201
|
Brieher WM, Yap AS. Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol 2012; 25:39-46. [PMID: 23127608 DOI: 10.1016/j.ceb.2012.10.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022]
Abstract
Classical cadherin adhesion receptors exert many of their biological effects through close cooperation with the cytoskeleton. Much attention has focused on attempting to understand the physical interactions between cadherin molecular complexes and cortical actin filaments. In this review we aim to draw attention to other issues that highlight the diverse and dynamic cytoskeletons that contribute to cadherin function. First, we discuss the regulation of actin filament dynamics in the cadherin-based junctional cytoskeleton, focusing on the emerging role of Arp2/3 as a junctional actin nucleator and its implications for actin homeostasis at junctions. Second, we review recent developments in understanding the impact of microtubules on cadherin function. Together, these emphasize that cadherins cooperate with multiple dynamic cytoskeletal networks at cell-cell junctions.
Collapse
Affiliation(s)
- William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
202
|
Du X, Doubrovinski K, Osterfield M. Self-organized cell motility from motor-filament interactions. Biophys J 2012; 102:1738-45. [PMID: 22768929 DOI: 10.1016/j.bpj.2012.03.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/15/2022] Open
Abstract
Cell motility is driven primarily by the dynamics of the cell cytoskeleton, a system of filamentous proteins and molecular motors. It has been proposed that cell motility is a self-organized process, that is, local short-range interactions determine much of the dynamics that are required for the whole-cell organization that leads to polarization and directional motion. Here we present a mesoscopic mean-field description of filaments, motors, and cell boundaries. This description gives rise to a dynamical system that exhibits multiple self-organized states. We discuss several qualitative aspects of the asymptotic states and compare them with those of living cells.
Collapse
Affiliation(s)
- XinXin Du
- Physics Department, Princeton University, Princeton, New Jersey, USA.
| | | | | |
Collapse
|
203
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
204
|
Karna P, Rida PC, Turaga RC, Gao J, Gupta M, Fritz A, Werner E, Yates C, Zhou J, Aneja R. A novel microtubule-modulating agent EM011 inhibits angiogenesis by repressing the HIF-1α axis and disrupting cell polarity and migration. Carcinogenesis 2012; 33:1769-81. [PMID: 22678119 PMCID: PMC3514903 DOI: 10.1093/carcin/bgs200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 05/18/2012] [Accepted: 05/26/2012] [Indexed: 12/21/2022] Open
Abstract
Endothelial tubular morphogenesis relies on an exquisite interplay of microtubule dynamics and actin remodeling to propel directed cell migration. Recently, the dynamicity and integrity of microtubules have been implicated in the trafficking and efficient translation of the mRNA for HIF-1α (hypoxia-inducible factor), the master regulator of tumor angiogenesis. Thus, microtubule-disrupting agents that perturb the HIF-1α axis and neovascularization cascade are attractive anticancer drug candidates. Here we show that EM011 (9-bromonoscapine), a microtubule-modulating agent, inhibits a spectrum of angiogenic events by interfering with endothelial cell invasion, migration and proliferation. Employing green-fluorescent transgenic zebrafish, we found that EM011 not only inhibited vasculogenesis but also disrupted preexisting vasculature. Mechanistically, EM011 caused proteasome-dependent, VHL-independent HIF-1α degradation and repressed expression of HIF-1α downstream targets, namely VEGF and survivin. Furthermore, EM011 inhibited membrane ruffling and impeded formation of filopodia, lamellipodia and stress fibers, which are critical for cell migration. These events were associated with a drug-mediated decrease in activation of Rho GTPases- RhoA, Cdc42 and Rac1, and correlated with a loss in the geometric precision of centrosome reorientation in the direction of movement. This is the first report to describe a previously unrecognized, antiangiogenic property of a noscapinoid, EM011, and provides evidence for novel anticancer strategies recruited by microtubule-modulating drugs.
Collapse
Affiliation(s)
- Prasanthi Karna
- Department of Biology,
Georgia State University,
Atlanta, GA 30303, USA,
| | | | - Ravi Chakra Turaga
- Department of Biology,
Georgia State University,
Atlanta, GA 30303, USA,
| | - Jinmin Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University,
Tianjin 300071, China,
| | | | | | - Erica Werner
- Department of Biochemistry, Emory University School of Medicine,
Atlanta, GA 30322, USA and
| | - Clayton Yates
- Department of Biology and Center for Cancer Research,
Tuskegee, AL 36088, USA
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University,
Tianjin 300071, China,
| | - Ritu Aneja
- Department of Biology,
Georgia State University,
Atlanta, GA 30303, USA,
| |
Collapse
|
205
|
Loosley AJ, Tang JX. Stick-slip motion and elastic coupling in crawling cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031908. [PMID: 23030945 DOI: 10.1103/physreve.86.031908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 06/01/2023]
Abstract
Crawling cells exhibit a variety of cell shape dynamics, ranging from complex ruffling and bubbling to oscillatory protrusion and retraction. Periodic shape changes during cell migration are recorded in fast-moving fish epithelial keratocytes where sticking and slipping at opposite sides of the cell's broad trailing edge generate bipedal locomotion. Barnhart et al. [Biophys. J. 98, 933 (2010)] recently proposed a mechanical spring model specifically designed to capture bipedal locomotion in these cells. We extend their model by benchmarking the dynamics of four mechanical configurations against those of crawling keratocytes. Our analysis shows that elastic coupling to the cell nucleus is necessary to generate its lateral motion. We select one configuration to study the effects of cell elasticity, size, and aspect ratio on crawling dynamics. This configuration predicts that shape dynamics are highly dependent on the lamellipodial elasticity but less sensitive to elasticity at the trailing edge. The model predicts a wide range of dynamics seen in actual crawling keratocytes, including coherent bipedal, coherent nonbipedal, and decoherent motions. This work highlights how the dynamical behavior of crawling cells can be derived from mechanical properties through which biochemical factors may operate to regulate cellular locomotion.
Collapse
Affiliation(s)
- Alex J Loosley
- Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
206
|
Abstract
The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Richard E Cheney
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
207
|
Switching of myosin-V motion between the lever-arm swing and brownian search-and-catch. Nat Commun 2012; 3:956. [PMID: 22805563 DOI: 10.1038/ncomms1934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/30/2012] [Indexed: 01/26/2023] Open
Abstract
Motor proteins are force-generating nanomachines that are highly adaptable to their ever-changing biological environments and have a high energy conversion efficiency. Here we constructed an imaging system that uses optical tweezers and a DNA handle to visualize elementary mechanical processes of a nanomachine under load. We apply our system to myosin-V, a well-known motor protein that takes 72 nm 'hand-over-hand' steps composed of a 'lever-arm swing' and a 'brownian search-and-catch'. We find that the lever-arm swing generates a large proportion of the force at low load (<0.5 pN), resulting in 3 k(B)T of work. At high load (1.9 pN), however, the contribution of the brownian search-and-catch increases to dominate, reaching 13 k(B)T of work. We believe the ability to switch between these two force-generation modes facilitates myosin-V function at high efficiency while operating in a dynamic intracellular environment.
Collapse
|
208
|
Functions of nonmuscle myosin II in assembly of the cellular contractile system. PLoS One 2012; 7:e40814. [PMID: 22808267 PMCID: PMC3396643 DOI: 10.1371/journal.pone.0040814] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 06/17/2012] [Indexed: 01/13/2023] Open
Abstract
The contractile system of nonmuscle cells consists of interconnected actomyosin networks and bundles anchored to focal adhesions. The initiation of the contractile system assembly is poorly understood structurally and mechanistically, whereas system's maturation heavily depends on nonmuscle myosin II (NMII). Using platinum replica electron microscopy in combination with fluorescence microscopy, we characterized the structural mechanisms of the contractile system assembly and roles of NMII at early stages of this process. We show that inhibition of NMII by a specific inhibitor, blebbistatin, in addition to known effects, such as disassembly of stress fibers and mature focal adhesions, also causes transformation of lamellipodia into unattached ruffles, loss of immature focal complexes, loss of cytoskeleton-associated NMII filaments and peripheral accumulation of activated, but unpolymerized NMII. After blebbistatin washout, assembly of the contractile system begins with quick and coordinated recovery of lamellipodia and focal complexes that occurs before reappearance of NMII bipolar filaments. The initial formation of focal complexes and subsequent assembly of NMII filaments preferentially occurred in association with filopodial bundles and concave actin bundles formed by filopodial roots at the lamellipodial base. Over time, accumulating NMII filaments help to transform the precursor structures, focal complexes and associated thin bundles, into stress fibers and mature focal adhesions. However, semi-sarcomeric organization of stress fibers develops at much slower rate. Together, our data suggest that activation of NMII motor activity by light chain phosphorylation occurs at the cell edge and is uncoupled from NMII assembly into bipolar filaments. We propose that activated, but unpolymerized NMII initiates focal complexes, thus providing traction for lamellipodial protrusion. Subsequently, the mechanical resistance of focal complexes activates a load-dependent mechanism of NMII polymerization in association with attached bundles, leading to assembly of stress fibers and maturation of focal adhesions.
Collapse
|
209
|
Schwarz US, Gardel ML. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci 2012; 125:3051-60. [PMID: 22797913 DOI: 10.1242/jcs.093716] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many essential cellular functions in health and disease are closely linked to the ability of cells to respond to mechanical forces. In the context of cell adhesion to the extracellular matrix, the forces that are generated within the actin cytoskeleton and transmitted through integrin-based focal adhesions are essential for the cellular response to environmental clues, such as the spatial distribution of adhesive ligands or matrix stiffness. Whereas substantial progress has been made in identifying mechanosensitive molecules that can transduce mechanical force into biochemical signals, much less is known about the nature of cytoskeletal force generation and transmission that regulates the magnitude, duration and spatial distribution of forces imposed on these mechanosensitive complexes. By focusing on cell-matrix adhesion to flat elastic substrates, on which traction forces can be measured with high temporal and spatial resolution, we discuss our current understanding of the physical mechanisms that integrate a large range of molecular mechanotransduction events on cellular scales. Physical limits of stability emerge as one important element of the cellular response that complements the structural changes affected by regulatory systems in response to mechanical processes.
Collapse
Affiliation(s)
- Ulrich S Schwarz
- BioQuant and Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
210
|
Reymann AC, Boujemaa-Paterski R, Martiel JL, Guérin C, Cao W, Chin HF, De La Cruz EM, Théry M, Blanchoin L. Actin network architecture can determine myosin motor activity. Science 2012; 336:1310-4. [PMID: 22679097 DOI: 10.1126/science.1221708] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.
Collapse
Affiliation(s)
- Anne-Cécile Reymann
- Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Institut National de la Recherche Agronomique (INRA), Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Pujol T, du Roure O, Fermigier M, Heuvingh J. Impact of branching on the elasticity of actin networks. Proc Natl Acad Sci U S A 2012; 109:10364-9. [PMID: 22689953 PMCID: PMC3387051 DOI: 10.1073/pnas.1121238109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin filaments play a fundamental role in cell mechanics: assembled into networks by a large number of partners, they ensure cell integrity, deformability, and migration. Here we focus on the mechanics of the dense branched network found at the leading edge of a crawling cell. We develop a new technique based on the dipolar attraction between magnetic colloids to measure mechanical properties of branched actin gels assembled around the colloids. This technique allows us to probe a large number of gels and, through the study of different networks, to access fundamental relationships between their microscopic structure and their mechanical properties. We show that the architecture does regulate the elasticity of the network: increasing both capping and branching concentrations strongly stiffens the networks. These effects occur at protein concentrations that can be regulated by the cell. In addition, the dependence of the elastic modulus on the filaments' flexibility and on increasing internal stress has been studied. Our overall results point toward an elastic regime dominated by enthalpic rather than entropic deformations. This result strongly differs from the elasticity of diluted cross-linked actin networks and can be explained by the dense dendritic structure of lamellipodium-like networks.
Collapse
Affiliation(s)
- Thomas Pujol
- Physique et Mécanique des Milieux Hétérogènes, École Supérieure de Physique et Chimie Industrielle de la ville de Paris, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin, 75005 Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, École Supérieure de Physique et Chimie Industrielle de la ville de Paris, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin, 75005 Paris, France
| | - Marc Fermigier
- Physique et Mécanique des Milieux Hétérogènes, École Supérieure de Physique et Chimie Industrielle de la ville de Paris, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin, 75005 Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, École Supérieure de Physique et Chimie Industrielle de la ville de Paris, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7636, Université Pierre et Marie Curie, Université Paris Diderot, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
212
|
Miyoshi H, Adachi T. Spatiotemporal coordinated hierarchical properties of cellular protrusion revealed by multiscale analysis. Integr Biol (Camb) 2012; 4:875-88. [PMID: 22689105 DOI: 10.1039/c2ib20013a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a methodology for integrative multiscale analysis to highlight hierarchical properties of cellular protrusion and mechanochemical interactions in cellular protrusion based on live cell imaging data with high spatiotemporal resolution. As an appropriate experimental system, we selected non-polarized full-moon-shaped keratocytes that present balanced protrusion around the entire cell periphery at the cellular scale simultaneously with active protrusion and retraction at the subcellular scale. We achieved the observation of a whole cell with sub-micrometer spatial precision and sub-second time resolution for three minutes or more. The multiscale characteristics of cell peripheral activity and those of the cell peripheral shape were extracted from an identical image sequence by estimating the cell protrusion rates and the cell peripheral curvatures at various differential intervals. The spatiotemporal maps of the cell protrusion rates demonstrated a spatiotemporally nested structure of travelling waves of active protruding regions at the cellular and subcellular scales. Moreover, correlation analysis demonstrated the relationship between the cell protrusion rate and peripheral curvature at the subcellular scale. The novel integrative methodology presented here well highlighted the hierarchical properties of organized cellular protrusion, and further provided insight about the underlying mechanochemical interactions between the cell membrane and the actin filaments under the membrane.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- Ultrahigh Precision Fabrication Team, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
213
|
Zimmermann J, Brunner C, Enculescu M, Goegler M, Ehrlicher A, Käs J, Falcke M. Actin filament elasticity and retrograde flow shape the force-velocity relation of motile cells. Biophys J 2012; 102:287-95. [PMID: 22339865 DOI: 10.1016/j.bpj.2011.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium.
Collapse
Affiliation(s)
- Juliane Zimmermann
- Mathematical Cell Physiology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
214
|
Weichsel J, Urban E, Small JV, Schwarz US. Reconstructing the orientation distribution of actin filaments in the lamellipodium of migrating keratocytes from electron microscopy tomography data. Cytometry A 2012; 81:496-507. [DOI: 10.1002/cyto.a.22050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 12/12/2022]
|
215
|
Guo WH, Wang YL. A three-component mechanism for fibroblast migration with a contractile cell body that couples a myosin II-independent propulsive anterior to a myosin II-dependent resistive tail. Mol Biol Cell 2012; 23:1657-63. [PMID: 22398722 PMCID: PMC3338433 DOI: 10.1091/mbc.e11-06-0556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Frontal, cell body, and rear regions perform distinct functions in the complex process of cell migration. A low-capacity, directional mechanism in the front coupled to a high-capacity, nondirectional mechanism in the middle represents a highly appealing model for driving cell migration under high mechanical load. To understand the mechanism of cell migration, we cultured fibroblasts on micropatterned tracks to induce persistent migration with a highly elongated morphology and well-defined polarity, which allows microfluidic pharmacological manipulations of regional functions. The function of myosin II was probed by applying inhibitors either globally or locally. Of interest, although global inhibition of myosin II inhibited tail retraction and caused dramatic elongation of the posterior region, localized inhibition of the cell body inhibited nuclear translocation and caused elongation of the anterior region. In addition, local application of cytochalasin D at the tip inhibited frontal extension without inhibiting forward movement of the cell nucleus, whereas local treatment posterior to the nucleus caused reversal of nuclear movement. Imaging of cortical dynamics indicated that the region around the nucleus is a distinct compression zone where activities of anterior and posterior regions converge. These observations suggest a three-component model of cell migration in which a contractile middle section is responsible for the movement of a bulky cell body and the detachment/retraction of a resistive tail, thereby allowing these regions to undergo coordinated movement with a moving anterior region that carries little load.
Collapse
Affiliation(s)
- Wei-hui Guo
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
216
|
Hu X, Kuhn JR. Actin filament attachments for sustained motility in vitro are maintained by filament bundling. PLoS One 2012; 7:e31385. [PMID: 22359589 PMCID: PMC3281059 DOI: 10.1371/journal.pone.0031385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023] Open
Abstract
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.
Collapse
Affiliation(s)
- Xiaohua Hu
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey R. Kuhn
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
217
|
Simon A, Satyanarayana SVM. Steady state dynamics of a moving model cell. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:065104. [PMID: 22231907 DOI: 10.1088/0953-8984/24/6/065104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Crawling cell motility results due to treadmilling of a polymerized actin network at the leading edge. Steady state dynamics of a moving cell are governed by actin concentration profiles across the cell. Branching of new filaments implicating Arp2/3 and capping of existing filaments with capZ or Gelsolin are central to the robust functioning of the actin network. Using computer simulations, steady state concentration profiles of globular actin (G actin) and filamentous actin (F actin) are computed. The profiles are in agreement with experimentally observed ones. Simulations unveil that there is an optimal capping and branching rate for which the velocity of the model cell is maximum. Our simulations also indicate that the capping of actin filaments results in an increase in nucleation of new filaments by Arp2/3-induced branching and is in agreement with a recently observed monomer gating model. We observe that Arp2/3 and capping protein exhibit a functional antagonism with respect to the actin network treadmilling.
Collapse
Affiliation(s)
- Antony Simon
- Department of Physics, Pondicherry University, Puducherry 605 014, India
| | | |
Collapse
|
218
|
|
219
|
TGFβ (transforming growth factor β) and keratocyte motility in 24 h zebrafish explant cultures. Cell Biol Int 2012; 35:1131-9. [PMID: 21729005 DOI: 10.1042/cbi20110063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fish keratocytes are used as a model system for the study of the mechanics of cell motility because of their characteristic rapid, smooth gliding motion, but little work has been done on the regulation of fish keratocyte movement. As TGFβ (transforming growth factor β) plays multiple roles in primary human keratinocyte cell migration, we investigated the possible involvement of TGFβ in fish keratocyte migration. Studying the involvement of TGFβ1 in 24 h keratocyte explant allows the examination of the cells before alterations in cellular physiology occur due to extended culture times. During this initial period, TGFβ levels increase 6.2-fold in SFM (serum-free medium) and 2.4-fold in SFM+2% FBS (fetal bovine serum), while TGFβ1 and TGFβRII (TGFβ receptor II) mRNA levels increase ∼3- and ∼5-fold respectively in each culture condition. Two measures of motility, cell sheet area and migration distance, vary with the amount of exogenous TGFβ1 and culture media. The addition of 100 ng/ml exogenous TGFβ1 in SFM increases both measures [3.3-fold (P = 4.5×10-5) and 26% (P = 2.1×10-2) respectively]. In contrast, 100 ng/ml of exogenous TGFβ1 in medium containing 2% FBS decreases migration distance by 2.1-fold (P = 1.7×10-7), but does not affect sheet area. TGFβ1 (10 ng/ml) has little effect on cell sheet area in SFM cultures, but leads to a 1.8-fold increase (P = 1.5×10-2) with 2% FBS. The variable response to TGFβ1 may be, at least in part, explained by the effect of 2% FBS on cell morphology, mode of motility and expression of endogenous TGFβ1 and TGFβRII. Together, these results suggest that expression of TGFβ and its receptor are up-regulated during zebrafish keratocyte explant culture and that TGFβ promotes fish keratocyte migration.
Collapse
|
220
|
Yang C, Svitkina T. Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adh Migr 2012; 5:402-8. [PMID: 21975549 DOI: 10.4161/cam.5.5.16971] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Filopodia are long, slender, actin-rich cellular protrusions, which recently have become a focus of cell biology research because of their proposed roles as sensory and exploratory organelles that allow for "intelligent" cell behavior. Actin nucleation, elongation and bundling are believed to be essential for filopodia formation and functions. However, the identity of actin filament nucleators responsible for the initiation of filopodia remains controversial. Two alternative models, the convergent elongation and tip nucleation, emphasize two different actin filament nucleators, the Arp2/3 complex or formins, respectively, as key players during filopodia initiation. Although these two models in principle are not mutually exclusive, it is important to understand which of them is actually employed by cells. In this review, we discuss the existing evidence regarding the relative roles of the Arp2/3 complex and formins in filopodia initiation.
Collapse
Affiliation(s)
- Changsong Yang
- Department of Biology; University of Pennsylvania; Philadelphia, PA, USA
| | | |
Collapse
|
221
|
Möhl C, Kirchgessner N, Schäfer C, Hoffmann B, Merkel R. Quantitative mapping of averaged focal adhesion dynamics in migrating cells by shape normalization. J Cell Sci 2012; 125:155-65. [PMID: 22250204 DOI: 10.1242/jcs.090746] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The spatially ordered formation and disassembly of focal adhesions is a basic requirement for effective cell locomotion. Because focal adhesions couple the contractile actin-myosin network to the substrate, their distribution determines the pattern of traction forces propelling the cell in a certain direction. In the present study, we quantitatively analyzed the spatial patterning of cell-substrate adhesion in migrating cells by mapping averaged focal adhesion growth dynamics to a standardized cell coordinate system. These maps revealed distinct zones of focal adhesion assembly, disassembly and stability and were strongly interrelated with corresponding actin flow and traction force patterns. Moreover, the mapping technique enables precise detection of even minute responses of adhesion dynamics upon targeted signaling perturbations. For example, the partial inhibition of vinculin phosphorylation was followed by the reduced number of newly formed adhesions, whereas growth dynamics of existing adhesions remained unaffected.
Collapse
Affiliation(s)
- Christoph Möhl
- Institute of Complex Systems, ICS7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | |
Collapse
|
222
|
Ivkovic S, Beadle C, Noticewala S, Massey SC, Swanson KR, Toro LN, Bresnick AR, Canoll P, Rosenfeld SS. Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol Biol Cell 2012; 23:533-42. [PMID: 22219380 PMCID: PMC3279383 DOI: 10.1091/mbc.e11-01-0039] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anaplastic gliomas, the most common and malignant of primary brain tumors, frequently contain activating mutations and amplifications in promigratory signal transduction pathways. However, targeting these pathways with individual signal transduction inhibitors does not appreciably reduce tumor invasion, because these pathways are redundant; blockade of any one pathway can be overcome by stimulation of another. This implies that a more effective approach would be to target a component at which these pathways converge. In this study, we have investigated whether the molecular motor myosin II represents such a target by examining glioma invasion in a series of increasingly complex models that are sensitive to platelet-derived growth factor, epidermal growth factor, or both. Our results lead to two conclusions. First, malignant glioma cells are stimulated to invade brain through the activation of multiple signaling cascades not accounted for in simple in vitro assays. Second, even though there is a high degree of redundancy in promigratory signaling cascades in gliomas, blocking tumor invasion by directly targeting myosin II remains effective. Our results thus support our hypothesis that myosin II represents a point of convergence for signal transduction pathways that drive glioma invasion and that its inhibition cannot be overcome by other motility mechanisms.
Collapse
Affiliation(s)
- Sanja Ivkovic
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Vinzenz M, Nemethova M, Schur F, Mueller J, Narita A, Urban E, Winkler C, Schmeiser C, Koestler SA, Rottner K, Resch GP, Maeda Y, Small JV. Actin branching in the initiation and maintenance of lamellipodia. J Cell Sci 2012; 125:2775-85. [DOI: 10.1242/jcs.107623] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using correlated live cell imaging and electron tomography we found that actin branch junctions in protruding and treadmilling lamellipodia are not concentrated at the front as previously supposed, but link actin filament subsets in which there is a continuum of distances from a junction to the filament plus ends, up to at least 1 µm. When branch sites were observed closely spaced on the same filament their separation was commonly a multiple of the actin helical repeat of 36 nm. Image averaging of branch junctions in the tomograms yielded a model for the in vivo branch at 2.9 nm resolution, which compared closely to that derived for the in vitro actin - Arp2/3 complex. Lamellipodia initiation was monitored in an intracellular wound-healing model and involved branching from the sides of actin filaments oriented parallel to the plasmalemma. Many filament plus ends, presumably capped, terminated behind the lamellipodium tip and localized on the dorsal and ventral surfaces of the actin network. These findings reveal how branching events initiate and maintain a network of actin filaments of variable length and provide the first structural model of the branch junction in vivo. A possible role of filament capping in generating the lamellipodium leaflet is discussed and a mathematical model of protrusion is also presented.
Collapse
|
224
|
Roberts TM, Stewart M. Role of Major Sperm Protein (MSP) in the Protrusion and Retraction of Ascaris Sperm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:265-93. [DOI: 10.1016/b978-0-12-394308-8.00007-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
225
|
Enculescu M, Falcke M. Modeling morphodynamic phenotypes and dynamic regimes of cell motion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:337-58. [PMID: 22161339 DOI: 10.1007/978-1-4419-7210-1_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many cellular processes and signaling pathways converge onto cell morphology and cell motion, which share important components. The mechanisms used for propulsion could also be responsible for shape changes, if they are capable of generating the rich observed variety of dynamic regimes. Additionally, the analysis of cell shape changes in space and time promises insight into the state of the cytoskeleton and signaling pathways controlling it. While this has been obvious for some time by now, little effort has been made to systematically and quantitatively explore this source of information. First pioneering experimental work revealed morphodynamic phenotypes which can be associated with dynamic regimes like oscillations and excitability. Here, we review the current state of modeling of morphodynamic phenotypes, the experimental results and discuss the ideas on the mechanisms driving shape changes which are suggested by modeling.
Collapse
Affiliation(s)
- Mihaela Enculescu
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
226
|
Actin disassembly clock determines shape and speed of lamellipodial fragments. Proc Natl Acad Sci U S A 2011; 108:20394-9. [PMID: 22159033 DOI: 10.1073/pnas.1105333108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A central challenge in motility research is to quantitatively understand how numerous molecular building blocks self-organize to achieve coherent shape and movement on cellular scales. A classic example of such self-organization is lamellipodial motility in which forward translocation is driven by a treadmilling actin network. Actin polymerization has been shown to be mechanically restrained by membrane tension in the lamellipodium. However, it remains unclear how membrane tension is determined, what is responsible for retraction and shaping of the rear boundary, and overall how actin-driven protrusion at the front is coordinated with retraction at the rear. To answer these questions, we utilize lamellipodial fragments from fish epithelial keratocytes which lack a cell body but retain the ability to crawl. The absence of the voluminous cell body in fragments simplifies the relation between lamellipodial geometry and cytoskeletal dynamics. We find that shape and speed are highly correlated over time within individual fragments, whereby faster crawling is accompanied by larger front-to-rear lamellipodial length. Furthermore, we find that the actin network density decays exponentially from front-to-rear indicating a constant net disassembly rate. These findings lead us to a simple hypothesis of a disassembly clock mechanism in which rear position is determined by where the actin network has disassembled enough for membrane tension to crush it and haul it forward. This model allows us to directly relate membrane tension with actin assembly and disassembly dynamics and elucidate the role of the cell membrane as a global mechanical regulator which coordinates protrusion and retraction.
Collapse
|
227
|
Mseka T, Cramer LP. Actin depolymerization-based force retracts the cell rear in polarizing and migrating cells. Curr Biol 2011; 21:2085-91. [PMID: 22137472 DOI: 10.1016/j.cub.2011.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
In migrating cells, the relative importance of myosin II contractility for cell rear retraction varies [1-12]. However, in myosin II-inhibited polarizing cells, actin organization is compromised [13-18]; thus it remains unclear whether myosin II is simply required for correct actin arrangement or also directly drives rear retraction [9]. Ascaris sperm cells lack actin and associated motors, and depolymerization of major sperm protein is instead thought to pull the cell rear forward [19, 20]. Opposing views exist on whether actin could also have this function [19, 20] and has not been directly experimentally sought. We probe function at high temporal resolution in polarizing fibroblasts that establish migration by forming the cell rear first [9, 15, 21]. We show that in cells with correctly organized actin, that actin filament depolymerization directly drives retraction of the rear margin to polarize cells and spatially accounts for most cell rear retraction during established migration. Myosin II contractility is required early, to form aligned actin bundles that are needed for polarization, and also later to maintain bundle length that ensures directed protrusion at the cell front. Our data imply a new mechanism: actin depolymerization-based force retracts the cell rear to polarize cells with no direct contribution from myosin II contractility.
Collapse
Affiliation(s)
- Tayamika Mseka
- MRC-Laboratory Molecular Cell Biology and Department Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
228
|
Abstract
The polymerization-induced propulsion of a model cell consisting of a cell membrane enclosing mobile actin molecules and polymerizing actin filaments is studied using Monte Carlo methods. It is shown that asymmetric polymerization alone induces a rectified motion of the cell. The structural organization of the locomoting cell exhibits an anisotropic shape induced by the anisotropic distribution of actin within the cell. This nonequilibrium distribution is maintained by a constant flow of actin molecules from the rear to the front of the cell. The efficiency of the rectification process, and hence the cell velocity, depends cooperatively on the density of actin molecules. The maximum of the cell velocity is determined by the optimal interplay between the number of filaments and the fluctuation of the cell membrane.
Collapse
Affiliation(s)
- R. SAMBETH
- Forum Modellierung, Forschungszentrum, D-52425 Jülich, Germany
| | - A. BAUMGAERTNER
- Forum Modellierung, Forschungszentrum, D-52425 Jülich, Germany
- Institut für Festkörperforschung, Forschungszentrum, D-52425 Jülich, Germany
| |
Collapse
|
229
|
Bottier C, Gabella C, Vianay B, Buscemi L, Sbalzarini IF, Meister JJ, Verkhovsky AB. Dynamic measurement of the height and volume of migrating cells by a novel fluorescence microscopy technique. LAB ON A CHIP 2011; 11:3855-3863. [PMID: 21964858 DOI: 10.1039/c1lc20807a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We propose a new technique to measure the volume of adherent migrating cells. The method is based on a negative staining where a fluorescent, non-cell-permeant dye is added to the extracellular medium. The specimen is observed with a conventional fluorescence microscope in a chamber of uniform height. Given that the fluorescence signal depends on the thickness of the emitting layer, the objects excluding the fluorescent dye (i.e., cells) appear dark, and the decrease of the fluorescent signal with respect to the background is expected to give information about the height and the volume of the object. Using a glass microfabricated pattern with steps of defined heights, we show that the drop in fluorescence intensity is indeed proportional to the height of the step and obtain calibration curves relating fluorescence intensity to height. The technique, termed the fluorescence displacement method, is further validated by comparing our measurements with the ones obtained by atomic force microscopy (AFM). We apply our method to measure the real-time volume dynamics of migrating fish epidermal keratocytes subjected to osmotic stress. The fluorescence displacement technique allows fast and precise monitoring of cell height and volume, thus providing a valuable tool for characterizing the three-dimensional behaviour of migrating cells.
Collapse
Affiliation(s)
- Céline Bottier
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Cell Biophysics, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
230
|
SMITH DAVID, GENTRY BRIAN, STUHRMANN BJÖRN, HUBER FLORIAN, STREHLE DAN, BRUNNER CLAUDIA, KOCH DANIEL, STEINBECK MATTHIAS, BETZ TIMO, KÄS JOSEFA. THE CYTOSKELETON: AN ACTIVE POLYMER-BASED SCAFFOLD. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The motility of cells is a multifaceted and complicated cytoskeletal process. Significant inroads can be made into gaining a more detailed understanding, however, by focusing on the smaller, more simple subunits of the motile system in an effort to isolate the essential protein components necessary to perform a certain task. Identification of such functional modules has proven to be an effective means of working towards a comprehensive understanding of complex, interacting systems. By following a bottom-up approach in studying minimal actin-related sub-systems for keratocyte motility, we revealed several fundamentally important effects ranging from an estimation of the force generated by the polymerization of a single actin filament, to assembly dynamics and the production of force and tension of composite actin networks, to the contraction of actin networks or smaller bundled structures by the motor myosin II. While even motile keratocyte fragments represent a far more complex situation than the simple reconstituted systems presented here, clear parallels can be seen between in vivo cell motility and the idealized in vitro functional modules presented here, giving more weight to their continued focus.
Collapse
Affiliation(s)
- DAVID SMITH
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - BRIAN GENTRY
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - BJÖRN STUHRMANN
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - FLORIAN HUBER
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - DAN STREHLE
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - CLAUDIA BRUNNER
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - DANIEL KOCH
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - MATTHIAS STEINBECK
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| | - TIMO BETZ
- Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - JOSEF A. KÄS
- Division of Soft Matter Physics, University of Leipzig, Linné Str. 5, 04103, Leipzig, Germany
| |
Collapse
|
231
|
Hoelzle MK, Svitkina T. The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 2011; 23:310-23. [PMID: 22090347 PMCID: PMC3258175 DOI: 10.1091/mbc.e11-08-0719] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cell–cell contact is initiated by lamellipodia, followed by filopodia-like structure formation. Filopodia-like bridges maintain cell–cell contact through adherens junctions. Although bridges are structurally similar to filopodia, they are formed via a unique mechanism. Myosin II activity is important for bridge formation and cadherin accumulation. The actin cytoskeleton and associated proteins play a vital role in cell–cell adhesion. However, the procedure by which cells establish adherens junctions remains unclear. We investigated the dynamics of cell–cell junction formation and the corresponding architecture of the underlying cytoskeleton in cultured human umbilical vein endothelial cells. We show that the initial interaction between cells is mediated by protruding lamellipodia. On their retraction, cells maintain contact through thin bridges formed by filopodia-like protrusions connected by VE-cadherin–rich junctions. Bridges share multiple features with conventional filopodia, such as an internal actin bundle associated with fascin along the length and vasodilator-stimulated phosphoprotein at the tip. It is striking that, unlike conventional filopodia, transformation of actin organization from the lamellipodial network to filopodial bundle during bridge formation occurs in a proximal-to-distal direction and is accompanied by recruitment of fascin in the same direction. Subsequently, bridge bundles recruit nonmuscle myosin II and mature into stress fibers. Myosin II activity is important for bridge formation and accumulation of VE-cadherin in nascent adherens junctions. Our data reveal a mechanism of cell–cell junction formation in endothelial cells using lamellipodia as the initial protrusive contact, subsequently transforming into filopodia-like bridges connected through adherens junctions. Moreover, a novel lamellipodia-to-filopodia transition is used in this context.
Collapse
Affiliation(s)
- Matthew K Hoelzle
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
232
|
Ydenberg CA, Smith BA, Breitsprecher D, Gelles J, Goode BL. Cease-fire at the leading edge: new perspectives on actin filament branching, debranching, and cross-linking. Cytoskeleton (Hoboken) 2011; 68:596-602. [PMID: 22002930 DOI: 10.1002/cm.20543] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 11/05/2022]
Abstract
Membrane protrusion at the leading edge of migrating cells is driven by the polymerization of actin. Recent studies using advanced imaging techniques raised a lively controversy about the morphology of these filaments; however, common ground between the two sides now appears to have been found. Here we discuss how the controversy has led to a deeper consideration of the architecture of actin networks underlying cell migration, and has helped define new challenges that lie ahead.
Collapse
Affiliation(s)
- Casey A Ydenberg
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
233
|
Miyoshi H, Adachi T, Ju J, Lee SM, Cho DJ, Ko JS, Uchida G, Yamagata Y. Characteristics of motility-based filtering of adherent cells on microgrooved surfaces. Biomaterials 2011; 33:395-401. [PMID: 22019118 DOI: 10.1016/j.biomaterials.2011.09.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Topographical features are known to physically affect cell behavior and are expected to have great potential for non-invasive control of such behavior. To provide a design concept of a microstructured surface for elaborate non-invasive control of cell migration, we systematically analyzed the effect of microgrooves on cell migration. We fabricated silicon microstructured surfaces covered with SiO(2) with microgrooves of various sizes, and characterized the behavior of cells moving from the flat surface to the grooved surface. The intersecting microgrooves with well-defined groove width absorbed or repelled cells precisely according to the angle of approach of the cell to the boundary with the grooved surface. This filtering process was explained by the difference in the magnitude of the lamellar dragging effect resulting from the number of the grooves interacting with the lamella of the cell. This study provides a framework to tailor the microgrooved surface for non-invasive control of cell migration with label-free detection of a specific property of the target cells. This should offer significant benefits to biomedical research and applications.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- Ultrahigh Precision Fabrication Team, Advanced Science Institute, VCAD System Research Program, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Ambühl ME, Brepsant C, Meister JJ, Verkhovsky AB, Sbalzarini IF. High-resolution cell outline segmentation and tracking from phase-contrast microscopy images. J Microsc 2011; 245:161-70. [PMID: 21999192 DOI: 10.1111/j.1365-2818.2011.03558.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accurate extraction of cell outlines from microscopy images is essential for analysing the dynamics of migrating cells. Phase-contrast microscopy is one of the most common and convenient imaging modalities for observing cell motility because it does not require exogenous labelling and uses only moderate light levels with generally negligible phototoxicity effects. Automatic extraction and tracking of high-resolution cell outlines from phase-contrast images, however, is difficult due to complex and non-uniform edge intensity. We present a novel image-processing method based on refined level-set segmentation for accurate extraction of cell outlines from high-resolution phase-contrast images. The algorithm is validated on synthetic images of defined noise levels and applied to real image sequences of polarizing and persistently migrating keratocyte cells. We demonstrate that the algorithm is able to reliably reveal fine features in the cell edge dynamics.
Collapse
Affiliation(s)
- M E Ambühl
- Laboratory of Cell Biophysics, EPF Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
235
|
Silván U, Boiteux C, Sütterlin R, Schroeder U, Mannherz HG, Jockusch BM, Bernèche S, Aebi U, Schoenenberger CA. An antiparallel actin dimer is associated with the endocytic pathway in mammalian cells. J Struct Biol 2011; 177:70-80. [PMID: 21970948 DOI: 10.1016/j.jsb.2011.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
The dynamic rearrangement of the actin cytoskeleton plays a key role in several cellular processes such as cell motility, endocytosis, RNA processing and chromatin organization. However, the supramolecular actin structures involved in the different processes remain largely unknown. One of the less studied forms of actin is the lower dimer (LD). This unconventional arrangement of two actin molecules in an antiparallel orientation can be detected by chemical crosslinking at the onset of polymerization in vitro. Moreover, evidence for a transient incorporation of LD into growing filaments and its ability to inhibit nucleation of F-actin filament assembly implicate that the LD pathway contributes to supramolecular actin patterning. However, a clear link from this actin species to a specific cellular function has not yet been established. We have developed an antibody that selectively binds to LD configurations in supramolecular actin structures assembled in vitro. This antibody allowed us to unveil the LD in different mammalian cells. In particular, we show an association of the antiparallel actin arrangement with the endocytic compartment at the cellular and ultrastructural level. Taken together, our results strongly support a functional role of LD in the patterning of supramolecular actin assemblies in mammalian cells.
Collapse
Affiliation(s)
- Unai Silván
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Craig EM, Dey S, Mogilner A. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:374102. [PMID: 21862843 PMCID: PMC3168571 DOI: 10.1088/0953-8984/23/37/374102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.
Collapse
|
237
|
Mason FM, Martin AC. Tuning cell shape change with contractile ratchets. Curr Opin Genet Dev 2011; 21:671-9. [PMID: 21893409 DOI: 10.1016/j.gde.2011.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/03/2011] [Accepted: 08/10/2011] [Indexed: 11/15/2022]
Abstract
Throughout the lifespan of an organism, shape changes are necessary for cells to carry out their essential functions. Nowhere is this more dramatic than embryonic development and gastrulation, when cell shape changes drive large-scale rearrangements in tissue architecture to establish the body plan of the organism. A longstanding question for both cell and developmental biologists has been how are forces generated to change cell shape? Recent studies in both cell culture and developing embryos have combined live imaging, computational analysis, genetics, and biophysics to identify ratchet-like behaviors in actomyosin networks that operate to incrementally change cell shape, drive cell movement, and deform tissues. Our analysis of several cell shape changes leads us to propose four regulatory modules associated with ratchet-like deformations that are tuned to generate diverse cell behaviors, coordinating cell shape change across a tissue.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
238
|
Visualizing branched actin filaments in lamellipodia by electron tomography. Nat Cell Biol 2011; 13:1012-3; author reply 1013-4. [PMID: 21892140 DOI: 10.1038/ncb2321] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
239
|
Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo. Cell Tissue Res 2011; 345:379-90. [PMID: 21847608 DOI: 10.1007/s00441-011-1219-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/17/2011] [Indexed: 12/26/2022]
Abstract
Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.
Collapse
|
240
|
Tsai FC, Stuhrmann B, Koenderink GH. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10061-10071. [PMID: 21707043 DOI: 10.1021/la201604z] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate that cytoskeletal actin-myosin networks can be encapsulated with high efficiency in giant liposomes by hydration of lipids in an agarose hydrogel. The liposomes have cell-sized diameters of 10-20 μm and a uniform actin content. We show by measurements of membrane fluorescence intensity and bending rigidity that the majority of liposomes are unilamellar. We further demonstrate that the actin network can be specifically anchored to the membrane by biotin-streptavidin linkages. These protein-filled liposomes are useful model systems for quantitative studies of the physical mechanisms by which the cytoskeleton actively controls cell shape and mechanics. In a broader context, this new preparation method should be widely applicable to encapsulation of proteins and polymers, for instance, to create polymer-reinforced liposomes for drug delivery.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Biological Soft Matter Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | |
Collapse
|
241
|
Effect of Actomyosin Contractility on Lamellipodial Protrusion Dynamics on a Micropatterned Substrate. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
242
|
Collins A, Warrington A, Taylor KA, Svitkina T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol 2011; 21:1167-75. [PMID: 21723126 PMCID: PMC3143238 DOI: 10.1016/j.cub.2011.05.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynamic actin cytoskeleton plays an important role in clathrin-mediated endocytosis (CME). However, its exact functions remain uncertain as a result of a lack of high-resolution structural information regarding actin architecture at endocytic sites. RESULTS Using platinum replica electron microscopy in combination with electron tomography, we found that actin patches associated with clathrin-coated structures (CCSs) in cultured mouse cells consist of a densely branched actin network, in which actin filament barbed ends are oriented toward the CCS. The shape of the actin network varied from a small lateral patch at the periphery of shallow CCSs, to a collar-like arrangement around partly invaginated CCSs with actin filament barbed ends abutting the CCS neck, to a polarized comet tail in association with highly constricted or fully endocytosed CCSs. CONCLUSIONS Our data suggest that the primary role of the actin cytoskeleton in CME is to constrict and elongate the bud neck and drive the endocytosed vesicles from the plasma membrane. Moreover, in these processes, barbed ends directly push onto the load, as in a conventional propulsion mechanism. Based on our findings, we propose a model for initiation, evolution, and function of the dendritic actin network at CCSs.
Collapse
Affiliation(s)
- Agnieszka Collins
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Anthony Warrington
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
243
|
Hodge N, Papadopoulos P. Continuum modeling and numerical simulation of cell motility. J Math Biol 2011; 64:1253-79. [PMID: 21710139 DOI: 10.1007/s00285-011-0446-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/18/2011] [Indexed: 01/07/2023]
Abstract
This work proposes a continuum-mechanical model of cell motility which accounts for the dynamics of motility-relevant protein species. For the special case of fish epidermal keratocytes, the stress and cell-substrate traction responses are postulated to depend on selected protein densities in accordance with the structural features of the cells. A one-dimensional version of the model is implemented using Arbitrary Lagrangian-Eulerian finite elements in conjunction with Lagrange multipliers for the treatment of kinematic constraints related to surface growth. Representative numerical tests demonstrate the capacity of the proposed model to simulate stationary and steady crawling states.
Collapse
Affiliation(s)
- Neil Hodge
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
244
|
Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T. Effect of tensile force on the mechanical behavior of actin filaments. J Biomech 2011; 44:1776-81. [PMID: 21536289 DOI: 10.1016/j.jbiomech.2011.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/29/2011] [Accepted: 04/09/2011] [Indexed: 01/08/2023]
Abstract
Actin filaments are the most abundant components of the cellular cytoskeleton, and play critical roles in various cellular functions such as migration, division and shape control. In these activities, mechanical tension causes structural changes in the double-helical structure of the actin filament, which is a key modulator of cytoskeletal reorganization. This study performed large-scale molecular dynamics (MD) and steered MD simulations to quantitatively analyze the effects of tensile force on the mechanical behavior of actin filaments. The results revealed that when a tensile force of 200pN was applied to a filament consisting of 14 actin subunits, the twist angle of the filament decreased by approximately 20°, corresponding to a rotation of approximately -2° per subunit, representing a critical structural change in actin filaments. Based on these structural changes, the variance in filament length and twist angle was found to decrease, leading to increases in extensional and torsional stiffness. Torsional stiffness increased significantly under the tensile condition, and the ratio of filament stiffness under tensile force to that under no external force increased significantly on longer temporal scales. The results obtained from this study contribute to the understanding of mechano-chemical interactions concerning actin dynamics, showing that increased tensile force in the filament prevents actin regulatory proteins from binding to the filament.
Collapse
Affiliation(s)
- Shinji Matsushita
- Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
245
|
Barnhart EL, Lee KC, Keren K, Mogilner A, Theriot JA. An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol 2011; 9:e1001059. [PMID: 21559321 PMCID: PMC3086868 DOI: 10.1371/journal.pbio.1001059] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022] Open
Abstract
Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. Cell migration is important for many biological processes: white blood cells chase down and kill bacteria to guard against infection, epithelial cells crawl across open wounds to promote healing, and embryonic cells move collectively to form organs and tissues during embryogenesis. In all of these cases, migration depends on the spatial and temporal organization of multiple forces, including actin-driven protrusion of the cell membrane, membrane tension, cell-substrate adhesion, and myosin-mediated contraction of the actin network. In this work, we have used a simple cell type, the fish epithelial keratocyte, as a model system to investigate the manner in which these forces are integrated to give rise to large-scale emergent properties such as cell shape and movement. Keratocytes are normally fan-shaped and fast-moving, but we have found that keratocytes migrate more slowly and assume round or asymmetric shapes when cell-substrate adhesion strength is too high or too low. By correlating measurements of adhesion-dependent changes in cell shape and speed with measurements of adhesion and myosin localization patterns and actin network organization, we have developed a mechanical model in which keratocyte shape and movement emerge from adhesion and myosin-dependent regulation of the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Erin L. Barnhart
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, California, United States of America
| | - Kun-Chun Lee
- Department of Mathematics, University of California, Davis, California, United States of America
| | - Kinneret Keren
- Department of Physics and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa, Israel
| | - Alex Mogilner
- Department of Mathematics, University of California, Davis, California, United States of America
| | - Julie A. Theriot
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
246
|
Aratyn-Schaus Y, Oakes PW, Gardel ML. Dynamic and structural signatures of lamellar actomyosin force generation. Mol Biol Cell 2011; 22:1330-9. [PMID: 21307339 PMCID: PMC3078065 DOI: 10.1091/mbc.e10-11-0891] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/18/2011] [Accepted: 01/31/2011] [Indexed: 01/20/2023] Open
Abstract
The regulation of cellular traction forces on the extracellular matrix is critical to cell adhesion, migration, proliferation, and differentiation. Diverse lamellar actin organizations ranging from contractile lamellar networks to stress fibers are observed in adherent cells. Although lamellar organization is thought to reflect the extent of cellular force generation, understanding of the physical behaviors of the lamellar actin cytoskeleton is lacking. To elucidate these properties, we visualized the actomyosin dynamics and organization in U2OS cells over a broad range of forces. At low forces, contractile lamellar networks predominate and force generation is strongly correlated to actomyosin retrograde flow dynamics with nominal change in organization. Lamellar networks build ∼60% of cellular tension over rapid time scales. At high forces, reorganization of the lamellar network into stress fibers results in moderate changes in cellular tension over slower time scales. As stress fibers build and tension increases, myosin band spacing decreases and α-actinin bands form. On soft matrices, force generation by lamellar networks is unaffected, whereas tension-dependent stress fiber assembly is abrogated. These data elucidate the dynamic and structural signatures of the actomyosin cytoskeleton at different levels of tension and set a foundation for quantitative models of cell and tissue mechanics.
Collapse
Affiliation(s)
| | - Patrick W. Oakes
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637
| | - Margaret L. Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
247
|
Modeling myosin-dependent rearrangement and force generation in an actomyosin network. J Theor Biol 2011; 281:65-73. [PMID: 21514305 DOI: 10.1016/j.jtbi.2011.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 03/21/2011] [Accepted: 04/07/2011] [Indexed: 11/21/2022]
Abstract
Actomyosin contractility is a major force-generating mechanism that drives rearrangement of actomyosin networks; it is fundamental to cellular functions such as cellular reshaping and movement. Thus, to clarify the mechanochemical foundation of the emergence of cellular functions, understanding the relationship between actomyosin contractility and rearrangement of actomyosin networks is crucial. For this purpose, in this study, we present a new particulate-based model for simulating the motions of actin, non-muscle myosin II, and α-actinin. To confirm the model's validity, we successfully simulated sliding and bending motions of actomyosin filaments, which are observed as fundamental behaviors in dynamic rearrangement of actomyosin networks in migrating keratocytes. Next, we simulated the dynamic rearrangement of actomyosin networks. Our simulation results indicate that an increase in the density fraction of myosin induces a higher-order structural transition of actomyosin filaments from networks to bundles, in addition to increasing the force generated by actomyosin filaments in the network. We compare our simulation results with experimental results and confirm that actomyosin bundles bridging focal adhesions and the characteristics of myosin-dependent rearrangement of actomyosin networks agree qualitatively with those observed experimentally.
Collapse
|
248
|
A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 2011; 13:371-81. [PMID: 21423177 DOI: 10.1038/ncb2205] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/06/2011] [Indexed: 02/07/2023]
Abstract
Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.
Collapse
|
249
|
Higgs HN. Discussing the morphology of actin filaments in lamellipodia. Trends Cell Biol 2011; 21:2-4; author reply 4-5. [PMID: 20971009 DOI: 10.1016/j.tcb.2010.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 10/18/2022]
|
250
|
Hemidesmosomes and focal contact proteins: functions and cross-talk in keratinocytes, bullous diseases and wound healing. J Dermatol Sci 2011; 62:1-7. [PMID: 21376539 DOI: 10.1016/j.jdermsci.2011.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/11/2011] [Indexed: 01/08/2023]
Abstract
The outer most layer of the skin, the epidermis, is attached to the dermis via a sheet of extracellular matrix proteins termed the basement membrane zone (BMZ). In the intact skin, adhesion of the keratinocytes in the basal layer of the epidermis to the BMZ is facilitated primarily by hemidesmosomes which associate with the keratin cytoskeleton. Cultured keratinocytes do not assemble bona fide hemidesmosomes although hemidesmosome protein clusters (stable anchoring contacts) are found along the substrate-attached surface of the cells and towards the leading edge of keratinocytes repopulating scratch wounds. Actin cytoskeleton-associated matrix adhesion devices termed focal contacts are not thought to play an important role in the adhesion of keratinocytes to the BMZ in intact skin but are prominent in cultured keratinocytes where they are believed to regulate cell migration. We review the molecular components, functions, dynamics and cross-talk of hemidesmosomes and focal contacts in keratinocytes. In addition, we briefly describe what is known about their role in autoimmune and genetic blistering diseases of the skin. We also discuss recent publications which indicate, contrary to expectation, that certain focal contact proteins retard keratinocyte migration while hemidesmosomal proteins regulate directed keratinocyte motility during wound healing.
Collapse
|