensory, cognitive, behavioral, and biochemical interventions all directed at improving overall health, reducing inflammation and increasing right hemisphere activity to the level that it becomes temporally coherent with the left hemisphere. We hypothesize that the unilateral increased hemispheric stimulation has the effect of increasing the temporal oscillations within the thalamocortical pathways bringing it closer to the oscillation rate of the adequately functioning hemisphere. We propose that increasing the baseline oscillation speed of one entire hemisphere will enhance the coordination and coherence between the two hemispheres allowing for enhanced motor and cognitive binding.
Collapse
Affiliation(s)
- Robert Melillo
- F.R. Carrick Institute for Clinical Ergonomics, Rehabilitation, and Applied Neuroscience of Leeds Metropolitan University, Leeds, UK
| | | |
Collapse
|
217
|
Senju A, Southgate V, White S, Frith U. Mindblind Eyes: An Absence of Spontaneous Theory of Mind in Asperger Syndrome. Science 2009; 325:883-5. [PMID: 19608858 DOI: 10.1126/science.1176170] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Atsushi Senju
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK.
| | | | | | | |
Collapse
|
218
|
Mason RA, Just MA. The Role of the Theory-of-Mind Cortical Network in the Comprehension of Narratives. LANGUAGE AND LINGUISTICS COMPASS 2009; 3:157-174. [PMID: 19809575 PMCID: PMC2756681 DOI: 10.1111/j.1749-818x.2008.00122.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Narrative comprehension rests on the ability to understand the intentions and perceptions of various agents in a story who interact with respect to some goal or problem. Reasoning about the state of mind of another person, real or fictional, has been referred to as Theory of Mind processing. While Theory of Mind Processing was first postulated prior to the existence of neuroimaging research, fMRI studies make it possible to characterize this processing in some detail. We propose that narrative comprehension makes use of some of the neural substrate of Theory of Mind reasoning, evoking what is referred to as a protagonist perspective network. The main cortical components of this protagonist-based network are the dorsomedial prefrontal cortex and the right temporo-parietal junction. The article discusses how these two cortical centers interact in narrative comprehension but still play distinguishable roles, and how the interaction between the two centers is disrupted in individuals with autism.
Collapse
Affiliation(s)
- Robert A Mason
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|