201
|
Chen CH, Kuo CY, Chen JP. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Int J Mol Sci 2018; 19:370. [PMID: 29373507 PMCID: PMC5855592 DOI: 10.3390/ijms19020370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
In this study, we first used gelatin/chondroitin-6-sulfate/hyaluronan/chitosan highly elastic cryogels, which showed total recovery from large strains during repeated compression cycles, as 3D scaffolds to study the effects of cyclic dynamic compressive loading on chondrocyte gene expression and extracellular matrix (ECM) production. Dynamic culture of porcine chondrocytes was studied at 1 Hz, 10% to 40% strain and 1 to 9 h/day stimulation duration, in a mechanical-driven multi-chamber bioreactor for 14 days. From the experimental results, we could identify the optimum dynamic culture condition (20% and 3 h/day) to enhance the chondrocytic phenotype of chondrocytes from the expression of marker (Col I, Col II, Col X, TNF-α, TGF-β1 and IGF-1) genes by quantitative real-time polymerase chain reactions (qRT-PCR) and production of ECM (GAGs and Col II) by biochemical analysis and immunofluorescence staining. With up-regulated growth factor (TGF-β1 and IGF-1) genes, co-culture of chondrocytes with porcine adipose-derived stem cells (ASCs) was employed to facilitate chondrogenic differentiation of ASCs during dynamic culture in cryogel scaffolds. By replacing half of the chondrocytes with ASCs during co-culture, we could obtain similar production of ECM (GAGs and Col II) and expression of Col II, but reduced expression of Col I, Col X and TNF-α. Subcutaneous implantation of cells/scaffold constructs in nude mice after mono-culture (chondrocytes or ASCs) or co-culture (chondrocytes + ASCs) and subject to static or dynamic culture condition in vitro for 14 days was tested for tissue-engineering applications. The constructs were retrieved 8 weeks post-implantation for histological analysis by Alcian blue, Safranin O and Col II immunohistochemical staining. The most abundant ectopic cartilage tissue was found for the chondrocytes and chondrocytes + ASCs groups using dynamic culture, which showed similar neo-cartilage formation capability with half of the chondrocytes replaced by ASCs for co-culture. This combined co-culture/dynamic culture strategy is expected to cut down the amount of donor chondrocytes needed for cartilage-tissue engineering.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
202
|
Agrawal P, Pramanik K, Vishwanath V, Biswas A, Bissoyi A, Patra PK. Enhanced chondrogenesis of mesenchymal stem cells over silk fibroin/chitosan-chondroitin sulfate three dimensional scaffold in dynamic culture condition. J Biomed Mater Res B Appl Biomater 2018; 106:2576-2587. [DOI: 10.1002/jbm.b.34074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/30/2017] [Accepted: 12/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Parinita Agrawal
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Varshini Vishwanath
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Amit Biswas
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha India
| | - Akalabya Bissoyi
- Department of Biomedical Engineering; National Institute of Technology; Raipur Chhattisgarh India
| | - Pradeep Kumar Patra
- Department of Biochemistry; Pandit Jawahar Lal Nehru Memorial Medical College; Raipur Chhattisgarh India
| |
Collapse
|
203
|
Tangtrongsup S, Kisiday JD. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J Orthop Res 2018; 36:506-514. [PMID: 28548680 DOI: 10.1002/jor.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| | - John D Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| |
Collapse
|
204
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
205
|
Successful Low-Cost Scaffold-Free Cartilage Tissue Engineering Using Human Cartilage Progenitor Cell Spheroids Formed by Micromolded Nonadhesive Hydrogel. Stem Cells Int 2017. [PMID: 29527227 PMCID: PMC5750468 DOI: 10.1155/2017/7053465] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The scaffold-free tissue engineering using spheroids is pointed out as an approach for optimizing the delivery system of cartilage construct. In this study, we aimed to evaluate the micromolded nonadhesive hydrogel (MicroTissues®) for spheroid compaction (2-day culture) and spontaneous chondrogenesis (21-day culture) using cartilage progenitors cells (CPCs) from human nasal septum without chondrogenic stimulus. CPC spheroids showed diameter stability (486 μm ± 65), high percentage of viable cells (88.1 ± 2.1), and low percentage of apoptotic cells (2.3%). After spheroid compaction, the synthesis of TGF-β1, TGF-β2, and TGF-β3 was significantly higher compared to monolayer (p < 0.005). Biomechanical assay revealed that the maximum forces applied to spheroids after chondrogenesis were 2.6 times higher than for those cultured for 2 days. After spontaneous chondrogenesis, CPC spheroids were entirely positive for N-cadherin, collagen type II and type VI, and aggrecan and chondroitin sulfate. Comparing to monolayer, the expression of SOX5 and SOX6 genes analyzed by qPCR was significantly upregulated (p < 0.01). Finally, we observed the capacity of CPC spheroids starting to fuse. To the best of our knowledge, this is the first time in the scientific literature that human CPC spheroids were formed by micromolded nonadhesive hydrogel, achieving a successful scaffold-free cartilage engineering without chondrogenic stimulus (low cost).
Collapse
|
206
|
Zhou H, Zhu J, Liu M, Wu Q, Dong N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:973-982. [PMID: 28714548 DOI: 10.1002/term.2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potency to differentiate into chondrocytes, osteocytes and adipocytes. Corin is a cardiac protease that activates the natriuretic peptides, thereby regulating blood volume and pressure. In addition to the heart, corin gene upregulation was reported in bone marrow- and adipose tissue-derived MSCs that underwent osteogenic differentiation. To date, the biological significance of corin expression in MSC differentiation remains unknown. In this study we isolated and cultured human bone marrow-derived MSCs that were capable of undergoing chondrogenic, osteogenic and adipogenic lineage differentiation. By reverse transcription polymerase chain reaction (RT-PCR) and immunostaining, we found that corin expression was upregulated when these MSCs underwent chondrogenic, osteogenic and adipogenic differentiation. The upregulation of corin expression was most significant in the cells undergoing chondrogenic lineage differentiation. Silencing corin gene expression by small hairpin RNA in the MSCs inhibited chondrogenic, but not osteogenic and adipogenic, differentiation. These results suggest a novel function of corin in MSC differentiation and chondrocyte development.
Collapse
Affiliation(s)
- Haibin Zhou
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinsong Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
207
|
Biomaterial-assisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pract Res Clin Rheumatol 2017; 31:730-745. [DOI: 10.1016/j.berh.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|
208
|
Hoffmann A, Floerkemeier T, Melzer C, Hass R. Comparison of in vitro-cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. J Tissue Eng Regen Med 2017; 11:2565-2581. [PMID: 27125777 DOI: 10.1002/term.2153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Cell-mediated therapy is currently considered as a novel approach for many human diseases. Potential uses range from topic applications with the regeneration of confined tissue areas to systemic applications. Stem cells including mesenchymal stroma/stem cells (MSCs) represent a highly attractive option. Their potential to cure or alleviate human diseases is investigated in a number of clinical trials. A wide variety of methods has been established in the past years for isolation, cultivation and characterization of human MSCs as expansion is presently deemed a prerequisite for clinical application with high numbers of cells carrying reproducible properties. MSCs have been retrieved from various tissues and used in a multitude of settings whereby numerous experimental protocols are available for expansion of MSCs in vitro. Accordingly, different isolation, culture and upscaling techniques contribute to the heterogeneity of MSC characteristics and the, sometimes, controversial results. Therefore, this review discusses and summarizes certain experimental conditions for MSC in vitro culture focusing on adult bone marrow-derived and neonatal umbilical cord-derived MSCs in order to enhance our understanding for MSC tissue sources and to stratify different procedures. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Orthopaedic Surgery, OE 8893, Hannover Medical School, Hannover, Germany
| | - Thilo Floerkemeier
- Department of Orthopaedic Surgery (Annastift), OE 6270, Hannover Medical School, Hannover, Germany
| | - Catharina Melzer
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| |
Collapse
|
209
|
Huwe LW, Sullan GK, Hu JC, Athanasiou KA. Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli. Tissue Eng Part A 2017; 24:516-526. [PMID: 28683690 DOI: 10.1089/ten.tea.2017.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generating neocartilage with suitable mechanical integrity from a cell source that can circumvent chondrocyte scarcity is indispensable for articular cartilage regeneration strategies. Costal chondrocytes of the rib eliminate donor site morbidity in the articular joint, but it remains unclear how neocartilage formed from these cells responds to mechanical loading, especially if the intent is to use it in a load-bearing joint. In a series of three experiments, this study sought to determine efficacious parameters of passive axial compressive stimulation that would enable costal chondrocytes to synthesize mechanically robust cartilage. Experiment 1 determined a suitable time window for stimulation by its application during either the matrix synthesis phase, the maturation phase, or during both phases of the self-assembling process. The results showed that compressive stimulation at either time was effective in increasing instantaneous moduli by 92% and 87% in the synthesis and maturation phases, respectively. Compressive stimulation during both phases did not further improve properties beyond a one-time stimulation. The magnitude of passive axial compression was examined in Experiment 2 by applying 0, 3.3, 5.0, or 6.7 kPa stresses to the neocartilage. Unlike 6.7 kPa, both 3.3 and 5.0 kPa significantly increased neocartilage compressive properties by 42% and 48% over untreated controls, respectively. Experiment 3 examined how the passive axial compression regimen developed from the previous phases interacted with a bioactive regimen (transforming growth factor [TGF]-β1, chondroitinase ABC, and lysyl oxidase-like 2). Passive axial compression significantly improved the relaxation modulus compared with bioactive treatment alone. Furthermore, a combined treatment of compressive and bioactive stimulation improved the tensile properties of neocartilage 2.6-fold compared with untreated control. The ability to create robust articular cartilage from passaged costal chondrocytes through appropriate mechanical and bioactive stimuli will greatly extend the clinical applicability of tissue-engineered products to a wider patient population.
Collapse
Affiliation(s)
- Le W Huwe
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Gurdeep K Sullan
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Jerry C Hu
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Kyriacos A Athanasiou
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California.,2 Department of Orthopaedic Surgery, University of California , Davis, One Shields Avenue, Davis, California
| |
Collapse
|
210
|
Mazor M, Cesaro A, Ali M, Best TM, Lespessaille E, Toumi H. Progenitor Cells from Cartilage: Grade Specific Differences in Stem Cell Marker Expression. Int J Mol Sci 2017; 18:ijms18081759. [PMID: 28805694 PMCID: PMC5578148 DOI: 10.3390/ijms18081759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023] Open
Abstract
Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/analysis
- Antigens, CD/genetics
- Biomarkers/analysis
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Adhesion Molecules, Neuronal/analysis
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Differentiation
- Endoglin/analysis
- Endoglin/genetics
- Fetal Proteins/analysis
- Fetal Proteins/genetics
- Humans
- Knee Joint/metabolism
- Knee Joint/pathology
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Middle Aged
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- SOX9 Transcription Factor/analysis
- SOX9 Transcription Factor/genetics
- Transcriptome
Collapse
Affiliation(s)
- Marija Mazor
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
| | - Annabelle Cesaro
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
| | - Mazen Ali
- Service chirurgie orthopédique et traumatologique Centre Hospitalier Régional d'Orléans, La Source 45000, France.
| | - Thomas M Best
- UHealth Sports Medicine Institute, Department of Orthopedics, Division of Sports Medicine, U of Miami, Coral Gables, FL 33146, USA.
| | - Eric Lespessaille
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
- EA4708/I3MTO, Service de Rhumatologie, Centre Hospitalier Régional d'Orléans, La Source 45000, France.
| | - Hechmi Toumi
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
- EA4708/I3MTO, Service de Rhumatologie, Centre Hospitalier Régional d'Orléans, La Source 45000, France.
| |
Collapse
|
211
|
Somoza RA, Correa D, Labat I, Sternberg H, Forrest ME, Khalil AM, West MD, Tesar P, Caplan AI. Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Tissue Eng Part A 2017; 24:335-350. [PMID: 28602122 DOI: 10.1089/ten.tea.2016.0559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular differentiation comprises a progressive, multistep program that drives cells to fabricate a tissue with specific and site distinctive structural and functional properties. Cartilage constitutes one of the potential differentiation lineages that mesenchymal stem cells (MSCs) can follow under the guidance of specific bioactive agents. Single agents such as transforming growth factor beta (TGF-β) and bone morphogenetic protein 2 in unchanging culture conditions have been historically used to induce in vitro chondrogenic differentiation of MSCs. Despite the expression of traditional chondrogenic biomarkers such as type II collagen and aggrecan, the resulting tissue represents a transient cartilage rather than an in vivo articular cartilage (AC), differing significantly in structure, chemical composition, cellular phenotypes, and mechanical properties. Moreover, there have been no comprehensive, multicomponent parameters to define high-quality and functional engineered hyaline AC. To address these issues, we have taken an innovative approach based on the molecular interrogation of human neonatal articular cartilage (hNAC), dissected from the knees of 1-month-old cadaveric specimens. Subsequently, we compared hNAC-specific transcriptional regulatory elements and differentially expressed genes with adult human bone marrow (hBM) MSC-derived three-dimensional cartilage structures formed in vitro. Using microarray analysis, the transcriptome of hNAC was found to be globally distinct from the transient, cartilage-like tissue formed by hBM-MSCs in vitro. Specifically, over 500 genes that are highly expressed in hNAC were not expressed at any time point during in vitro human MSC chondrogenesis. The analysis also showed that the differences were less variant during the initial stages (first 7 days) of the in vitro chondrogenic differentiation program. These observations suggest that the endochondral fate of hBM-MSC-derived cartilage may be rerouted at earlier stages of the TGF-β-stimulated chondrogenic differentiation program. Based on these analyses, several key molecular differences (transcription factors and coded cartilage-related proteins) were identified in hNAC that will be useful as molecular inductors and identifiers of the in vivo AC phenotype. Our findings provide a new gold standard of a molecularly defined AC phenotype that will serve as a platform to generate novel approaches for AC tissue engineering.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio.,2 CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, Ohio
| | - Diego Correa
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio.,3 Division of Sports Medicine, Department of Orthopaedics, Diabetes Research Institute and Cell Transplant Center, University of Miami , Miller School of Medicine, Miami, Florida
| | | | | | - Megan E Forrest
- 5 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Ahmad M Khalil
- 2 CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, Ohio.,5 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | | | - Paul Tesar
- 5 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio.,2 CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, Ohio
| |
Collapse
|
212
|
Sun Y, Wang T, Toh W, Pei M. The role of laminins in cartilaginous tissues: from development to regeneration. Eur Cell Mater 2017; 34:40-54. [PMID: 28731483 PMCID: PMC7315463 DOI: 10.22203/ecm.v034a03] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells' proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.
Collapse
Affiliation(s)
- Y. Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA,Department of Orthopaedics, Orthopaedics Institute, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - T.L. Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - W.S. Toh
- Faculty of Dentistry, National University of Singapore, Singapore
| | - M. Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA,Exercise Physiology, West Virginia University, Morgantown, WV, USA,Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
213
|
Rinker TE, Philbrick BD, Temenoff JS. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core. Acta Biomater 2017; 56:91-101. [PMID: 28013102 PMCID: PMC5478455 DOI: 10.1016/j.actbio.2016.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
Abstract
Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. STATEMENT OF SIGNIFICANCE Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair.
Collapse
Affiliation(s)
- Torri E Rinker
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA.
| | - Brandon D Philbrick
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA.
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 30332 Atlanta, GA, USA.
| |
Collapse
|
214
|
Infante A, Rubio-Azpeitia E, Sánchez P, Alberdi R, Rodriguez CI, Andia I. Platelet Rich Plasma and Culture Configuration Affect the Matrix Forming Phenotype of Bone Marrow Stromal Cells. Tissue Eng Regen Med 2017; 14:567-577. [PMID: 30603510 DOI: 10.1007/s13770-017-0062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/14/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
We aim to examine the influence of platelet rich plasma (PRP) and spatial cues in cartilage/bone matrix forming proteins, and to evaluate the mitotic and chemotactic potential of PRP on human mesenchymal stem cells (hMSCs). Directed cell migration towards PRP gradients was assessed in chemotactic chambers, and recorded by time-lapse microscopy. hMSCs cultured in three-dimensional (3D) scaffolds were visualized by scanning electron microscopy; Hoechst dye was used to confirm cell confluence in 3D-constructs and monolayers before experimental treatment. MSCs were treated with 10% PRP lysate or 10% PRP lysate supplemented with TGF-β-based differentiation medium. The expression of cartilage (COL2A1, Sox9, ACAN, COMP), and bone (COL1A1, VEGF, COL10A1, Runx2) fundamental genes was assessed by real time PCR in monolayers and 3D-constructs. PRP had mitotic (p < 0.001), and chemotactic effect on hMSCs, Ralyleigh test p = 1.02E - 10. Two and three-week exposure of MSCs to PRP secretome in 3D-constructs or monolayers decreased Sox9 expression (p < 0.001 and p = 0.050) and COL2A1, (p = 0.011 and p = 0.019). MSCs in monolayers exposed to PRP showed increased ACAN (p = 0.050) and COMP (p < 0.001). Adding TGF-β-based differentiation medium to PRP increased COMP, and COL2A1 expression at gene and protein level, but merely in 3D-constructs, p < 0.001. TGF-β addition to monolayers reduced Sox9 (p < 0.001), aggrecan (p = 0.004), and VEGF (p = 0.004). Cells exposed to PRP showed no changes in hypertrophy associated genes in either monolayers or 3D-constructs. Our study suggests hMSCs have high-degree of plasticity having the potential to change their matrix-forming phenotype when exposed to PRP and according to spatial configuration.
Collapse
Affiliation(s)
- Arantza Infante
- 1Stem Cells and Cell Therapy Laboratory, BioCruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Eva Rubio-Azpeitia
- 2Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Pza Cruces 12, 48903 Barakaldo, Spain
| | - Patricia Sánchez
- 1Stem Cells and Cell Therapy Laboratory, BioCruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Raúl Alberdi
- Centro Tecnológico IK4-Ideko, 20870 Elgoibar, Spain
| | - Clara I Rodriguez
- 1Stem Cells and Cell Therapy Laboratory, BioCruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Isabel Andia
- 2Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Pza Cruces 12, 48903 Barakaldo, Spain
| |
Collapse
|
215
|
Szychlinska MA, Stoddart MJ, D'Amora U, Ambrosio L, Alini M, Musumeci G. Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence: Can We Manipulate Cell Aging and Function? TISSUE ENGINEERING PART B-REVIEWS 2017; 23:529-539. [PMID: 28514935 DOI: 10.1089/ten.teb.2017.0083] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aging is the most prominent risk factor triggering several degenerative diseases, such as osteoarthritis (OA). Due to its poor self-healing capacity, once injured cartilage needs to be reestablished. This process might be approached through resorting to cell-based therapies and/or tissue engineering. Human mesenchymal stem cells (MSCs) represent a promising approach due to their chondrogenic differentiation potential. Presently, in vitro chondrogenic differentiation of MSCs is limited by two main reasons as follows: aging of MSCs, which determines the loss of cell proliferative and differentiation capacity and MSC-derived chondrocyte hypertrophic differentiation, which limits the use of these cells in cartilage tissue regeneration approach. The effect of aging on MSCs is fundamental for stem cell-based therapy development, especially in older subjects. In the present review we focus on homeostasis alterations occurring in MSC-derived chondrocytes during in vitro aging. Moreover, we deal with potential cell aging regulation approaches, such as cell stimulation through telomerase activators, mechanical strain, and epigenetic regulation. Future investigations in this field might provide new insights into innovative strategies for cartilage regeneration and potentially inspire novel therapeutic approaches for OA treatment.
Collapse
Affiliation(s)
- Marta A Szychlinska
- 1 Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania , Catania, Italy
| | - Martin J Stoddart
- 2 Musculoskeletal Regeneration, AO Research Institute Davos , Davos Platz, Switzerland
| | - Ugo D'Amora
- 3 Institute of Polymers , Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- 3 Institute of Polymers , Composites and Biomaterials, National Research Council of Italy, Naples, Italy .,4 Department of Chemical Science and Materials Technology, National Research Council of Italy , Rome, Italy
| | - Mauro Alini
- 2 Musculoskeletal Regeneration, AO Research Institute Davos , Davos Platz, Switzerland
| | - Giuseppe Musumeci
- 1 Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania , Catania, Italy .,5 Department of Health, Institut des Etudes Universitaries , UniPoliSI, Veyras, Switzerland
| |
Collapse
|
216
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
217
|
Rothrauff BB, Yang G, Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8:133. [PMID: 28583182 PMCID: PMC5460492 DOI: 10.1186/s13287-017-0580-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Biological scaffolds composed of tissue-derived extracellular matrix (ECM) can promote homologous (i.e., tissue-specific) cell differentiation through preservation of biophysical and biochemical motifs found in native tissues. Solubilized ECMs derived from decellularized tendon and cartilage have recently been promoted as tissue-specific biomaterials, but whether tissue-specific bioactivity is preserved following solubilization is unknown. This study explored the tissue-specific bioactivity of soluble decellularized tendon and cartilage ECMs on human bone marrow-derived mesenchymal stem cells (MSCs) presented across different culture microenvironments, including two-dimensional (2D) tissue culture plastic, aligned electrospun nanofibers, cell pellets, and cell-seeded photocrosslinkable hydrogels. METHODS Tendon and cartilage ECMs were decellularized using established methods and solubilized either via pepsin digestion or urea extraction. The effect of soluble ECMs on cell proliferation and differentiation was initially explored by supplementing basal medium of human MSCs cultured on 2D tissue culture plastic. In subsequent experiments, MSCs were cultured on aligned electrospun nanofibers, ascell pellets, or encapsulated within photocrosslinkable methacrylated gelatin (GelMA) hydrogels. Urea-extracted tendon and cartilage ECMs were added as supplements. RESULTS Pepsin-digested ECMs did not promote homologous differentiation in human MSCs, whether provided as a medium supplement or three-dimensional (3D) hydrogels. In contrast, urea-extracted ECMs tended to promote tissue-specific differentiation of MSCs cultured in 2D and 3D microenvironments. The application of the small molecule TGF-β signaling inhibitor SB-431542 largely negated the tissue-specific gene expression patterns mediated by tendon and cartilage ECMs. This suggests that the action of endogenous TGF-β was required, but was not sufficient, to impart tissue-specific bioactivity of urea-extracted ECMs. When urea-extracted cartilage ECM was incorporated within a photocurable GelMA hydrogel it independently enhanced chondrogenesis in encapsulated MSCs, and showed additive prochondrogenesis upon TGF-β supplementation in the medium. CONCLUSIONS Urea-extracted ECM fractions of decellularized tendon and cartilage are soluble supplements capable of enhancing tissue-specific differentiation of adult stem cells.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Guang Yang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
218
|
Ratnayake M, Tselepi M, Bloxham R, Plöger F, Reynard LN, Loughlin J. A consistent and potentially exploitable response during chondrogenesis of mesenchymal stem cells from osteoarthritis patients to the protein encoded by the susceptibility gene GDF5. PLoS One 2017; 12:e0176523. [PMID: 28481944 PMCID: PMC5421763 DOI: 10.1371/journal.pone.0176523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterised by the focal loss of the protective cartilage layer at the ends of the bones. It is painful, disabling, multifactorial and polygenic. The growth differentiation factor 5 gene GDF5 was one of the first reported OA susceptibility signals that showed consistent association to OA, with the transcript single nucleotide polymorphism (SNP) rs143383 demonstrating association in Asians and Europeans. The functional effect of the signal is reduced expression of the gene. The GDF5 protein is an extracellular matrix signalling molecule that is active during chondrogenesis and in mature chondrocytes. Due to the functional impact of the susceptibility, we previously assessed the effect of supplementing chondrocytes from OA patients with exogenous GDF5. Their response was highly discordant, precluding the application of GDF5 as a simple means of attenuating the genetic deficit. Since GDF5 is also active during development, we have now assessed the effect of exogenous GDF5 on bone marrow derived mesenchymal stem cells (MSCs) that are undergoing chondrogenesis during cartilage disc formation. MSCs from healthy donors and OA patients were studied and the effect of GDF5 was assessed by measuring the wet mass of the discs, by histological staining, and by monitoring the change in expression of anabolic, catabolic and hypertrophic protein-coding genes. The MSCs expressed the three principal GDF5 receptor genes and responded in a significantly anabolic manner (increase in wet mass, p = 0.0022; Bonferroni corrected p = 0.018) to a variant form of GDF5 that targets the most abundantly expressed receptor, BMPR-IA. GDF5 elicited significant (p < 0.05) changes in the expression of anabolic, catabolic and hypertrophic genes with several consistent effects in healthy donors and in OA patients. Our data implies that, unlike OA chondrocytes, OA MSCs do respond in a predictable, anabolic manner to GDF5, which could therefore provide a route to modulate the genetic deficit mediated by the rs143383 association signal.
Collapse
Affiliation(s)
- Madhushika Ratnayake
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Tselepi
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Robert Bloxham
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Louise N. Reynard
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
219
|
Lee WYW, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat 2017; 9:76-88. [PMID: 29662802 PMCID: PMC5822962 DOI: 10.1016/j.jot.2017.03.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is a degenerative disease of joints with destruction of articular cartilage associated with subchondral bone hypertrophy and inflammation. OA is the leading cause of joint pain resulting in significant worsening of the quality-of-life in the elderly. Numerous efforts have been spent to overcome the inherently poor healing ability of articular cartilage. Mesenchymal stem cells (MSCs) have been in the limelight of cell-based therapies to promote cartilage repair. Despite progressive advancements in MSC manipulation and the introduction of various bioactive scaffolds and growth factors in preclinical studies, current clinical trials are still at early stages with preliminary aims to evaluate safety, feasibility and efficacy. This review summarises recently reported MSC-based clinical trials and discusses new research directions with particular focus on the potential application of MSC-derived extracellular vehicles, miRNAs and advanced gene editing techniques which may shed light on the development of novel treatment strategies. The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.
Collapse
Affiliation(s)
- Wayne Yuk-wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
220
|
Calabrese G, Forte S, Gulino R, Cefalì F, Figallo E, Salvatorelli L, Maniscalchi ET, Angelico G, Parenti R, Gulisano M, Memeo L, Giuffrida R. Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro. Front Physiol 2017; 8:50. [PMID: 28210226 PMCID: PMC5288372 DOI: 10.3389/fphys.2017.00050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/18/2017] [Indexed: 12/27/2022] Open
Abstract
Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could be suitable for the production of medical devices that can be beneficial in the field of articular cartilage engineering, thus improving the efficacy and durability of the current therapeutic options.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Istituto Oncologico del Mediterraneo - Ricerca ViagrandeCatania, Italy; Physiology Section, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo - Ricerca Viagrande Catania, Italy
| | - Rosario Gulino
- Istituto Oncologico del Mediterraneo - Ricerca ViagrandeCatania, Italy; Physiology Section, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | | | | | - Lucia Salvatorelli
- Anatomic Pathology Section, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, "Policlinico Vittorio Emanuele", University of Catania Catania, Italy
| | - Eugenia T Maniscalchi
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Giuseppe Angelico
- Anatomic Pathology Section, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, "Policlinico Vittorio Emanuele", University of Catania Catania, Italy
| | - Rosalba Parenti
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Massimo Gulisano
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology Viagrande, Italy
| | | |
Collapse
|
221
|
Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, Zhang Y, Chen M, Gao S, Peng J, Wang A, Wang Y, Sui X, Xu W, Lu S, Liu S, Guo Q. Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells Int 2017; 2017:4130607. [PMID: 28246531 PMCID: PMC5299204 DOI: 10.1155/2017/4130607] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.
Collapse
Affiliation(s)
- Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ning Ma
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunxiang Hao
- Anesthesiology Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Gengyi Zou
- Medical College, Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuang Gao
- Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenjing Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
222
|
Mardones R, Via AG, Jofré C, Minguell J, Rodriguez C, Tomic A, Salineros M. Cell therapy for cartilage defects of the hip. Muscles Ligaments Tendons J 2016; 6:361-366. [PMID: 28066741 DOI: 10.11138/mltj/2016.6.3.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Chondral injuries are commonly related to poor clinical outcome, but recent data showed some improvements in function and pain after hip arthroscopy. Cell-based therapies represent an appealing alternative strategy for cartilage regeneration, and interesting results have been recently reported after intra-articular injections of mesenchymal stem cells (MSCs). The results of hip arthroscopy for femoroacetabular impingement (FAI) and intra-articular injections of autologous expanded bone marrow - MSCs (BM-MSCs) are reported in this retrospective study. MATERIALS AND METHODS Twenty patients (29 hips) received hip arthroscopy for FAI and focal cartilage injuries or mild to moderate osteoarthrosis (OA). Three intra-articular injections of 20×106 BM-MSCs were injected from 4 to 6 weeks postoperative. The modified Harris Hip score (mHHS), the WOMAC score, the VAIL score and VAS score were administered to all patients. RESULTS The mean age of the patients was 51.8 years, and the mean follow-up was 24 months. The median preoperative mHHS, WOMAC and VAIL scores were 64.3, 73 and 56.5 respectively, and they increased to 91, 97 and 83 at final follow up (p<0.05). The VAS score also improved from a median of 6 to 2. Four patients received a THA (13% of the hips) at the median of 9 months post intervention (range 6-36 months). Six patients referred pain after the injection of MSCs, which improved with oral pain killers. No major complications were reported. CONCLUSION BM-MSCc injections in combination with hip arthroscopy may improve the quality of life and functional score in patient with FAI and cartilage injuries which are still not candidate to a THA. LEVEL OF EVIDENCE IV case series.
Collapse
Affiliation(s)
- Rodrigo Mardones
- Department of Orthopaedic Surgery, Adult Reconstruction Surgery Hip/Knee and Hip Arthroscopy, Santiago de Chile, Chile; Regenerative Cell Therapy Center, Clínica Las Condes, Santiago de Chile, Chile
| | - Alessio Giai Via
- Department of Orthopaedic Surgery, Adult Reconstruction Surgery Hip/Knee and Hip Arthroscopy, Santiago de Chile, Chile
| | - Claudio Jofré
- Regenerative Cell Therapy Center, Clínica Las Condes, Santiago de Chile, Chile
| | - José Minguell
- Regenerative Cell Therapy Center, Clínica Las Condes, Santiago de Chile, Chile
| | - Claudio Rodriguez
- Department of Orthopaedic Surgery, Adult Reconstruction Surgery Hip/Knee and Hip Arthroscopy, Santiago de Chile, Chile
| | - Alexander Tomic
- Department of Orthopaedic Surgery, Adult Reconstruction Surgery Hip/Knee and Hip Arthroscopy, Santiago de Chile, Chile
| | - Matias Salineros
- Department of Orthopaedic Surgery, Adult Reconstruction Surgery Hip/Knee and Hip Arthroscopy, Santiago de Chile, Chile
| |
Collapse
|
223
|
Castagnini F, Pellegrini C, Perazzo L, Vannini F, Buda R. Joint sparing treatments in early ankle osteoarthritis: current procedures and future perspectives. J Exp Orthop 2016; 3:3. [PMID: 26915003 PMCID: PMC4713405 DOI: 10.1186/s40634-016-0038-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
Ankle osteoarthritis (AOA) is a severe pathology, mostly affecting a post-traumatic young population. Arthroscopic debridement, arthrodiastasis, osteotomy are the current joint sparing procedures, but, in the available studies, controversial results were achieved, with better outcomes in case of limited degeneration. Only osteotomy in case of malalignment is universally accepted as a joint sparing procedure in case of partial AOA. Recently, the biological mechanism of osteoarthritis has been intensively studied: it is a whole joint pathology, affecting cartilage, bone and synovial membrane. In particular, the first stage is characterized by a reversible catabolic activity with a state of chondropenia. Thus, biological procedures for early AOA were proposed in order to delay or to avoid end stage procedures. Mesenchymal stem cells (MSCs) may be a good solution to prevent or reverse degeneration, due to their immunomodulatory features (able to control the catabolic joint environment) and their regenerative osteochondral capabilities (able to treat the chondral defects). In fact, MSCs may regulate the cytokine cascade and the metalloproteinases release, restoring the osteochondral tissue as well. After interesting reports of mesenchymal stem cells seeded on scaffold and applied to cartilage defects in non-degenerated joints, bone marrow derived cells transplantation appears to be a promising technique in order to control the degenerative pathway and restore the osteochondral defects.
Collapse
Affiliation(s)
- Francesco Castagnini
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | - Camilla Pellegrini
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Luca Perazzo
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Vannini
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Roberto Buda
- Orthopaedics and Traumatology, I Clinic, Rizzoli Orthopaedic Institute, University of Bologna, Bologna, Italy
| |
Collapse
|
224
|
Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering. Sci Rep 2016; 6:32786. [PMID: 27604951 PMCID: PMC5015060 DOI: 10.1038/srep32786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chondrogenic differentiation potential of human UCB-MSCs (hUCB-MSCs) for cartilage tissue engineering using an approach combining 3D culture in type I/III collagen sponges and chondrogenic factors. Our results showed that UCB-MSCs have a high proliferative capacity. These cells differentiated easily into an osteoblast lineage but not into an adipocyte lineage. Furthermore, BMP-2 and TGF-β1 potentiated chondrogenic differentiation, as revealed by a strong increase in mature chondrocyte-specific mRNA (COL2A1, COL2B, ACAN) and protein (type II collagen) markers. Although growth factors increased the transcription of hypertrophic chondrocyte markers such as COL10A1 and MMP13, the cells present in the neo-tissue maintained their phenotype and did not progress to terminal differentiation and mineralization of the extracellular matrix after subcutaneous implantation in nude mice. Our study demonstrates that our culture model has efficient chondrogenic differentiation, and that hUCB-MSCs can be a reliable source for cartilage tissue engineering.
Collapse
|
225
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
226
|
Gupta V, Tenny KM, Barragan M, Berkland CJ, Detamore MS. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage. J Biomater Appl 2016; 31:328-43. [PMID: 27358376 PMCID: PMC5179140 DOI: 10.1177/0885328216655469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro.
Collapse
Affiliation(s)
- Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, USA
| | - Kevin M Tenny
- Department of Chemical and Petroleum Engineering, University of Kansas, USA
| | | | - Cory J Berkland
- Department of Chemical and Petroleum Engineering, University of Kansas, USA Department of Pharmaceutical Chemistry, University of Kansas, USA
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, USA Department of Chemical and Petroleum Engineering, University of Kansas, USA
| |
Collapse
|
227
|
Chameettachal S, Midha S, Ghosh S. Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs. ACS Biomater Sci Eng 2016; 2:1450-1463. [DOI: 10.1021/acsbiomaterials.6b00152] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shibu Chameettachal
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Swati Midha
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| |
Collapse
|
228
|
Disc-type hyaline cartilage reconstruction using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes and maintenance of its shape and phenotype after transplantation. Tissue Eng Regen Med 2016; 13:352-363. [PMID: 30603417 DOI: 10.1007/s13770-016-9065-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/22/2016] [Indexed: 01/04/2023] Open
Abstract
In this study, we developed the disc-type bio-cartilage reconstruction strategies for transplantable hyaline cartilage for reconstructive surgery using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes. We compared chondrogenesis efficiency between different chondrogenic-induction methods such as micromass culture, pellet culture, and 3D-cell sheet culture. Among them, the 3D-cell sheet culture resulted in the best chondrogenesis with the disc-type bio-cartilage (>12 mm diameter in size) in vitro, but sometimes spontaneous curling and contraction of 3D-cell sheet culture resulted in the formation of bead-type cartilage, which was prevented by type I collagen coating or by culturing on amniotic membrane. Previously, it was reported that tissue-engineered cartilage reconstructed in vitro does not maintain its cartilage phenotype after transplantation but tends to transform to other tissue type such as bone or connective tissue. However, the disc-type bio-cartilage of 3D-cell sheet culture maintained its hyaline cartilage phenotype even after exposure to the osteogenic-induction condition in vitro for 3 weeks or after the transplantation for 4 weeks in mouse subcutaneous. Collectively, the disc-type bio-cartilage with 12 mm diameter can be reproducibly reconstructed by the 3D-cell sheet culture, whose hyaline cartilage phenotype and shape can be maintained under the osteogenic-induction condition as well as after the transplantation. This disc-type bio-cartilage can be proposed for the application to reconstructive surgery and repair of disc-type cartilage such as mandibular cartilage and digits. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-9065-6 and is accessible for authorized users.
Collapse
|
229
|
Costantini M, Idaszek J, Szöke K, Jaroszewicz J, Dentini M, Barbetta A, Brinchmann JE, Święszkowski W. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication 2016; 8:035002. [PMID: 27431574 DOI: 10.1088/1758-5090/8/3/035002] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>10(7) cells ml(-1)), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamide (GelMA), chondroitin sulfate amino ethyl methacrylate (CS-AEMA) and hyaluronic acid methacrylate (HAMA). The polymers were used to prepare three photocurable bioinks with increasing degree of biomimicry: (i) GelMA, (ii) GelMA + CS-AEMA and (iii) GelMA + CS-AEMA + HAMA. Alginate was added to the bioinks as templating agent to form stable fibers during 3D printing. In all cases, bioink solutions were loaded with bone marrow-derived human mesenchymal stem cells (BM-MSCs). After printing, the samples were cultured in expansion (negative control) and chondrogenic media to evaluate the possible differentiating effect exerted by the biomimetic matrix or the synergistic effect of the matrix and chondrogenic supplements. After 7, 14, and 21 days, gene expression of the chondrogenic markers (COL2A1 and aggrecan), marker of osteogenesis (COL1A1) and marker of hypertrophy (COL10A1) were evaluated qualitatively by means of fluorescence immunocytochemistry and quantitatively by means of RT-qPCR. The observed enhanced viability and chondrogenic differentiation of BM-MSCs, as well as high robustness and accuracy of the employed deposition method, make the presented approach a valid candidate for advanced engineering of cartilage tissue.
Collapse
Affiliation(s)
- Marco Costantini
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Poland. Department of Chemistry, Sapienza University of Rome, I-00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Articular cartilage repair: Current needs, methods and research directions. Semin Cell Dev Biol 2016; 62:67-77. [PMID: 27422331 DOI: 10.1016/j.semcdb.2016.07.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
Articular cartilage is a highly specialized tissue whose remarkable properties of deformability, resistance to mechanical loading, and low-friction gliding are essential to joint function. Due to its role as a cushion in bone articulation, articular cartilage is subject to many types of damaging insults, including decades of wear and tear, and acute joint injuries. However, this built-for-life tissue has a very poor intrinsic ability in adulthood to durably heal defects created by damaging insults. Consequently, articular cartilage progressively deteriorates and is eventually eroded, exposing the subchondral bone to the joint space, triggering inflammation and osteophyte development, and generating severe pain and joint incapacitation. The disease is called osteoarthritis (OA) and is today the leading cause of pain and disability in the human population. Researchers and clinicians have worked for decades to develop strategies to treat OA and restore joint function, but they are still far from being able to offer patients effective preventive or restorative treatments. Novel ideas, knowledge and technologies that nurture hope for major new breakthroughs are therefore sought. In this review, we first outline the composition, structure, and functional properties of normal human adult articular cartilage, as a reference for tissue conservation and regenerative strategies. We then describe current options that have been used clinically and in pre-clinical trials to treat osteoarthritic patients, and we discuss the benefits and inadequacies of these treatment options. Next, we review research efforts that are currently ongoing to try and achieve durable repair of functional cartilage tissue. Methods include engineering of tissue implants and we discuss the needs and options for tissue scaffolds, cell sources, and growth and differentiation factors to generate de novo or repair bona fide articular cartilage.
Collapse
|
231
|
Chahla J, LaPrade RF, Mardones R, Huard J, Philippon MJ, Nho S, Mei-Dan O, Pascual-Garrido C. Biological Therapies for Cartilage Lesions in the Hip: A New Horizon. Orthopedics 2016; 39:e715-23. [PMID: 27359284 DOI: 10.3928/01477447-20160623-01] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/01/2016] [Indexed: 02/03/2023]
Abstract
Treatment of hip cartilage disease is challenging, and there is no clear algorithm to address this entity. Biomarkers are arising as promising diagnostic tools because they could play a role in the early assessment of the prearthritic joint and as a prognostic factor before and after treatment. The potential effect of biomarkers may be used to categorize individuals at risk of evolving to severe osteoarthritis, to develop new measures for clinical progression of the disease, and to develop new treatment options for the prevention of osteoarthritis progression. A trend toward a less invasive biological treatment will usher in a new treatment era. With the growth of surgical skills in hip arthroscopy, cartilage restoration techniques are evolving in a fast and exponential manner. Biological and surgical treatments have been proposed to treat these pathologies. Biological treatments include platelet-rich plasma, stem cells or bone marrow aspirate concentration, hyaluronic acid, losartan, and fish oil. Surgical treatments include microfracture alone or augmented, direct repair, autologous chondrocyte implantation, matrix-induced chondrocyte implantation, autologous matrix-induced chondrogenesis, mosaicplasty, osteochondral allograft transplantation, and stem cells implanted in matrix (stem cells in membranes/expanded stem cells). This article reviews new evidence available on treatment options for chondral lesions and early osteoarthritis of the hip. [Orthopedics. 2016; 39(4):e715-e723.].
Collapse
|
232
|
Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Bosch U, Erggelet C, Fickert S, Gebhard H, Gelse K, Günther D, Hoburg A, Kasten P, Kolombe T, Madry H, Marlovits S, Meenen NM, Müller PE, Nöth U, Petersen JP, Pietschmann M, Richter W, Rolauffs B, Rhunau K, Schewe B, Steinert A, Steinwachs MR, Welsch GH, Zinser W, Fritz J. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: A guideline by the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Trauma (DGOU). Knee 2016; 23:426-35. [PMID: 26947215 DOI: 10.1016/j.knee.2016.02.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is an established and well-accepted procedure for the treatment of localised full-thickness cartilage defects of the knee. METHODS The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Trauma (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning therapeutic consequences of primary cartilage lesions and the suitable indication for ACI. RESULTS Based on best available scientific evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than three to four square centimetres; in the case of young and active sports patients at 2.5cm(2), while advanced degenerative joint disease needs to be considered as the most important contraindication. CONCLUSION The present review gives a concise overview on important scientific background and the results of clinical studies and discusses the advantages and disadvantages of ACI. LEVEL OF EVIDENCE Non-systematic Review.
Collapse
Affiliation(s)
- P Niemeyer
- Department Orthopädie und Traumatologie, Universitätsklinikum Freiburg, Germany.
| | - D Albrecht
- Klinik im Kronprinzenbau, Reutlingen, Germany
| | - S Andereya
- Orthopädie und Unfallchirurgie, Ortho AC, Aachen, Germany
| | - P Angele
- Abteilung für Unfallchirurgie, Universitätsklinikum Regensburg, Germany; Sportopaedicum, Straubing, Berlin, Regensburg, München, Germany
| | - A Ateschrang
- Berufsgenossenschaftliche Unfallklinik Tübingen, Germany
| | - M Aurich
- Kliniken Leipziger Land GmbH, Klinikum Borna, Germany
| | - M Baumann
- Kreiskliniken Esslingen, Klinik f. Unfallchirurgie - Orthopädische Chirurgie, Esslingen, Germany
| | - U Bosch
- Zentrum f. Orthopädische Chirurgie, Sporttraumatologie, INI Hannover, Germany
| | - C Erggelet
- Center of Biologie Joint Repair, Zürich, Switzerland
| | - S Fickert
- Sportopaedicum, Straubing, Berlin, Regensburg, München, Germany
| | - H Gebhard
- Abteilung für Unfallchirurgie, Universitätsklinikum Regensburg, Germany
| | - K Gelse
- Abteilung für Unfallchirurgie, Universitätsklinikum Erlangen, Germany
| | - D Günther
- Klinik für Unfallchirurgie, Medizinische Hochschule Hannover (MHH), Germany
| | - A Hoburg
- Universitätsmedizin Berlin-Charite, Klinik für Orthopädie, Unfall u. Wiederherstellungschirurgie, Germany
| | - P Kasten
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - T Kolombe
- Unfallchirurgie/Orthopädie, DRK Krankenhaus Luckenwalde, Germany
| | - H Madry
- Zentrum für Experimentelle Orthopädie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - S Marlovits
- Universitätsklinik für Unfallchirurgie, Medizinische Universität Wien und Austrian Cluster for Tissue Regeneration, Austria
| | - N M Meenen
- Sektion Pädiatrische Sportmedizin, Kinderorthopädie, Altonaer Kinderkrankenhaus Hamburg, Germany
| | - P E Müller
- Orthopädische Klinik, Ludwig-Maximiliams-Universität München, Germany
| | - U Nöth
- Evangelisches Waldkrankenhaus Spandau, Klinik f. Orthopädie und Unfallchirurgie, Berlin, Germany
| | - J P Petersen
- Zentrum f. operative Medizin, Klinik für Unfall-, Hand- u. Wiederherstellungschirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | - M Pietschmann
- Orthopädische Klinik, Ludwig-Maximiliams-Universität München, Germany
| | - W Richter
- Forschungszentrum für Experimentelle Orthopädie, Universitätsklinikum Heidelberg, Germany
| | - B Rolauffs
- Berufsgenossenschaftliche Unfallklinik Tübingen, Germany
| | | | - B Schewe
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - A Steinert
- Orthopädische Klinik, König-Ludwig-Haus, Universität Würzburg, Germany
| | | | | | - W Zinser
- Klinik für Orthopädie und Unfallchirurgie, St. Vinzenz-Hospital Dinslaken, Germany
| | - J Fritz
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| |
Collapse
|
233
|
Hogrebe NJ, Gooch KJ. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self‐assembling peptide hydrogel. J Biomed Mater Res A 2016; 104:2356-68. [DOI: 10.1002/jbm.a.35755] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/12/2022]
Affiliation(s)
| | - Keith J. Gooch
- Department of Biomedical EngineeringThe Ohio State UniversityColumbus Ohio
- The Ohio State University, Davis Heart Lung Research InstituteColumbus Ohio
| |
Collapse
|
234
|
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
|
235
|
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98:1-22. [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
Affiliation(s)
- Brian J Huang
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, USA; Department of Orthopedic Surgery, University of California Davis, USA.
| |
Collapse
|
236
|
Wake S, Yoshitake H, Kayamori K, Izumo T, Harada K. Expression of CD90 decreases with progression of synovial chondromatosis in the temporomandibular joint. Cranio 2016; 34:250-6. [PMID: 26292970 DOI: 10.1179/2151090315y.0000000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The aim of the present study was to investigate the factors that contribute to the progression of synovial chondromatosis in the temporomandibular joint (TMJ). METHODS The authors investigated the expression of CD105 and CD90 in specimens from 17 patients with synovial chondromatosis in the TMJ, using immunohistochemical staining, and expression of CD105 and CD90 in cartilaginous nodules was scored semiquantitatively. RESULTS The expression of CD105 and CD90 was found in almost all the cases. In particular, the expression of CD90 in cartilaginous nodules significantly decreased with the progression of synovial chondromatosis. DISCUSSION The factors that determine progression of synovial chondromatosis are not fully understood. The results of this study suggest that CD90 may play an important role in the progression of synovial chondromatosis in the TMJ.
Collapse
Affiliation(s)
- So Wake
- a Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Japan
| | - Hiroyuki Yoshitake
- a Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Japan
| | - Kou Kayamori
- b Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Japan
| | - Toshiyuki Izumo
- c Department of Diagnostic Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Japan
| | - Kiyoshi Harada
- a Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Japan
| |
Collapse
|
237
|
Mansour JM, Lee Z, Welter JF. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage. Ann Biomed Eng 2016; 44:733-49. [PMID: 26817458 PMCID: PMC4792725 DOI: 10.1007/s10439-015-1535-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue.
Collapse
Affiliation(s)
- Joseph M Mansour
- Departments of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| | - Zhenghong Lee
- Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
238
|
Adipose-Derived Mesenchymal Stem Cells for the Treatment of Articular Cartilage: A Systematic Review on Preclinical and Clinical Evidence. Stem Cells Int 2015; 2015:597652. [PMID: 26240572 PMCID: PMC4512635 DOI: 10.1155/2015/597652] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022] Open
Abstract
Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview of in vivo studies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.
Collapse
|
239
|
Xu S, Liu H, Xie Y, Sang L, Liu J, Chen B. Effect of mesenchymal stromal cells for articular cartilage degeneration treatment: a meta-analysis. Cytotherapy 2015; 17:1342-52. [PMID: 26122717 DOI: 10.1016/j.jcyt.2015.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND AIMS Articular cartilage is an avascular tissue that has limited capacity for self-repair. Mesenchymal stromal cells have been considered as potential candidates for cartilage regeneration. However, clinical results of cartilage formation with the use of these cells need evaluation. We aimed to assess the effect of mesenchymal stromal cell treatment on articular cartilage defects. METHODS We searched PubMed, Embase and the Cochrane Central Register of Controlled Trials with key words including "cartilage," "clinical trial," "mesenchymal," "stromal" and "stem cell" up to December 3, 2014. We selected the controlled trial that used treatment with mesenchymal stromal cells on cartilage injury compared with other treatment. We assessed the results of the meta-analysis by means of the error matrix approach. The outcome measures were ranked as comprehensive evaluation index, highest relevance; unilateral evaluation index, medial relevance; and single evaluation index, lowest relevance. RESULTS Eleven trials assessing 558 patients were included in the meta-analysis. Stem cell treatment significantly improved the American Orthopedic Foot and Ankle Society Scale (Standard Mean Difference, SMD, 0.91; 95% confidence interval [CI], 0.52 to 1.29). The Osteo-Arthritis Outcome Score was also significantly improved in stem cell treatment (SMD, 2.81; 95% CI, 2.02 to 3.60). Other comprehensive evaluation indexes, such as the American Knee Society Knee Score System (SMD -0.12, 95% CI, -1.02 to 0.78), the Hospital for Special Surgery Knee Rating Scale (SMD, 0.24, 95% CI, -0.56 to 1.05) and the International Knee Documentation Committee (SMD, -0.21; 95% CI, -0.77 to 0.34), appeared to have no significant differences by use of stem cell and other treatments. Overall, there was no obvious advantage regarding the application of stem cells to treat cartilage injury, compared with other treatments. CONCLUSIONS In conclusion, assessment of the comprehensive evaluation index indicated that there were no significant differences after stem cell treatment. However, assessment of clinical symptoms and cartilage morphology showed significant improvement after stem cell treatment.
Collapse
Affiliation(s)
- Shuchai Xu
- Department of Traumatic Orthopedics, Ersha Island Branch Hospital, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Hongliang Liu
- Department of Traumatic Orthopedics, Ersha Island Branch Hospital, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuzhou Xie
- Department of Traumatic Orthopedics, Ersha Island Branch Hospital, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Lili Sang
- Department of Traumatic Orthopedics, Ersha Island Branch Hospital, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Traumatic Orthopedics, Ersha Island Branch Hospital, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Bojian Chen
- Department of Traumatic Orthopedics, Ersha Island Branch Hospital, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
240
|
Klumpers DD, Mooney DJ, Smit TH. From Skeletal Development to Tissue Engineering: Lessons from the Micromass Assay. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:427-37. [PMID: 25946390 DOI: 10.1089/ten.teb.2014.0704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Damage and degeneration of the skeletal elements due to disease, trauma, and aging lead to a significant health and economical burden. To reduce this burden, skeletal tissue engineering strategies aim to regenerate functional bone and cartilage in the adult body. However, challenges still exist. Such challenges involve the identification of the external cues that determine differentiation, how to control chondrocyte hypertrophy, and how to achieve specific tissue patterns and boundaries. To address these issues, it could be insightful to look at skeletal development, a robust morphogenetic process that takes place during embryonic development and is commonly modeled in vitro by the micromass assay. In this review, we investigate what the tissue engineering field can learn from this assay. By comparing embryonic skeletal precursor cells from different anatomic locations and developmental stages in micromass, the external cues that guide lineage commitment can be identified. The signaling pathways regulating chondrocyte hypertrophy, and the cues required for tissue patterning, can be elucidated by combining the micromass assay with genetic, molecular, and engineering tools. The lessons from the micromass assay are limited by two major differences between developmental and regenerative skeletogenesis: cell type and scale. We highlight an important difference between embryonic and adult skeletal progenitor cells, in that adult progenitors are not able to form mesenchymal condensations spontaneously. Also, the mechanisms of tissue patterning need to be adjusted to the larger tissue engineering constructs. In conclusion, mechanistic insights of skeletal tissue generation gained from the micromass model could lead to improved tissue engineering strategies and constructs.
Collapse
Affiliation(s)
- Darinka D Klumpers
- 1 School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts.,2 Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts.,3 Department of Orthopedic Surgery, VU University Medical Centre MOVE Research Institute , Amsterdam, The Netherlands
| | - David J Mooney
- 1 School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts.,2 Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts
| | - Theo H Smit
- 3 Department of Orthopedic Surgery, VU University Medical Centre MOVE Research Institute , Amsterdam, The Netherlands
| |
Collapse
|
241
|
Mardones R, Jofré CM, Minguell JJ. Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration. Int J Stem Cells 2015; 8:48-53. [PMID: 26019754 PMCID: PMC4445709 DOI: 10.15283/ijsc.2015.8.1.48] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 01/27/2023] Open
Abstract
Articular cartilage injuries caused by traumatic, mechanical and/or by progressive degeneration result in pain, swelling, subsequent loss of joint function and finally osteoarthritis. Due to the peculiar structure of the tissue (no blood supply), chondrocytes, the unique cellular phenotype in cartilage, receive their nutrition through diffusion from the synovial fluid and this limits their intrinsic capacity for healing. The first cellular avenue explored for cartilage repair involved the in situ transplantation of isolated chondrocytes. Latterly, an improved alternative for the above reparative strategy involved the infusion of mesenchymal stem cells (MSC), which in addition to a self-renewal capacity exhibit a differentiation potential to chondrocytes, as well as a capability to produce a vast array of growth factors, cytokines and extracellular matrix compounds involved in cartilage development. In addition to the above and foremost reparative options up till now in use, other therapeutic options have been developed, comprising the design of biomaterial substrates (scaffolds) capable of sustaining MSC attachment, proliferation and differentiation. The implantation of these engineered platforms, closely to the site of cartilage damage, may well facilitate the initiation of an ‘in situ’ cartilage reparation process. In this mini-review, we examined the timely and conceptual development of several cell-based methods, designed to repair/regenerate a damaged cartilage. In addition to the above described cartilage reparative options, other therapeutic alternatives still in progress are portrayed.
Collapse
Affiliation(s)
- Rodrigo Mardones
- Centro de Traumatología y Ortopedia, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile ; Centro de Terapia Regenerativa Celular, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile
| | - Claudio M Jofré
- Centro de Terapia Regenerativa Celular, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile
| | - José J Minguell
- Centro de Terapia Regenerativa Celular, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile
| |
Collapse
|
242
|
The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials 2015; 62:1-12. [PMID: 26010218 DOI: 10.1016/j.biomaterials.2015.05.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 01/16/2023]
Abstract
Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues fall into common microwells. Herein we describe the first microwell platform that incorporates a mesh to retain microtissues within discrete microwells; the microwell-mesh. We show that bonding a nylon mesh with an appropriate pore size over the microwell openings allows single cells to pass through the mesh into the microwells during the seeding process, but subsequently retains assembled microtissues within discrete microwells. To demonstrate the utility of this platform, we used the microwell-mesh to manufacture hundreds of cartilage microtissues, each formed from 5 × 10(3) bone marrow-derived mesenchymal stem/stromal cells (MSC). The microwell-mesh enabled reliable microtissue retention over 21-day cultures that included multiple full medium exchanges. Cartilage-like matrix formation was more rapid and homogeneous in microtissues than in conventional large diameter control cartilage pellets formed from 2 × 10(5) MSC each. The microwell-mesh platform offers an elegant mechanism to retain microtissues in microwells, and we believe that this improvement will make this platform useful in 3D culture protocols that require multiple medium exchanges, such as those that mimic specific developmental processes or complex sequential drug exposures.
Collapse
|
243
|
Long-term expandable SOX9+ chondrogenic ectomesenchymal cells from human pluripotent stem cells. Stem Cell Reports 2015; 4:712-26. [PMID: 25818812 PMCID: PMC4400647 DOI: 10.1016/j.stemcr.2015.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Here we report the successful generation and long-term expansion of SOX9-expressing CD271+PDGFRα+CD73+ chondrogenic ectomesenchymal cells from the PAX3/SOX10/FOXD3-expressing MIXL1−CD271hiPDGFRαloCD73− neural crest-like progeny of human pluripotent stem cells in a chemically defined medium supplemented with Nodal/Activin/transforming growth factorβ (TGFβ) inhibitor and fibroblast growth factor (FGF). When “primed” with TGFβ, such cells efficiently formed translucent cartilage particles, which were completely mineralized in 12 weeks in immunocompromized mice. The ectomesenchymal cells were expandable without loss of chondrogenic potential for at least 16 passages. They maintained normal karyotype for at least 10 passages and expressed genes representing embryonic progenitors (SOX4/12, LIN28A/B), cranial mesenchyme (ALX1/3/4), and chondroprogenitors (SOX9, COL2A1) of neural crest origin (SOX8/9, NGFR, NES). Ectomesenchyme is a source of many craniofacial bone and cartilage structures. The method we describe for obtaining a large quantity of human ectomesenchymal cells will help to model craniofacial disorders in vitro and potentially provide cells for the repair of craniofacial damage. Generation of SOX9+ chondrogenic ectomesenchymal cells from hPSCs Long-term expandability of the cells without loss of in vitro chondrogenicity Need for TGFβ priming for cartilage particle formation In vivo ossification capacity of cartilage developed in vitro
Collapse
|
244
|
Zhang L, Su XS, Ye JS, Wang YY, Guan Z, Yin YF. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther 2015; 6:45. [PMID: 25889932 PMCID: PMC4425902 DOI: 10.1186/s13287-015-0039-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Bone marrow mesenchymal stem cells (BMSCs) have been studied extensively because of their potential use in clinical therapy, regenerative medicine, and tissue engineering. However, their application in tumor therapy remains yet in preclinical stage because of the distinct results from different researches and vagueness of their functional mechanism. In this study, the influence of BMSCs on tumor growth was observed and the potential mechanism was investigated. Method Two animal models, H22 ascitogenous hepatoma in BALb/c mouse and B16-F10 pulmonary metastatic melanoma in C57 mouse, were adopted in experience in vivo and treated with BMSCs by intravenous injection. The percentage of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSCs) and IFN-γ+ T cells were observed in peripheral blood (PB) and bone marrow (BM) by Flow Cytometry. BMSCs were co-cultured in vitro with tumor cells and MDSCs in a tumor conditioned medium separately in order to illustrate the mechanism. Results Our results demonstrated that BMSCs treatment caused a delayed tumor growth and a prolonged survival in both tumor models, the homing fraction of BMSCs in BM was 2% - 5% in 24–72 hours after transfusion and the percentage of Gr-1+CD11b+ MDSCs was downregulated in peripheral blood and BM. Meanwhile, IFN-γ+ T lymphocytes in PB increased. In vitro co-culture showed that BMSCs inhibited the induction and proliferation of MDSCs in tumor conditioned medium, whereas they didn’t affect the proliferation of B16-F10 and H22 cells by in vitro co-culture. Both in vivo and in vitro results showed that BMSCs have a systemic suppressive effect on MDSCs. Conclusion Our data suggest that BMSCs has suppressive effect on tumor and is feasible to be applied in cancer treatment. BMSCs inhibiting MDSCs induction and proliferation is likely one of the mechanism.
Collapse
Affiliation(s)
- Lei Zhang
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, 504 Qing Nian Road, Kunming, Yunnan, 650011, PR China.
| | - Xiao San Su
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, 504 Qing Nian Road, Kunming, Yunnan, 650011, PR China.
| | - Jun Song Ye
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, 504 Qing Nian Road, Kunming, Yunnan, 650011, PR China.
| | - Yi Yin Wang
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, 504 Qing Nian Road, Kunming, Yunnan, 650011, PR China.
| | - Zheng Guan
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, 504 Qing Nian Road, Kunming, Yunnan, 650011, PR China.
| | - Yan Feng Yin
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, 504 Qing Nian Road, Kunming, Yunnan, 650011, PR China.
| |
Collapse
|
245
|
Caldwell KL, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthritis Cartilage 2015; 23:351-62. [PMID: 25450846 PMCID: PMC4339504 DOI: 10.1016/j.joca.2014.11.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/02/2014] [Accepted: 11/01/2014] [Indexed: 02/02/2023]
Abstract
Clinical efforts to repair damaged articular cartilage (AC) currently face major obstacles due to limited intrinsic repair capacity of the tissue and unsuccessful biological interventions. This highlights a need for better therapeutic strategies. This review summarizes the recent advances in the field of cell-based AC repair. In both animals and humans, AC defects that penetrate into the subchondral bone marrow are mainly filled with fibrocartilaginous tissue through the differentiation of bone marrow mesenchymal stem cells (MSCs), followed by degeneration of repaired cartilage and osteoarthritis (OA). Cell therapy and tissue engineering techniques using culture-expanded chondrocytes, bone marrow MSCs, or pluripotent stem cells with chondroinductive growth factors may generate cartilaginous tissue in AC defects but do not form hyaline cartilage-based articular surface because repair cells often lose chondrogenic activity or result in chondrocyte hypertrophy. The new evidence that AC and synovium develop from the same pool of precursors with similar gene profiles and that synovium-derived chondrocytes have stable chondrogenic activity has promoted use of synovium as a new cell source for AC repair. The recent finding that NFAT1 and NFAT2 transcription factors (TFs) inhibit chondrocyte hypertrophy and maintain metabolic balance in AC is a significant advance in the field of AC repair. The use of synovial MSCs and discovery of upstream transcriptional regulators that help maintain the AC phenotype have opened new avenues to improve the outcome of AC regeneration.
Collapse
Affiliation(s)
| | - Jinxi Wang
- Corresponding Author: Jinxi Wang, Address: University of Kansas Medical Center, Department of Orthopedic Surgery, 3901 Rainbow Blvd., Mail Stop 3017, Kansas City, KS 66160, USA, Phone: +1 913-588-0870, Fax: +1 913-945-7773,
| |
Collapse
|
246
|
Youngstrom DW, Cakstina I, Jakobsons E. Cartilage-derived extracellular matrix extract promotes chondrocytic phenotype in three-dimensional tissue culture. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1040-7. [PMID: 25707441 DOI: 10.3109/21691401.2015.1014091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell transplantation is a promising regenerative therapy for cartilage degeneration. However, obtaining sufficient numbers of cells for this purpose is a challenge, due a lack of autologous donor tissue and the difficulty of culturing chondrocytes in vitro. Tissue engineering strategies that induce or maintain chondrocytic phenotype may solve these problems by (1) broadening the range of available donor tissue, and (2) facilitating the expansion of these cells while controlling phenotypic drift. In this study, bone marrow-derived mesenchymal stem cells (MSCs) and cartilage-derived cells (CDCs) were cultured on composite hydrogels containing agarose and homogenized cartilage extracellular matrix (ECM). MSCs cultured on agarose-ECM scaffolds did not show significant signs of chondrogenic differentiation in the absence of additional cues. However, CDCs cultured on agarose-ECM scaffolds proliferated more rapidly than their ECM-free counterparts and MSCs, while retaining chondrocytic morphology. These results were corroborated via expression of cartilage marker genes: in autologous constructs, SOX 9 expression was upregulated by 12.6 ± 5.3-fold, and COL II was upregulated by 2.0 ± 0.3-fold. Agarose-ECM composite hydrogels are therefore useful for expanding partially differentiated CDCs for applications in regenerative medicine.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center, Virginia Tech , Old Waterford Road, Leesburg , Virginia , USA
| | - Inese Cakstina
- b Cell Transplantation Centre, Pauls Stradins Clinical University Hospital , Riga , Latvia
| | - Eriks Jakobsons
- b Cell Transplantation Centre, Pauls Stradins Clinical University Hospital , Riga , Latvia
| |
Collapse
|
247
|
Abstract
Adult mesenchymal stem cells (MSCs) were previously described as multipotent cells that could differentiate into bone, cartilage, muscle, and other mesenchymal tissues. New information suggests that MSCs can be found in every tissue of the body because they function as perivascular cells--pericytes--found outside all blood vessels. When these vessels break or are inflamed, pericytes are detached and form MSCs, which are activated by their local microenvironment of injury. Such MSCs function to secrete powerful immune-modulatory and regenerative agents; more than 450 clinical trials are now ongoing, covering a huge spectrum of clinical conditions. How such activated MSCs affect menstrual cycle, menopause, or osteotrophic cancers has only recently been studied. This article outlines these issues and challenges the scientific and medical community to use this newfound knowledge to uncover new clinical logics and medial solutions for women.
Collapse
Affiliation(s)
- Arnold I Caplan
- From the Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
248
|
Abstract
Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort.
Collapse
Affiliation(s)
- Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| |
Collapse
|
249
|
Li S, Sengers BG, Oreffo ROC, Tare RS. Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study. J Biomater Appl 2014; 29:824-36. [PMID: 25145989 PMCID: PMC4274334 DOI: 10.1177/0885328214548604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regenerative medicine strategies have increasingly focused on skeletal stem cells (SSCs), in response to concerns such as donor site morbidity, dedifferentiation and limited lifespan associated with the use of articular chondrocytes for cartilage repair. The suitability of SSCs for cartilage regeneration, however, remains to be fully determined. This study has examined the chondrogenic potential of human STRO-1-immunoselected SSCs (STRO-1+ SSCs), in comparison to human articular chondrocytes (HACs), by utilising two bioengineering strategies, namely “scaffold-free” three-dimensional (3-D) pellet culture and culture using commercially available, highly porous, 3-D scaffolds with interconnected pore networks. STRO-1+ SSCs were isolated by magnetic-activated cell sorting from bone marrow samples of haematologically normal osteoarthritic individuals following routine hip replacement procedures. Chondrocytes were isolated by sequential enzymatic digestion of deep zone articular cartilage pieces dissected from femoral heads of the same individuals. After expansion in monolayer cultures, the harvested cell populations were centrifuged to form high-density 3-D pellets and also seeded in the 3-D scaffold membranes, followed by culture in serum-free chondrogenic media under static conditions for 21 and 28 days, respectively. Chondrogenic differentiation was determined by gene expression, histological and immunohistochemical analyses. Robust cartilage formation and expression of hyaline cartilage-specific markers were observed in both day-21 pellets and day-28 explants generated using HACs. In comparison, STRO-1+ SSCs demonstrated significantly lower chondrogenic differentiation potential and a tendency for hypertrophic differentiation in day-21 pellets. Culture of STRO-1+ SSCs in the 3-D scaffolds improved the expression of hyaline cartilage-specific markers in day-28 explants, however, was unable to prevent hypertrophic differentiation of the SSC population. The advantages of application of SSCs in tissue engineering are widely recognised; the results of this study, however, highlight the need for further development of cell culture protocols that may otherwise limit the application of this stem cell population in cartilage bioengineering strategies.
Collapse
Affiliation(s)
- Siwei Li
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Bram G Sengers
- Faculty of Engineering and the Environment, Bioengineering Science, University of Southampton, Southampton, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK Faculty of Engineering and the Environment, Bioengineering Science, University of Southampton, Southampton, UK
| |
Collapse
|