201
|
Abstract
Microglia, a unique type of myeloid cell, play a key role in the inflammation-mediated neurodegeneration occurring during both acute and chronic stages of multiple sclerosis (MS). These highly specialized cells trigger neurotoxic pathways, producing pro-inflammatory cytokines, reactive oxygen and nitrogen species and proteolytic enzymes, causing progressive neurodegeneration. Microglia have also been associated with development of cortical lesions in progressive MS, as well as with alterations of synaptic transmission in experimental autoimmune encephalomyelitis (EAE). However, they also play an important role in the promotion of neuroprotection, downregulation of inflammation, and stimulation of tissue repair. Notably, microglia undergo changes in morphology and function with normal aging, resulting in a decline of their ability to repair central nervous system damage, making axons and neurons more vulnerable with age. Modulation of microglial activation for therapeutic purposes must consider suppressing deleterious effects of these cells, while simultaneously preserving their protective functions.
Collapse
Affiliation(s)
- Jorge Correale
- Raúl Carrea Institute for Neurological Research, FLENI, Montañeses 2325, (1428) Buenos Aires, Argentina
| |
Collapse
|
202
|
Gitik M, Kleinhaus R, Hadas S, Reichert F, Rotshenker S. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci 2014; 8:104. [PMID: 24795566 PMCID: PMC3997012 DOI: 10.3389/fncel.2014.00104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/24/2014] [Indexed: 11/13/2022] Open
Abstract
The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the inactivation of paxillin and cofilin.
Collapse
Affiliation(s)
- Miri Gitik
- Department of Medical Neurobiology, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew UniversityJerusalem, Israel
| | - Rachel Kleinhaus
- Department of Medical Neurobiology, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew UniversityJerusalem, Israel
| | - Smadar Hadas
- Department of Medical Neurobiology, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew UniversityJerusalem, Israel
| | - Fanny Reichert
- Department of Medical Neurobiology, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew UniversityJerusalem, Israel
| | - Shlomo Rotshenker
- Department of Medical Neurobiology, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew UniversityJerusalem, Israel
- Brain Disease Research Center, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew UniversityJerusalem, Israel
| |
Collapse
|
203
|
Zen K, Guo Y, Bian Z, Lv Z, Zhu D, Ohnishi H, Matozaki T, Liu Y. Inflammation-induced proteolytic processing of the SIRPα cytoplasmic ITIM in neutrophils propagates a proinflammatory state. Nat Commun 2014; 4:2436. [PMID: 24026300 DOI: 10.1038/ncomms3436] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/13/2013] [Indexed: 01/14/2023] Open
Abstract
Signal regulatory protein α (SIRPα), an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor, is an essential negative regulator of leukocyte inflammatory responses. Here we report that SIRPα cytoplasmic signalling ITIMs in neutrophils are cleaved during active inflammation and that the loss of SIRPα ITIMs enhances the polymorphonuclear leukocyte (PMN) inflammatory response. Using human leukocytes and two inflammatory models in mice, we show that the cleavage of SIRPα ITIMs in PMNs but not monocytes occurs at the post-acute stage of inflammation and correlates with increased PMN recruitment to inflammatory loci. Enhanced transmigration of PMNs and PMN-associated tissue damage are confirmed in mutant mice expressing SIRPα but lacking the ITIMs. Moreover, the loss of SIRPα ITIMs in PMNs during colitis is blocked by an anti-interleukin-17 (IL-17) antibody. These results demonstrate a SIRPα-based mechanism that dynamically regulates PMN inflammatory responses by generating a CD47-binding but non-signalling SIRPα 'decoy'.
Collapse
Affiliation(s)
- Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Barclay AN, van den Berg TK. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol 2014; 32:25-50. [DOI: 10.1146/annurev-immunol-032713-120142] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
205
|
Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47-SIRPα signalling system: its physiological roles and therapeutic application. J Biochem 2014; 155:335-44. [PMID: 24627525 DOI: 10.1093/jb/mvu017] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signal regulatory protein α (SIRPα), also known as SHPS-1/BIT/ CD172a, is an immunoglobulin superfamily protein that binds to the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region. CD47, another immunoglobulin superfamily protein, is a ligand for SIRPα, with the two proteins constituting a cell-cell communication system (the CD47-SIRPα signalling system). SIRPα is particularly abundant in the myeloid-lineage hematopoietic cells such as macrophages or dendritic cells (DCs), whereas CD47 is expressed ubiquitously. Interaction of CD47 (on red blood cells) with SIRPα (on macrophages) is thought to prevent the phagocytosis by the latter cells of the former cells, determining the lifespan of red blood cells. Recent studies further indicate that this signalling system plays important roles in engraftment of hematopoietic stem cells as well as in tumour immune surveillance through regulation of the phagocytic activity of macrophages. In the immune system, the CD47-SIRPα interaction is also important for the development of a subset of CD11c(+)DCs as well as organization of secondary lymphoid organs. Finally, the CD47-SIRPα signalling system likely regulates bone homeostasis by osteoclast development. Newly emerged functions of the CD47-SIRPα signalling system thus provide multiple therapeutic strategies for cancer, autoimmune diseases and bone disorders.
Collapse
Affiliation(s)
- Yoji Murata
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; and Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8514, Japan
| | - Takenori Kotani
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; and Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8514, Japan
| | - Hiroshi Ohnishi
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; and Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8514, Japan
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; and Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8514, Japan
| |
Collapse
|
206
|
McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD. Targeted immunomodulation using antigen-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:298-315. [PMID: 24616452 DOI: 10.1002/wnan.1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
Abstract
The growing prevalence of nanotechnology in the fields of biology, medicine, and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This 'targeted immunomodulation' can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides, or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands, and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
207
|
Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 2014; 11:41-6. [PMID: 24141493 PMCID: PMC4022966 DOI: 10.1038/nmeth.2694] [Citation(s) in RCA: 533] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022]
Abstract
Interest in single-cell whole-transcriptome analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. We compared commercially available single-cell RNA amplification methods with both microliter and nanoliter volumes, using sequence from bulk total RNA and multiplexed quantitative PCR as benchmarks to systematically evaluate the sensitivity and accuracy of various single-cell RNA-seq approaches. We show that single-cell RNA-seq can be used to perform accurate quantitative transcriptome measurement in individual cells with a relatively small number of sequencing reads and that sequencing large numbers of single cells can recapitulate bulk transcriptome complexity.
Collapse
Affiliation(s)
- Angela R Wu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Norma F Neff
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Tomer Kalisky
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2]
| | - Piero Dalerba
- 1] Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA. [3] The Ludwig Cancer Center, Stanford University Medical Center, Stanford, California, USA
| | - Barbara Treutlein
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Michael E Rothenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Francis M Mburu
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Howard Hughes Medical Institute, Stanford, California, USA
| | - Gary L Mantalas
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Sopheak Sim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Michael F Clarke
- 1] Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA. [3] The Ludwig Cancer Center, Stanford University Medical Center, Stanford, California, USA
| | - Stephen R Quake
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Howard Hughes Medical Institute, Stanford, California, USA. [3] Department of Applied Physics, Stanford University, Stanford, California, USA
| |
Collapse
|
208
|
Radons J. The role of inflammation in sarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:259-313. [PMID: 24818727 DOI: 10.1007/978-3-0348-0837-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sarcomas encompass a heterogenous group of tumors with diverse pathologically and clinically overlapping features. It is a rarely curable disease, and their management requires a multidisciplinary team approach. Chronic inflammation has emerged as one of the hallmarks of tumors including sarcomas. Classical inflammation-associated sarcomas comprise the inflammatory malignant fibrous histiocytoma and Kaposi sarcoma. The identification of specific chromosomal translocations and important intracellular signaling pathways such as Ras/Raf/MAPK, insulin-like growth factor, PI3K/AKT/mTOR, sonic hedgehog and Notch together with the increasing knowledge of angiogenesis has led to development of targeted therapies that aim to interrupt these pathways. Innovative agents like oncolytic viruses opened the way to design new therapeutic options with encouraging findings. Preclinical evidence also highlights the therapeutic potential of anti-inflammatory nutraceuticals as they can inhibit multiple pathways while being less toxic. This chapter gives an overview of actual therapeutic standards, newest evidence-based studies and exciting options for targeted therapies in sarcomas.
Collapse
Affiliation(s)
- Jürgen Radons
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
209
|
Chemokines in chronic liver allograft dysfunction pathogenesis and potential therapeutic targets. Clin Dev Immunol 2013; 2013:325318. [PMID: 24382971 PMCID: PMC3870628 DOI: 10.1155/2013/325318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/03/2013] [Indexed: 02/05/2023]
Abstract
Despite advances in immunosuppressive drugs, long-term success of liver transplantation is still limited by the development of chronic liver allograft dysfunction. Although the exact pathogenesis of chronic liver allograft dysfunction remains to be established, there is strong evidence that chemokines are involved in organ damage induced by inflammatory and immune responses after liver surgery. Chemokines are a group of low-molecular-weight molecules whose function includes angiogenesis, haematopoiesis, mitogenesis, organ fibrogenesis, tumour growth and metastasis, and participating in the development of the immune system and in inflammatory and immune responses. The purpose of this review is to collect all the research that has been done so far concerning chemokines and the pathogenesis of chronic liver allograft dysfunction and helpfully, to pave the way for designing therapeutic strategies and pharmaceutical agents to ameliorate chronic allograft dysfunction after liver transplantation.
Collapse
|
210
|
Maeda A, Kawamura T, Ueno T, Usui N, Eguchi H, Miyagawa S. The suppression of inflammatory macrophage-mediated cytotoxicity and proinflammatory cytokine production by transgenic expression of HLA-E. Transpl Immunol 2013; 29:76-81. [PMID: 23994719 DOI: 10.1016/j.trim.2013.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Macrophages participate in xenogenic rejection and represent a major biological obstacle to successful xenotransplantation. The signal inhibitory regulatory protein α (SIRPα) receptor was reported to be a negative regulator of macrophage phagocytic activity via interaction with CD47, its ligand. Because a majority of human macrophages express the inhibitory receptor CD94/NKG2A, which binds specifically to the human leukocyte antigen (HLA)-E and contains immunoreceptor tyrosine-based inhibition motifs (ITIMs), the inhibitory function of HLA class I molecules, HLA-E, on macrophage-mediated cytolysis was examined. The suppressive effect against proinflammatory cytokine production by macrophages was also examined. METHODS Complementary DNA (cDNA) of HLA-E, and CD47 were prepared and transfected into swine endothelial cells (SEC). The expression of the modified genes was evaluated by flow cytometry and macrophage-mediated cytolysis was assessed using in vitro generated macrophages. RESULTS Transgenic expression of HLA-E significantly suppressed the macrophage-mediated cytotoxicity. HLA-E transgenic expression demonstrated a significant suppression equivalent to CD47 transgenic expression. Furthermore, transgenic HLA-E suppressed the production of pro-inflammatory cytokines by inflammatory macrophages. CONCLUSIONS These results indicate that generating transgenic HLA-E pigs might protect porcine grafts from, not only NK cytotoxicity, but also macrophage-mediated cytotoxicity.
Collapse
Affiliation(s)
- Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
211
|
Long KB, Beatty GL. Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology 2013; 2:e26860. [PMID: 24498559 PMCID: PMC3902119 DOI: 10.4161/onci.26860] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023] Open
Abstract
Macrophages constitute a dominant fraction of the population of immune cells that infiltrate developing tumors. Recruited by tumor-derived signals, tumor-infiltrating macrophages are key orchestrators of a microenvironment that supports tumor progression. However, the phenotype of macrophages is pliable and, if instructed properly, macrophages can mediate robust antitumor functions through their ability to eliminate malignant cells, inhibit angiogenesis, and deplete fibrosis. While much effort has focused on strategies to block the tumor-supporting activity of macrophages, emerging approaches designed to instruct macrophages with antitumor properties are demonstrating promise and may offer a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Kristen B Long
- Abramson Cancer Center; Department of Medicine; Division of Hematology-Oncology; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Gregory L Beatty
- Abramson Cancer Center; Department of Medicine; Division of Hematology-Oncology; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| |
Collapse
|
212
|
Deleidi M, Gasser T. The role of inflammation in sporadic and familial Parkinson's disease. Cell Mol Life Sci 2013; 70:4259-73. [PMID: 23665870 PMCID: PMC11113951 DOI: 10.1007/s00018-013-1352-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/29/2013] [Accepted: 04/24/2013] [Indexed: 01/18/2023]
Abstract
The etiology of Parkinson's disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.
Collapse
Affiliation(s)
- Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller. Str 27, 72076, Tübingen, Germany,
| | | |
Collapse
|
213
|
Wiersma VR, He Y, Samplonius DF, van Ginkel RJ, Gerssen J, Eggleton P, Zhou J, Bremer E, Helfrich W. A CD47-blocking TRAIL fusion protein with dual pro-phagocytic and pro-apoptotic anticancer activity. Br J Haematol 2013; 164:304-7. [DOI: 10.1111/bjh.12617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Valerie R. Wiersma
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Yuan He
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Douwe F. Samplonius
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Robert J. van Ginkel
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Jurjen Gerssen
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Paul Eggleton
- Peninsula Medical School; University of Exeter; Exeter UK
- Department of Biochemistry; University of Alberta; Alberta Canada
| | - Jin Zhou
- Health Ministry Key Lab of Cell Transplantation; Heilongjiang Institute of Hematology and Oncology; Department of Haematology; First Affiliated Hospital; Harbin Medical University; Harbin China
| | - Edwin Bremer
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Health Ministry Key Lab of Cell Transplantation; Heilongjiang Institute of Hematology and Oncology; Department of Haematology; First Affiliated Hospital; Harbin Medical University; Harbin China
| | - Wijnand Helfrich
- Department of Surgery; Laboratory for Translational Surgical Oncology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Health Ministry Key Lab of Cell Transplantation; Heilongjiang Institute of Hematology and Oncology; Department of Haematology; First Affiliated Hospital; Harbin Medical University; Harbin China
| |
Collapse
|
214
|
Veale MF, Healey G, Sparrow RL. Longer storage of red blood cells is associated with increased in vitro erythrophagocytosis. Vox Sang 2013; 106:219-26. [PMID: 24117950 DOI: 10.1111/vox.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/08/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Refrigerated storage of red blood cells (RBCs) induces numerous changes that may target the cells for erythrophagocytosis following transfusion. The influence of storage upon the phagocytosis of unseparated and fractionated young and old stored RBCs was investigated using two in vitro quantitative phagocytosis assays. MATERIALS AND METHODS Leucocyte-depleted RBC units were sampled at day 1 or 42 of storage. Young and old RBCs were fractionated at day 1 by density centrifugation and stored in paediatric packs for up to 42 days. RBCs were labelled with the fluorescent dye PKH26 and incubated with the human monocytic cell line THP-1. Erythrophagocytosis was quantified by flow cytometry and plate fluorometric assays. RESULTS A higher proportion of THP-1 cells phagocytosed RBCs stored for 42 days compared with 1 day (41% and 24% respectively; P<0·0001). This was associated with an increased mean number of RBCs phagocytosed per THP-1 cell (5·2±0·6 and 3·3±0·2 respectively; P<0·002). Erythrophagocytosis of fractionated young and old RBCs increased with longer storage duration up to 28 days (P<0·05). However, no significant differences were observed between erythrophagocytosis of young and old RBCs. CONCLUSION The susceptibility of stored RBCs to erythrophagocytosis significantly increased with longer storage time of the RBC units. Storage duration of RBCs had a greater influence on in vitro erythrophagocytosis than the chronological age of the RBCs at donation.
Collapse
Affiliation(s)
- M F Veale
- Research and Development, Australian Red Cross Blood Service, Melbourne, Vic., Australia
| | | | | |
Collapse
|
215
|
Ksiazek-Winiarek DJ, Kacperska MJ, Glabinski A. MicroRNAs as novel regulators of neuroinflammation. Mediators Inflamm 2013; 2013:172351. [PMID: 23983402 PMCID: PMC3745967 DOI: 10.1155/2013/172351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/07/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are relatively recently discovered class of small noncoding RNAs, which function as important regulators of gene expression. They fine-tune protein expression either by translational inhibition or mRNA degradation. MicroRNAs act as regulators of diverse cellular processes, such as cell differentiation, proliferation, and apoptosis. Their defective biogenesis or function has been identified in various pathological conditions, like inflammation, neurodegeneration, or autoimmunity. Multiple sclerosis is one of the predominated debilitating neurological diseases affecting mainly young adults. It is a multifactorial disorder of as yet unknown aetiology. As far, it is suggested that interplay between genetic and environmental factors is responsible for MS pathogenesis. The role of microRNAs in this pathology is now extensively studied. Here, we want to review the current knowledge of microRNAs role in multiple sclerosis.
Collapse
|
216
|
Weiskopf K, Ring AM, Ho CCM, Volkmer JP, Levin AM, Volkmer AK, Özkan E, Fernhoff NB, van de Rijn M, Weissman IL, Garcia KC. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013; 341:88-91. [PMID: 23722425 PMCID: PMC3810306 DOI: 10.1126/science.1238856] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD47 is an antiphagocytic signal that cancer cells employ to inhibit macrophage-mediated destruction. Here, we modified the binding domain of human SIRPα, the receptor for CD47, for use as a CD47 antagonist. We engineered high-affinity SIRPα variants with about a 50,000-fold increased affinity for human CD47 relative to wild-type SIRPα. As high-affinity SIRPα monomers, they potently antagonized CD47 on cancer cells but did not induce macrophage phagocytosis on their own. Instead, they exhibited remarkable synergy with all tumor-specific monoclonal antibodies tested by increasing phagocytosis in vitro and enhancing antitumor responses in vivo. This "one-two punch" directs immune responses against tumor cells while lowering the threshold for macrophage activation, thereby providing a universal method for augmenting the efficacy of therapeutic anticancer antibodies.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antibodies, Neoplasm/therapeutic use
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/therapeutic use
- CD47 Antigen/immunology
- Cell Line, Tumor
- Directed Molecular Evolution
- Humans
- Immunotherapy
- Macrophage Activation
- Mice
- Neoplasms/immunology
- Neoplasms/therapy
- Phagocytosis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/therapeutic use
- Rituximab
Collapse
Affiliation(s)
- Kipp Weiskopf
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aaron M. Ring
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chia Chi M. Ho
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jens-Peter Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aron M. Levin
- Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anne Kathrin Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Obstetrics and Gynaecology, University of Dusseldorf, Germany
| | - Engin Özkan
- Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nathaniel B. Fernhoff
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, and the Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
217
|
Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur J Cancer 2013; 49:3320-34. [PMID: 23810249 DOI: 10.1016/j.ejca.2013.06.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/08/2013] [Accepted: 06/02/2013] [Indexed: 12/17/2022]
Abstract
Tumour-associated macrophages (TAMs) of the M2 phenotype are present in the stroma of many tumours and are frequently associated with the progression of several types of cancer. We investigated the role of M2 macrophages in colon cancer progression and found that human colon cancer tissue had elevated numbers of CD68(+) (macrophage marker) cells and CD206(+) (M2 macrophage marker) cells and increased CD47 expression. To explore potential interplay between colon cancer cells and M2 macrophages, we differentiated the monocyte cell line THP-1 into M1 and M2 macrophages (CD206(high) and Th2 cytokine-secreting cells), respectively. M2 macrophages migrated faster than M1 macrophages towards SW480-conditioned medium. Similarly, M2 macrophage-conditioned medium induced SW480 cell migration and CD47 expression. Factors released by macrophages were involved in this induction. In addition, SW480 cells migrated faster when co-cultured with M2 macrophages. Inhibition of CD47 with blocking antibodies or siRNA significantly reduced the migration of SW480 cells in the presence of M2 macrophages. This effect was further decreased via blocking antibodies against the CD47 ligand signal-regulatory protein α (SIRPα). Additionally, cancer cells also secreted significant levels of IL-10, thereby promoting M2 macrophage differentiation. These findings indicate that a TAM-enriched tumour microenvironment promotes colon cancer cell migration and metastasis.
Collapse
|
218
|
How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol 2013; 72:370-85. [PMID: 23584204 DOI: 10.1097/nen.0b013e3182909f2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most devastating CNS bacterial infection, bacterial meningitis, has both acute and long-term neurologic consequences. The CNS defends itself against bacterial invasion through a combination of physical barriers (i.e. blood-brain barrier, meninges, and ependyma), which contain macrophages that express a range of pattern-recognition receptors that detect pathogens before they gain access to the CNS and cerebrospinal fluid. This activates an antipathogen response consisting of inflammatory cytokines, complement, and chemoattractants. Regulation of the antipathogen inflammatory response is essential for preventing irreversible brain injury and protecting stem cell populations in the ventricle wall. The severity of brain inflammation is regulated by the clearance of apoptotic inflammatory cells and neurons. Death signaling pathways are expressed by glia to stimulate apoptosis of neutrophils, lymphocytes, and damaged neurons and to regulate in flammation and remove necrotic cells. The emerging group of neuroimmunoregulatory molecules adjusts the balance of the anti-inflammatory and proinflammatory response to provide optimal conditions for effective clearance of pathogens and apoptotic cells but reduce the severity of the inflammatory response to prevent injury to brain cells, including stem cell populations. The neuroimmunoregulatory molecules and other CNS anti-inflammatory pathways represent potential therapeutic targets capable of reducing brain injury caused by bacterial infection.
Collapse
|
219
|
Affiliation(s)
- R. van Bruggen
- Sanquin Research, and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
220
|
Reiner AP, Hartiala J, Zeller T, Bis JC, Dupuis J, Fornage M, Baumert J, Kleber ME, Wild PS, Baldus S, Bielinski SJ, Fontes JD, Illig T, Keating BJ, Lange LA, Ojeda F, Müller-Nurasyid M, Munzel TF, Psaty BM, Rice K, Rotter JI, Schnabel RB, Tang WHW, Thorand B, Erdmann J, Jacobs DR, Wilson JG, Koenig W, Tracy RP, Blankenberg S, März W, Gross MD, Benjamin EJ, Hazen SL, Allayee H. Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the charge and care consortia. Hum Mol Genet 2013; 22:3381-93. [PMID: 23620142 DOI: 10.1093/hmg/ddt189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased systemic levels of myeloperoxidase (MPO) are associated with the risk of coronary artery disease (CAD). To identify the genetic factors that are associated with circulating MPO levels, we carried out a genome-wide association study (GWAS) and a gene-centric analysis in subjects of European ancestry and African Americans (AAs). A locus on chromosome 1q31.1 containing the complement factor H (CFH) gene was strongly associated with serum MPO levels in 9305 subjects of European ancestry (lead SNP rs800292; P = 4.89 × 10(-41)) and in 1690 AA subjects (rs505102; P = 1.05 × 10(-8)). Gene-centric analyses in 8335 subjects of European ancestry additionally identified two rare MPO coding sequence variants that were associated with serum MPO levels (rs28730837, P = 5.21 × 10(-12); rs35897051, P = 3.32 × 10(-8)). A GWAS for plasma MPO levels in 9260 European ancestry subjects identified a chromosome 17q22 region near MPO that was significantly associated (lead SNP rs6503905; P = 2.94 × 10(-12)), but the CFH locus did not exhibit evidence of association with plasma MPO levels. Functional analyses revealed that rs800292 was associated with levels of complement proteins in serum. Variants at chromosome 17q22 also had pleiotropic cis effects on gene expression. In a case-control analysis of ∼80 000 subjects from CARDIoGRAM, none of the identified single-nucleotide polymorphisms (SNPs) were associated with CAD. These results suggest that distinct genetic factors regulate serum and plasma MPO levels, which may have relevance for various acute and chronic inflammatory disorders. The clinical implications for CAD and a better understanding of the functional basis for the association of CFH and MPO variants with circulating MPO levels require further study.
Collapse
|
221
|
Changes in macrophage phenotype after infection of pigs with Haemophilus parasuis strains with different levels of virulence. Infect Immun 2013; 81:2327-33. [PMID: 23589574 DOI: 10.1128/iai.00056-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Haemophilus parasuis is a colonizer of healthy piglets and the etiological agent of Glässer's disease. Differences in virulence among strains of H. parasuis have been widely observed. In order to explore the host-pathogen interaction, snatch-farrowed colostrum-deprived piglets were intranasally infected with 4 strains of H. parasuis: reference virulent strain Nagasaki, reference nonvirulent strain SW114, field strain IT29205 (from a systemic lesion and virulent in a previous challenge), and field strain F9 (from the nasal cavity of a healthy piglet). At different times after infection, two animals of each group were euthanized and alveolar macrophages were analyzed for the expression of CD163, CD172a, SLA I (swine histocompatibility leukocyte antigen I), SLA II, sialoadhesin (or CD169), and CD14. At 1 day postinfection (dpi), virulent strains induced reduced expression of CD163, SLA II, and CD172a on the surfaces of the macrophages, while nonvirulent strains induced increased expression of CD163, both compared to noninfected controls. At 2 dpi, the pattern switched into a strong expression of CD172a, CD163, and sialoadhesin by the virulent strains, which was followed by a steep increase in interleukin 8 (IL-8) and soluble CD163 in serum at 3 to 4 dpi. The early increase in surface expression of CD163 induced by nonvirulent strains went along with higher levels of IL-8 in serum than those induced by virulent strains in the first 2 days of infection. Alpha interferon (IFN-α) induction was observed only in animals infected with nonvirulent strains. Overall, these results are compatible with a delay in macrophage activation by virulent strains, which may be critical for disease production.
Collapse
|
222
|
Hu CMJ, Fang RH, Luk BT, Chen KN, Carpenter C, Gao W, Zhang K, Zhang L. 'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. NANOSCALE 2013; 5:2664-8. [PMID: 23462967 PMCID: PMC3667603 DOI: 10.1039/c3nr00015j] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We investigate the 'marker-of-self' functionalization of nanoparticles through coating of natural RBC membranes. The membrane translocation approach is shown to be highly efficient and bestows nanoparticles with correctly oriented and functional immunomodulatory proteins such as CD47 at equivalent density to natural RBCs.
Collapse
Affiliation(s)
- Che-Ming J. Hu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| | - Ronnie H. Fang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| | - Brian T. Luk
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| | - Kevin N.H. Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| | - Cody Carpenter
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| | - Weiwei Gao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| | - Kang Zhang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- Department of Ophthalmology and Shiley Eye Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel: 1-858-246-0999
| |
Collapse
|
223
|
Montgomery SL, Narrow WC, Mastrangelo MA, Olschowka JA, O'Banion MK, Bowers WJ. Chronic neuron- and age-selective down-regulation of TNF receptor expression in triple-transgenic Alzheimer disease mice leads to significant modulation of amyloid- and Tau-related pathologies. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2285-97. [PMID: 23567638 DOI: 10.1016/j.ajpath.2013.02.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 12/16/2022]
Abstract
Neuroinflammation, through production of proinflammatory molecules and activated glial cells, is implicated in Alzheimer's disease (AD) pathogenesis. One such proinflammatory mediator is tumor necrosis factor α (TNF-α), a multifunctional cytokine produced in excess and associated with amyloid β-driven inflammation and cognitive decline. Long-term global inhibition of TNF receptor type I (TNF-RI) and TNF-RII signaling without cell or stage specificity in triple-transgenic AD mice exacerbates hallmark amyloid and neurofibrillary tangle pathology. These observations revealed that long-term pan anti-TNF-α inhibition accelerates disease, cautions against long-term use of anti-TNF-α therapeutics for AD, and urges more selective regulation of TNF signaling. We used adeno-associated virus vector-delivered siRNAs to selectively knock down neuronal TNF-R signaling. We demonstrate divergent roles for neuronal TNF-RI and TNF-RII where loss of opposing TNF-RII leads to TNF-RI-mediated exacerbation of amyloid β and Tau pathology in aged triple-transgenic AD mice. Dampening of TNF-RII or TNF-RI+RII leads to a stage-independent increase in Iba-1-positive microglial staining, implying that neuronal TNF-RII may act nonautonomously on the microglial cell population. These results reveal that TNF-R signaling is complex, and it is unlikely that all cells and both receptors will respond positively to broad anti-TNF-α treatments at various stages of disease. In aggregate, these data further support the development of cell-, stage-, and/or receptor-specific anti-TNF-α therapeutics for AD.
Collapse
MESH Headings
- Adenoviridae/genetics
- Aging/metabolism
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Amyloid beta-Peptides/metabolism
- Animals
- Brain/pathology
- Disease Progression
- Down-Regulation/physiology
- Gene Knockdown Techniques
- Genetic Vectors
- Male
- Mice
- Mice, Transgenic
- Microglia/metabolism
- Neurons/metabolism
- Plaque, Amyloid/metabolism
- RNA, Small Interfering/genetics
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
224
|
U Lutz H. Comment Concerning the Role of CD47 and Signal Regulatory Protein Alpha in Regulating the Clearance of Aged Red Blood Cells. ACTA ACUST UNITED AC 2013; 40:140-1. [PMID: 23653570 DOI: 10.1159/000350507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Hans U Lutz
- Institute of Biochemistry, ETH Zurich, Switzerland
| |
Collapse
|
225
|
Teraoka Y, Ide K, Morimoto H, Tahara H, Ohdan H. Expression of recipient CD47 on rat insulinoma cell xenografts prevents macrophage-mediated rejection through SIRPα inhibitory signaling in mice. PLoS One 2013; 8:e58359. [PMID: 23472187 PMCID: PMC3589424 DOI: 10.1371/journal.pone.0058359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/05/2013] [Indexed: 01/24/2023] Open
Abstract
We have previously proven that the interspecies incompatibility of CD47 is responsible for in vitro phagocytosis of xenogeneic cells by host macrophages. Utilizing an in vivo model in the present study, we investigated whether genetically engineered expression of mouse CD47 in rat insulinoma cells (INS-1E) could inhibit macrophage-mediated xenograft rejection. INS-1E cells transfected with the pRc/CMV-mouse CD47 vector (mCD47-INS-1E) induced SIRPα-tyrosine phosphorylation in mouse macrophages in vitro, whereas cells transfected with the control vector (cont-INS-1E) did not. When these cells were injected into the peritoneal cavity of streptozotocin-induced diabetic Rag2−/−γ chain −/− mice, which lack T, B, and NK cells, the expression of mouse CD47 on the INS-1E cells markedly reduced the susceptibility of these cells to phagocytosis by macrophages. Moreover, these mice became normoglycemic after receiving mCD47-INS-1E, whereas the mice that received cont-INS-1E failed to achieve normoglycemia. Furthermore, injection of an anti-mouse SIRPα blocking monoclonal antibody into the mouse recipients of mCD47-INS-1E cells prevented achievement of normoglycemia. These results demonstrate that interspecies incompatibility of CD47 significantly contributes to in vivo rejection of xenogeneic cells by macrophages. Thus, genetic induction of the expression of recipient CD47 on xenogeneic donor cells could provide inhibitory signals to recipient macrophages via SIPRα; this constitutes a novel approach for preventing macrophage-mediated xenograft rejection.
Collapse
Affiliation(s)
- Yoshifumi Teraoka
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (KI); (HO)
| | - Hiroshi Morimoto
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (KI); (HO)
| |
Collapse
|
226
|
Bae HB, Tadie JM, Jiang S, Park DW, Bell CP, Thompson LC, Peterson CB, Thannickal VJ, Abraham E, Zmijewski JW. Vitronectin inhibits efferocytosis through interactions with apoptotic cells as well as with macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 190:2273-81. [PMID: 23345331 DOI: 10.4049/jimmunol.1200625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Effective removal of apoptotic cells, particularly apoptotic neutrophils, is essential for the successful resolution of acute inflammatory conditions. In these experiments, we found that whereas interaction between vitronectin and integrins diminished the ability of macrophages to ingest apoptotic cells, interaction between vitronectin with urokinase-type plasminogen activator receptor (uPAR) on the surface of apoptotic cells also had equally important inhibitory effects on efferocytosis. Preincubation of vitronectin with plasminogen activator inhibitor-1 eliminated its ability to inhibit phagocytosis of apoptotic cells. Similarly, incubation of apoptotic cells with soluble uPAR or Abs to uPAR significantly diminished efferocytosis. In the setting of LPS-induced ALI, enhanced efferocytosis and decreased numbers of neutrophils were found in bronchoalveolar lavage obtained from vitronectin-deficient (vtn(-/-)) mice compared with wild type (vtn(+/+)) mice. Furthermore, there was increased clearance of apoptotic vtn(-/-) as compared with vtn(+/+) neutrophils after introduction into the lungs of vtn(-/-) mice. Incubation of apoptotic vtn(-/-) neutrophils with purified vitronectin before intratracheal instillation decreased efferocytosis in vivo. These findings demonstrate that the inhibitory effects of vitronectin on efferocytosis involve interactions with both the engulfing phagocyte and the apoptotic target cell.
Collapse
Affiliation(s)
- Hong-Beom Bae
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN HEMATOLOGY 2013; 2013:614619. [PMID: 23401787 PMCID: PMC3564380 DOI: 10.1155/2013/614619] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion.
Collapse
|
228
|
Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? BIOMED RESEARCH INTERNATIONAL 2012; 2013:482160. [PMID: 23509727 PMCID: PMC3591131 DOI: 10.1155/2013/482160] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
Immunogenic Cell Death (ICD) could represent the keystone in cancer management since tumor cell death induction is crucial as well as the control of cancer cells revival after neoplastic treatment. In this context, the immune system plays a fundamental role. The concept of Damage-Associated Molecular Patterns (DAMPs) has been proposed to explain the immunogenic potential of stressed or dying/dead cells. ICD relies on DAMPs released by or exposed on dying cells. Once released, DAMPs are sensed by immune cells, in particular Dendritic Cells (DCs), acting as activators of Antigen-Presenting Cells (APCs), that in turn stimulate both innate and adaptive immunity. On the other hand, by exposing DAMPs, dying cancer cells change their surface composition, recently indicated as vital for the stimulation of the host immune system and the control of residual ill cells. It is well established that PhotoDynamic Therapy (PDT) for cancer treatment ignites the immune system to elicit a specific antitumor immunity, probably linked to its ability in inducing exposure/release of certain DAMPs, as recently suggested. In the present paper, we discuss the DAMPs associated with PDT and their role in the crossroad between cancer cell death and immunogenicity in PDT.
Collapse
Affiliation(s)
| | | | - Luciana Dini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
229
|
Per-Arne O. Role of CD47 and Signal Regulatory Protein Alpha (SIRPα) in Regulating the Clearance of Viable or Aged Blood Cells. ACTA ACUST UNITED AC 2012; 39:315-20. [PMID: 23801922 DOI: 10.1159/000342537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/14/2012] [Indexed: 01/11/2023]
Abstract
SUMMARY The ubiquitously expressed cell surface glycoprotein CD47 is expressed by virtually all cells in the host, where it can function to regulate integrin-mediated responses, or constitute an important part of the erythrocyte band 3/Rh multi-protein complex. In addition, CD47 can protect viable cells from being phagocytosed by macrophages or dendritic cells. The latter mechanism is dependent on the interaction between target cell CD47 and SIRPα on the phagocyte. In this context, SIRPα functions to inhibit prophagocytic signaling from Fcγ receptors, complement receptors, and LDL receptor-related protein-1 (LRP-1), but not scavenger receptors. The expression level and/or distribution of CD47 may be altered on the surface of apoptotic/senescent cells, rendering the phagocytosis inhibitory function of the CD47/SIRPα interaction reduced or eliminated. Instead, the interaction between these 2 proteins may serve to enhance the binding of apoptotic/senescent target cells to the phagocyte to promote phagocytosis.
Collapse
Affiliation(s)
- Oldenborg Per-Arne
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
230
|
Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T, Lowell CA, Golan DE, Neel BG, Swanson KD. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J Cell Sci 2012; 125:5535-45. [PMID: 22976304 DOI: 10.1242/jcs.111260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement. Binding of phosphatidylinositol [3,4,5]-triphosphate to the Skap2 pleckstrin-homology (PH) domain, which relieves its conformational auto-inhibition, is critical for this integrin-driven cytoskeletal response. Skap2 enables integrin-induced tyrosyl phosphorylation of Src-family kinases (SFKs), Adap, and Sirpα, establishing their roles as signaling partners in this process. Furthermore, macrophages lacking functional Sirpα unexpectedly have impaired local integrin-induced responses identical to those of Skap2(-/-) macrophages, and Skap2 requires Sirpα for its recruitment to engaged integrins and for coordinating downstream actin rearrangement. By revealing the positive-regulatory role of Sirpα in a Skap2-mediated mechanism connecting integrin engagement with cytoskeletal rearrangement, these data demonstrate that Sirpα is not exclusively immunoinhibitory, and illuminate previously unexplained observations implicating Skap2 and Sirpα in mouse models of inflammatory disease.
Collapse
Affiliation(s)
- Francis J Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Straat M, van Bruggen R, de Korte D, Juffermans NP. Red blood cell clearance in inflammation. Transfus Med Hemother 2012; 39:353-61. [PMID: 23801928 DOI: 10.1159/000342229] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/04/2012] [Indexed: 12/21/2022] Open
Abstract
SUMMARY Anemia is a frequently encountered problem in the critically ill patient. The inability to compensate for anemia includes several mechanisms, collectively referred to as anemia of inflammation: reduced production of erythropoietin, impaired bone marrow response to erythropoietin, reduced iron availability, and increased red blood cell (RBC) clearance. This review focuses on mechanisms of RBC clearance during inflammation. We state that phosphatidylserine (PS) expression in inflammation is mainly enhanced due to an increase in ceramide, caused by an increase in sphingomyelinase activity due to either platelet activating factor, tumor necrosis factor-α, or direct production by bacteria. Phagocytosis of RBCs during inflammation is mediated via RBC membrane protein band 3. Reduced deformability of RBCs seems an important feature in inflammation, also mediated by band 3 as well as by nitric oxide, reactive oxygen species, and sialic acid residues. Also, adherence of RBCs to the endothelium is increased during inflammation, most likely due to increased expression of endothelial adhesion molecules as well as PS on the RBC membrane, in combination with decreased capillary blood flow. Thereby, clearance of RBCs during inflammation shows similarities to clearance of senescent RBCs, but also has distinct entities, including increased adhesion to the endothelium.
Collapse
Affiliation(s)
- Marleen Straat
- Department of Intensive Care Medicine, Academic Medical Center, Sanquin Research, Sanquin Blood Bank, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
232
|
Burger P, de Korte D, van den Berg TK, van Bruggen R. CD47 in Erythrocyte Ageing and Clearance - the Dutch Point of View. ACTA ACUST UNITED AC 2012; 39:348-52. [PMID: 23801927 DOI: 10.1159/000342231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
Recently, an important role for CD47, a well-known 'don't eat me' signal, in the clearance of aged erythrocytes was revealed. Experimental data support the conversion of CD47 from a 'don't eat me' to an 'eat me' signal through a conformational change in CD47. Intriguingly, erythrocyte phagocytosis after this switch seems to be mediated by the same receptor that normally signals inhibition of phagocytosis, SIRPα. In this review, the possible molecular mechanisms leading to this conformational change in CD47 as well as the possible signal transduction events leading to phagocytosis after this switch are discussed. Lastly, the consequences of this newly identified mode of erythrocyte phagocytosis for the clearance of aged erythrocytes during normal turnover and after erythrocyte transfusion are addressed.
Collapse
Affiliation(s)
- Patrick Burger
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
233
|
Theocharides APA, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, Dick JE, Wang JCY. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. ACTA ACUST UNITED AC 2012; 209:1883-99. [PMID: 22945919 PMCID: PMC3457732 DOI: 10.1084/jem.20120502] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of macrophage SIRPα–CD47 interactions mediates phagocytosis and clearance of acute myeloid leukemia stem cells. Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα–CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Collapse
Affiliation(s)
- Alexandre P A Theocharides
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Herein recent progress in developing red blood cell (RBC)-inspired delivery systems is reviewed, with an emphasis on how our growing understanding of fundamental biological properties of natural RBCs has been applied in the design and engineering of these delivery systems. Specifically, progress achieved in developing carrier RBCs, a class of delivery vehicles engineered by directly loading natural RBCs with therapeutic agents, will be reviewed. Then alternative approaches to engineering synthetic vehicles through mimicking the mechanobiological and chemico-biological properties of natural RBCs will be considered. The synthesis and application of RBC membrane-derived vesicles, of which the natural RBC membranes are collected and directly utilized to prepare drug carriers, will then be discussed. Finally, a recent approach in engineering RBC membrane-camouflaged nanoparticle systems that combine advantages of natural RBCs and synthetic biomaterials will be highlighted. These developments indicate that RBC-inspired delivery systems will result in next-generation nanomedicine with extensive medical applications.
Collapse
Affiliation(s)
- Che-Ming J Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
235
|
Liu J, Hettmer S, Milsom MD, Hofmann I, Hua F, Miller C, Bronson RT, Wagers AJ. Induction of histiocytic sarcoma in mouse skeletal muscle. PLoS One 2012; 7:e44044. [PMID: 22952867 PMCID: PMC3432091 DOI: 10.1371/journal.pone.0044044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/27/2012] [Indexed: 02/04/2023] Open
Abstract
Myeloid sarcomas are extramedullary accumulations of immature myeloid cells that may present with or without evidence of pathologic involvement of the bone marrow or peripheral blood, and often coincide with or precede a diagnosis of acute myeloid leukemia (AML). A dearth of experimental models has hampered the study of myeloid sarcomas and led us to establish a new system in which tumor induction can be evaluated in an easily accessible non-hematopoietic tissue compartment. Using ex-vivo transduction of oncogenic Kras(G12V) into p16/p19−/− bone marrow cells, we generated transplantable leukemia-initiating cells that rapidly induced tumor formation in the skeletal muscle of immunocompromised NOD.SCID mice. In this model, murine histiocytic sarcomas, equivalent to human myeloid sarcomas, emerged at the injection site 30–50 days after cell implantation and consisted of tightly packed monotypic cells that were CD48+, CD47+ and Mac1+, with low or absent expression of other hematopoietic lineage markers. Tumor cells also infiltrated the bone marrow, spleen and other non-hematopoietic organs of tumor-bearing animals, leading to systemic illness (leukemia) within two weeks of tumor detection. P16/p19−/−; Kras(G12V) myeloid sarcomas were multi-clonal, with dominant clones selected during secondary transplantation. The systemic leukemic phenotypes exhibited by histiocytic sarcoma-bearing mice were nearly identical to those of animals in which leukemia was introduced by intravenous transplantation of the same donor cells. Moreover, murine histiocytic sarcoma could be similarly induced by intramuscular injection of MLL-AF9 leukemia cells. This study establishes a novel, transplantable model of murine histiocytic/myeloid sarcoma that recapitulates the natural progression of these malignancies to systemic disease and indicates a cell autonomous leukemogenic mechanism.
Collapse
Affiliation(s)
- Jianing Liu
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, and Joslin Diabetes Center, Cambridge, Massachusetts, United States of America
| | - Simone Hettmer
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, and Joslin Diabetes Center, Cambridge, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
| | - Michael D. Milsom
- HI-STEM (Heidelberg Institute for Stem Cell Technology and Experimental Medicine) and DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Inga Hofmann
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
| | - Frederic Hua
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, and Joslin Diabetes Center, Cambridge, Massachusetts, United States of America
| | - Christine Miller
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, and Joslin Diabetes Center, Cambridge, Massachusetts, United States of America
| | - Roderick T. Bronson
- Department of Biomedical Sciences, Cumming School of Veterinary Medicine at Tufts University Veterinary School, North Grafton, Massachusetts, United States of America
| | - Amy J. Wagers
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, and Joslin Diabetes Center, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
236
|
Lutz HU. Naturally occurring anti-band 3 antibodies in clearance of senescent and oxidatively stressed human red blood cells. ACTA ACUST UNITED AC 2012; 39:321-7. [PMID: 23801923 DOI: 10.1159/000342171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022]
Abstract
SUMMARY Naturally occurring anti-band 3 antibodies (anti-band 3 NAbs) are directed against the 55-kDa chymotryptic fragment of the anion transport protein (band 3) of red blood cells (RBCs). They bind to senescent and oxidatively stressed RBCs and induce their selective clearance. These IgG NAbs exist at low concentrations, and have a weak affinity that prevents them from actively recruiting second binding sites. Cellular senescence or oxidative damage induces a cascade of biochemical events that results in the detachment of band 3 from the cytoskeleton and in clustering of band 3 protein by bound hemichromes and Syk kinase. Clustered band 3 proteins allow bivalent binding of anti-band 3 NAbs. Bivalently bound anti-band 3 NAbs have the unique capacity to stimulate C3b deposition by preferentially generating C3b2-IgG complexes, which act as potent C3 convertase precursors of the alternative complement pathway. Antibody binding not only to clustered, but also to oligomerized band 3 protein further increases if the human plasma also contains induced anti-lactoferrin antibodies. These bind to the polylactosaminyl oligosaccharide, a carbohydrate that exists in lactoferrin and in the 38-kDa fragment of band 3 protein. Anti-lactoferrin antibodies are found primarily in plasma of patients with autoimmune diseases and who have anti-neutrophil cytoplasmic antibodies (ANCA).
Collapse
Affiliation(s)
- Hans U Lutz
- Institute of Biochemistry, ETH Zurich, Switzerland
| |
Collapse
|
237
|
Inhibitory signaling through signal regulatory protein-α is not sufficient to explain the antitumor activities of CD47 antibodies. Proc Natl Acad Sci U S A 2012; 109:E2842; author reply E2844-5. [PMID: 22923696 DOI: 10.1073/pnas.1205441109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
238
|
Tian L, Ma L, Kaarela T, Li Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation 2012; 9:155. [PMID: 22747919 PMCID: PMC3410819 DOI: 10.1186/1742-2094-9-155] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023] Open
Abstract
The central nervous system (CNS) is now known to actively communicate with the immune system to control immune responses both centrally and peripherally. Within the CNS, while studies on glial cells, especially microglia, have highlighted the importance of this cell type in innate immune responses of the CNS, the immune regulatory functions of other cell types, especially neurons, are largely unknown. How neuroimmune cross-talk is homeostatically maintained in neurodevelopment and adult plasticity is even more elusive. Inspiringly, accumulating evidence suggests that neurons may also actively participate in immune responses by controlling glial cells and infiltrated T cells. The potential clinical application of this knowledge warrants a deeper understanding of the mutual interactions between neurons and other types of cells during neurological and immunological processes within the CNS, which will help advance diagnosis, prevention, and intervention of various neurological diseases. The aim of this review is to address the immune function of both glial cells and neurons, and the roles they play in regulating inflammatory processes and maintaining homeostasis of the CNS.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, Viikinkaari 4, FIN-00014, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
239
|
Kim D, Wang J, Willingham SB, Martin R, Wernig G, Weissman IL. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 2012; 26:2538-45. [PMID: 22648449 DOI: 10.1038/leu.2012.141] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multiple myeloma is a plasma cell neoplasm residing in bone marrow. Despite advances in myeloma therapies, novel therapies are required to improve patient outcomes. CD47 is highly expressed on myeloma cells and a potential therapeutic candidate for myeloma therapies. Flow cytometric analysis of patient bone marrow cells revealed that myeloma cells overexpress CD47 when compared with non-myeloma cells in 73% of patients (27/37). CD47 expression protects cells from phagocytosis by transmitting an inhibitory signal to macrophages. Here we show that blocking CD47 with an anti-CD47 monoclonal antibody increased phagocytosis of myeloma cells in vitro. In xenotransplantation models, anti-CD47 antibodies inhibited the growth of RPMI 8226 myeloma cells and led to tumor regression (42/57 mice), implicating the eradication of myeloma-initiating cells. Moreover, anti-CD47 antibodies retarded the growth of patient myeloma cells and alleviated bone resorption in human bone-bearing mice. Irradiation of mice before myeloma cell xenotransplantation abolished the therapeutic efficacy of anti-CD47 antibodies delivered 2 weeks after radiation, and coincided with a reduction of myelomonocytic cells in spleen, bone marrow and liver. These results are consistent with the hypothesis that anti-CD47 blocking antibodies inhibit myeloma growth, in part, by increasing phagocytosis of myeloma cells.
Collapse
Affiliation(s)
- D Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
240
|
McCubbrey AL, Sonstein J, Ames TM, Freeman CM, Curtis JL. Glucocorticoids relieve collectin-driven suppression of apoptotic cell uptake in murine alveolar macrophages through downregulation of SIRPα. THE JOURNAL OF IMMUNOLOGY 2012; 189:112-9. [PMID: 22615206 DOI: 10.4049/jimmunol.1200984] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lung environment actively inhibits apoptotic cell (AC) uptake by alveolar macrophages (AMøs) via lung collectin signaling through signal regulatory protein α (SIRPα). Even brief glucocorticoid (GC) treatment during maturation of human blood monocyte-derived or murine bone marrow-derived macrophages (Møs) increases their AC uptake. Whether GCs similarly impact differentiated tissue Møs and the mechanisms for this rapid response are unknown and important to define, given the widespread therapeutic use of inhaled GCs. We found that the GC fluticasone rapidly and dose-dependently increased AC uptake by murine AMøs without a requirement for protein synthesis. Fluticasone rapidly suppressed AMø expression of SIRPα mRNA and surface protein, and also activated a more delayed, translation-dependent upregulation of AC recognition receptors that was not required for the early increase in AC uptake. Consistent with a role for SIRPα suppression in rapid GC action, murine peritoneal Møs that had not been exposed to lung collectins showed delayed, but not rapid, increase in AC uptake. However, pretreatment of peritoneal Møs with the lung collectin surfactant protein D inhibited AC uptake, and fluticasone treatment rapidly reversed this inhibition. Thus, GCs act not only by upregulating AC recognition receptors during Mø maturation but also via a novel rapid downregulation of SIRPα expression by differentiated tissue Møs. Release of AMøs from inhibition of AC uptake by lung collectins may, in part, explain the beneficial role of inhaled GCs in inflammatory lung diseases, especially emphysema, in which there is both increased lung parenchymal cell apoptosis and defective AC uptake by AMøs.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
241
|
Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PØ, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NNH, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 2012. [PMID: 22451913 DOI: 10.1073/pnas.11216231091121623109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.
Collapse
Affiliation(s)
- Stephen B Willingham
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Fournier B, Andargachew R, Robin AZ, Laur O, Voelker DR, Lee WY, Weber D, Parkos CA. Surfactant protein D (Sp-D) binds to membrane-proximal domain (D3) of signal regulatory protein α (SIRPα), a site distant from binding domain of CD47, while also binding to analogous region on signal regulatory protein β (SIRPβ). J Biol Chem 2012; 287:19386-98. [PMID: 22511785 DOI: 10.1074/jbc.m111.324533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signal regulatory protein α (SIRPα), a highly glycosylated type-1 transmembrane protein, is composed of three immunoglobulin-like extracellular loops as well as a cytoplasmic tail containing three classical tyrosine-based inhibitory motifs. Previous reports indicate that SIRPα binds to humoral pattern recognition molecules in the collectin family, namely surfactant proteins D and A (Sp-D and Sp-A, respectively), which are heavily expressed in the lung and constitute one of the first lines of innate immune defense against pathogens. However, little is known about molecular details of the structural interaction of Sp-D with SIRPs. In the present work, we examined the molecular basis of Sp-D binding to SIRPα using domain-deleted mutant proteins. We report that Sp-D binds to the membrane-proximal Ig domain (D3) of SIRPα in a calcium- and carbohydrate-dependent manner. Mutation of predicted N-glycosylation sites on SIRPα indicates that Sp-D binding is dependent on interactions with specific N-glycosylated residues on the membrane-proximal D3 domain of SIRPα. Given the remarkable sequence similarity of SIRPα to SIRPβ and the lack of known ligands for the latter, we examined Sp-D binding to SIRPβ. Here, we report specific binding of Sp-D to the membrane-proximal D3 domain of SIRPβ. Further studies confirmed that Sp-D binds to SIRPα expressed on human neutrophils and differentiated neutrophil-like cells. Because the other known ligand of SIRPα, CD47, binds to the membrane-distal domain D1, these findings indicate that multiple, distinct, functional ligand binding sites are present on SIRPα that may afford differential regulation of receptor function.
Collapse
Affiliation(s)
- Bénédicte Fournier
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
While immune responses in neurodegeneration were regarded as little more than a curiosity a decade ago, they are now increasingly moving toward center stage. Factors driving this movement include the recognition that most of the relevant immune molecules are produced within the brain, that microglia are proficient immune cells shaping neuronal circuitry and fate, and that systemic immune responses affect brain function. We will review this complex field from the perspective of neurons, extra-neuronal brain cells, and the systemic environment and highlight the possibility that cell intrinsic innate immune molecules in neurons may function in neurodegenerative processes.
Collapse
Affiliation(s)
- Eva Czirr
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5489, USA
| | | |
Collapse
|
244
|
Azuma Y, Nakagawa H, Dote K, Higai K, Matsumoto K. Decreases in CD31 and CD47 levels on the cell surface during etoposide-induced Jurkat cell apoptosis. Biol Pharm Bull 2012; 34:1828-34. [PMID: 22130238 DOI: 10.1248/bpb.34.1828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Engulfment of apoptotic cells is regulated by 'eat me' and 'don't eat me' signals on the cell surface. Alterations to the 'eat me' signals have been well described; however, very little is known about the 'don't eat me' signals on the cell surface during apoptosis. In the present study, apoptosis of Jurkat cells was induced by treatment with topoisomerase II inhibitor etoposide, and then the CD31 and CD47 levels on the apoptotic cell surface and in microparticles were estimated by flow cytometry and immunoblotting methods in the presence of caspase, metalloproteinase, and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibitors. The CD31 and CD47 levels on the cell surface of apoptotic Jurkat cells had decreased after treatment with etoposide. These decreases in CD31 and CD47 levels on the apoptotic cell surface were almost completely suppressed by the caspase 3 inhibitor, Ac-DEVD-CHO, and partially suppressed by caspase 8 (Ac-IETD-CHO) and caspase 9 (Ac-LEHE-CHO) inhibitors but not by the metalloproteinase inhibitors GM6001 and TAPI-0. Microparticle counts in culture supernatants were higher during etoposide-induced apoptosis. The ROCK1 inhibitor, Y27632, suppressed blebbing formation and microparticle release. Moreover, flow cytometry and immunoblotting revealed CD31 and CD47 in the microparticles. These results indicate that CD31 and CD47 were released by the apoptotic Jurkat cells into the culture supernatant in microparticles, but not in soluble forms, resulting in decreased levels on the apoptotic cell surface.
Collapse
Affiliation(s)
- Yutaro Azuma
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan.
| | | | | | | | | |
Collapse
|
245
|
The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 2012; 109:6662-7. [PMID: 22451913 DOI: 10.1073/pnas.1121623109] [Citation(s) in RCA: 1257] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.
Collapse
|
246
|
Abstract
CD47 on erythrocytes inhibits phagocytosis through interaction with the inhibitory immunoreceptor SIRPα expressed by macrophages. Thus, the CD47-SIRPα interaction constitutes a negative signal for erythrocyte phagocytosis. However, we report here that CD47 does not only function as a "do not eat me" signal for uptake but can also act as an "eat me" signal. In particular, a subset of old erythrocytes present in whole blood was shown to bind and to be phagocytosed via CD47-SIRPα interactions. Furthermore, we provide evidence that experimental aging of erythrocytes induces a conformational change in CD47 that switches the molecule from an inhibitory signal into an activating one. Preincubation of experimentally aged erythrocytes with human serum before the binding assay was required for this activation. We also demonstrate that aged erythrocytes have the capacity to bind the CD47-binding partner thrombospondin-1 (TSP-1) and that treatment of aged erythrocytes with a TSP-1-derived peptide enabled their phagocytosis by human red pulp macrophages. Finally, CD47 on erythrocytes that had been stored for prolonged time was shown to undergo a conformational change and bind TSP-1. These findings reveal a more complex role for CD47-SIRPα interactions in erythrocyte phagocytosis, with CD47 acting as a molecular switch for controlling erythrocyte phagocytosis.
Collapse
|
247
|
Gottlieb Y, Topaz O, Cohen LA, Yakov LD, Haber T, Morgenstern A, Weiss A, Chait Berman K, Fibach E, Meyron-Holtz EG. Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro. Haematologica 2012; 97:994-1002. [PMID: 22331264 DOI: 10.3324/haematol.2011.057620] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The lifespan of red blood cells is terminated when macrophages remove senescent red blood cells by erythrophagocytosis. This puts macrophages at the center of systemic iron recycling in addition to their functions in tissue remodeling and innate immunity. Thus far, erythrophagocytosis has been studied by evaluating phagocytosis of erythrocytes that were damaged to mimic senescence. These studies have demonstrated that acquisition of some specific individual senescence markers can trigger erythrophagocytosis by macrophages, but we hypothesized that the mechanism of erythrophagocytosis of such damaged erythrocytes might differ from erythrophagocytosis of physiologically aged erythrocytes. DESIGN AND METHODS To test this hypothesis we generated an erythrocyte population highly enriched in senescent erythrocytes by a hypertransfusion procedure in mice. Various erythrocyte-aging signals were analyzed and erythrophagocytosis was evaluated in vivo and in vitro. RESULTS The large cohort of senescent erythrocytes from hypertransfused mice carried numerous aging signals identical to those of senescent erythrocytes from control mice. Phagocytosis of fluorescently-labeled erythrocytes from hypertransfused mice injected into untreated mice was much higher than phagocytosis of labeled erythrocytes from control mice. However, neither erythrocytes from hypertransfused mice, nor those from control mice were phagocytosed in vitro by primary macrophage cultures, even though these cultures were able to phagocytose oxidatively damaged erythrocytes. CONCLUSIONS The large senescent erythrocyte population found in hypertransfused mice mimics physiologically aged erythrocytes. For effective erythrophagocytosis of these senescent erythrocytes, macrophages depend on some features of the intact phagocytosing tissue for support.
Collapse
Affiliation(s)
- Yehonatan Gottlieb
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering. Technion. Technion City, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol 2012; 24:225-32. [PMID: 22310103 DOI: 10.1016/j.coi.2012.01.010] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 12/20/2022]
Abstract
Multiple lines of investigation have demonstrated that the immune system plays an important role in preventing tumor initiation and controlling tumor growth. Accordingly, many cancers have evolved diverse mechanisms to evade such monitoring. While multiple immune cell types mediate tumor surveillance, recent evidence demonstrates that macrophages, and other phagocytic cells, play a key role in regulating tumor growth through phagocytic clearance. In this review we highlight the role of tumor immune evasion through the inhibition of phagocytosis, specifically through the CD47-signal-regulatory protein-α pathway, and discuss how targeting this pathway might lead to more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine and Cancer Institute, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
249
|
CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A 2011; 108:18342-7. [PMID: 22042861 DOI: 10.1073/pnas.1106550108] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies are among the most promising therapeutic agents for treating cancer. Therapeutic cancer antibodies bind to tumor cells, turning them into targets for immune-mediated destruction. We show here that this antibody-mediated killing of tumor cells is limited by a mechanism involving the interaction between tumor cell-expressed CD47 and the inhibitory receptor signal regulatory protein-α (SIRPα) on myeloid cells. Mice that lack the SIRPα cytoplasmic tail, and hence its inhibitory signaling, display increased antibody-mediated elimination of melanoma cells in vivo. Moreover, interference with CD47-SIRPα interactions by CD47 knockdown or by antagonistic antibodies against CD47 or SIRPα significantly enhances the in vitro killing of trastuzumab-opsonized Her2/Neu-positive breast cancer cells by phagocytes. Finally, the response to trastuzumab therapy in breast cancer patients appears correlated to cancer cell CD47 expression. These findings demonstrate that CD47-SIRPα interactions participate in a homeostatic mechanism that restricts antibody-mediated killing of tumor cells. This provides a rational basis for targeting CD47-SIRPα interactions, using for instance the antagonistic antibodies against human SIRPα described herein, to potentiate the clinical effects of cancer therapeutic antibodies.
Collapse
|
250
|
Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61-9. [PMID: 21249425 DOI: 10.1007/s10555-011-9273-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of some chemo- and radiotherapeutic regimens relies on the induction of immunogenic tumor cell death and on the induction of an anticancer immune response. Cells succumbing to immunogenic cell death undergo specific changes in their surface characteristics and release pro-immunogenic factors according to a defined spatiotemporal pattern. This stimulates antigen presenting cells such as dendritic cells to efficiently take up tumor antigens, process them, and cross-prime cytotoxic T lymphocytes, thus eliciting a tumor-specific cognate immune response. Such a response can also target therapy-resistant tumor (stem) cells, thereby leading, at least in some instances, to tumor eradication. In this review, we shed some light on the molecular identity of the factors that are required for cell death to be perceived as immunogenic. We discuss the intriguing observations that the most abundant endoplasmic reticulum protein, calreticulin, the most abundant intracellular metabolite, ATP, and the most abundant non-histone chromatin-binding protein, HMGB1, can determine whether cell death is immunogenic as they appear on the surface or in the microenvironment of dying cells.
Collapse
Affiliation(s)
- Oliver Kepp
- INSERM, U848, Institut Gustave Roussy, Pavillon de Recherche 1, 94805 Villejuif (Paris), France
| | | | | | | | | | | | | | | | | | | |
Collapse
|