201
|
Zhou X, Zhang C, Wu X, Hu X, Zhang Y, Wang X, Zheng L, Gao P, Du J, Zheng W, Shang H, Hu K, Jiang Z, Nie Y, Hu S, Xiao RP, Zhu X, Xiong JW. Dusp6 deficiency attenuates neutrophil-mediated cardiac damage in the acute inflammatory phase of myocardial infarction. Nat Commun 2022; 13:6672. [PMID: 36335128 PMCID: PMC9637103 DOI: 10.1038/s41467-022-33631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Dual-specificity phosphatase 6 (DUSP6) serves a specific and conserved function on the dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). We previously identified Dusp6 as a regenerative repressor during zebrafish heart regeneration, therefore we propose to investigate the role of this repressor in mammalian cardiac repair. Utilizing a rat strain harboring Dusp6 nonsense mutation, rat neutrophil-cardiomyocyte co-culture, bone marrow transplanted rats and neutrophil-specific Dusp6 knockout mice, we find that Dusp6 deficiency improves cardiac outcomes by predominantly attenuating neutrophil-mediated myocardial damage in acute inflammatory phase after myocardial infarction. Mechanistically, Dusp6 is transcriptionally activated by p38-C/EBPβ signaling and acts as an effector for maintaining p-p38 activity by down-regulating pERK and p38-targeting phosphatases DUSP1/DUSP16. Our findings provide robust animal models and novel insights for neutrophil-mediated cardiac damage and demonstrate the potential of DUSP6 as a therapeutic target for post-MI cardiac remodeling and other relevant inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohai Zhou
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Chenyang Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xueying Wu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xinli Hu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Yan Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xuelian Wang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Lixia Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Peng Gao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Jianyong Du
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Wen Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Haibao Shang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Keping Hu
- grid.506261.60000 0001 0706 7839Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Zhengfan Jiang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yu Nie
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Shengshou Hu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Rui-Ping Xiao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xiaojun Zhu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Jing-Wei Xiong
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| |
Collapse
|
202
|
A unique Smith-Magenis patient with a de novo intragenic deletion on the maternally inherited overexpressed RAI1 allele. Eur J Hum Genet 2022; 30:1233-1238. [PMID: 35821519 PMCID: PMC9626456 DOI: 10.1038/s41431-022-01143-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/01/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
RAI1 is a dosage-sensitive gene whose decreased or increased expression by recurrent and non-recurrent 17p11.2 deletions or duplications causes Smith-Magenis (SMS) or Potocki-Lupski syndromes (PTLS), respectively. Here we report on a 21-year-old female patient showing SMS phenotype who was found to carry a 3.4 kb de novo intragenic RAI1 deletion. Interestingly, a significant increase in RAI1 transcript levels was identified in the patient's, brother's and mother's peripheral blood cells. Allele-specific dosage analysis revealed that the patient's maternally inherited overexpressed RAI1 allele harbors the intragenic deletion, confirming the SMS diagnosis due to the presence of a single wild-type RAI1 functional allele. The mother and brother do not present any PTLS neurologic/behavioral clinical features. Extensive sequencing of RAI1 promoter and predicted regulatory regions showed no potential causative variants accounting for gene overexpression. However, the mother and both children share a novel private missense variant in RAI1 exon 3, currently classified as a VUS (uncertain significance), though predicted by two bioinformatic tools to disrupt the binding site of one specific transcription factor. The reported familial case, the second showing RAI1 overexpression in the absence of RAI1 duplication, may help to understand the regulation of RAI1 dosage sensitivity although its phenotypic effect remains to be determined.
Collapse
|
203
|
A 5′ UTR Mutation Contributes to Down-Regulation of Bbs7 in the Berlin Fat Mouse. Int J Mol Sci 2022; 23:ijms232113018. [PMID: 36361806 PMCID: PMC9658298 DOI: 10.3390/ijms232113018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
The Bardet–Biedl Syndrome 7 (Bbs7) gene was identified as the most likely candidate gene causing juvenile obesity in the Berlin Fat Mouse Inbred (BFMI) line. Bbs7 expression is significantly lower in the brain, adipose tissue, and liver of BFMI mice compared to lean C57BL/6NCrl (B6N) mice. A DNA sequence comparison between BFMI and B6N revealed 16 sequence variants in the Bbs7 promoter region. Here, we tested if these mutations contribute to the observed differential expression of Bbs7. In a cell-based dual-luciferase assay, we compared the effects of the BFMI and the B6N haplotypes of different regions of the Bbs7 promotor on the reporter gene expression. A single-nucleotide polymorphism (SNP) was identified causing a significant reduction in the reporter gene expression. This SNP (rs29947545) is located in the 5′ UTR of Bbs7 at Chr3:36.613.350. The SNP is not unique to BFMI mice but also occurs in several other mouse strains, where the BFMI allele is not associated with lower Bbs7 transcript amounts. Thus, we suggest a compensatory mutation in the other mouse strains that keeps Bbs7 expression at the normal level. This compensatory mechanism is missing in BFMI mice and the cell lines tested.
Collapse
|
204
|
Tkatch T, Rysevaite-Kyguoliene K, Sabeckis I, Sabeckiene D, Pauza DH, Baranauskas G. An efficient rAAV vector for protein expression in cortical parvalbumin expressing interneurons. Sci Rep 2022; 12:17851. [PMID: 36284123 PMCID: PMC9596399 DOI: 10.1038/s41598-022-21867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/04/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAV) are extensively used in both research and clinical applications. Despite significant advances, there is a lack of short promoters able to drive the expression of virus delivered genes in specific classes of neurons. We designed an efficient rAAV vector suitable for the rAAV-mediated gene expression in cortical interneurons, mainly in the parvalbumin expressing cells. The vector includes a short parvalbumin promoter and a specialized poly(A) sequence. The degree of conservation of the parvalbumin gene adjoining non-coding regions was used in both the promoter design and the selection of the poly(A) sequence. The specificity was established by co-localizing the fluorescence of the virus delivered eGFP and the antibody for a neuronal marker. rAAV particles were injected in the visual cortex area V1/V2 of adult rats (2-4 months old). Neurons expressing the virus delivered eGFP were mainly positive for interneuronal markers: 66.5 ± 2.8% for parvalbumin, 14.6 ± 2.4% for somatostatin, 7.1 ± 1.2% for vasoactive intestinal peptide, 2.8 ± 0.6% for cholecystokinin. Meanwhile, only 2.1 ± 0.5% were positive for CaMKII, a marker for principal cells in the cortex. The efficiency of the construct was verified by optogenetic experiments: the expression of the virus delivered ChR2 channels was sufficient to evoke by blue light laser high frequency bursts of action potentials in putative fast spiking neurons. We conclude that our promoter allows highly specific expression of the rAAV delivered cDNAs in cortical interneurons with a strong preference for the parvalbumin positive cells.
Collapse
Affiliation(s)
- Tatiana Tkatch
- grid.45083.3a0000 0004 0432 6841Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania ,grid.16753.360000 0001 2299 3507Present Address: Department of Physiology, Northwestern University, Chicago, IL USA
| | | | - Ignas Sabeckis
- grid.45083.3a0000 0004 0432 6841Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Deimante Sabeckiene
- grid.45083.3a0000 0004 0432 6841Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H. Pauza
- grid.45083.3a0000 0004 0432 6841Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gytis Baranauskas
- grid.45083.3a0000 0004 0432 6841Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
205
|
Stachowiak M, Szczerbal I, Nowacka-Woszuk J, Nowak T, Sowinska N, Lukomska A, Gogulski M, Badura M, Sklorz-Mencel K, Jagodka D, Nizanski W, Dzimira S, Switonski M. Cytogenetic and molecular insight into the genetic background of disorders of sex development in seventeen cats. Sci Rep 2022; 12:17807. [PMID: 36280698 PMCID: PMC9592617 DOI: 10.1038/s41598-022-21718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 01/19/2023] Open
Abstract
The genetic background of feline disorders of sex development (DSDs) is poorly understood. We performed comprehensive cytogenetic, molecular, and histological studies of 17 cats with abnormal external genitalia, unusual behavior, or tricolor coats (atypical in males). The DSD phenotype of three cats was associated with sex chromosome abnormalities: X/Y translocation (38,XXSRY+), 37,X/38,XY mosaicism, and XX/XY leukocyte chimerism. The remaining 14 affected cats were classified as XY DSD (SRY-positive). In this group and 38 normal males, we analyzed a priori selected candidate genes (SRY, TAC3, CYP11B1 and LHCGR). Only a previously reported nonpathogenic variant was found in SRY. Moreover, SRY gene copy number was determined, and three variants were observed: 6, 5 (modal), and 4 copies in a single DSD case. The known variants in TAC3 and CYP11B1, responsible for testicular hypoplasia, persistent primary dentition or congenital adrenal hyperplasia, were not found in the study group. Nine novel polymorphisms were identified in the LHCGR gene, one of which, a potentially regulatory indel variant in 5'UTR, was significantly associated (p = 0.0467) with XY DSD. Our report confirmed that abnormalities of sex chromosomes are important causes of feline DSDs. We also showed that the indel variant of LHCGR can be considered a promising marker associated with XY DSD phenotype.
Collapse
Affiliation(s)
- Monika Stachowiak
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Izabela Szczerbal
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Joanna Nowacka-Woszuk
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tomasz Nowak
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Natalia Sowinska
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Anna Lukomska
- grid.410688.30000 0001 2157 4669Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland
| | - Maciej Gogulski
- grid.410688.30000 0001 2157 4669Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland ,grid.424906.d0000 0000 9858 6214Centre of Biosciences, Institute of Animal Physiology, Kosice, Slovakia ,grid.410688.30000 0001 2157 4669University Centre for Veterinary Medicine, Poznan University of Life Sciences, Poznan, Poland
| | - Malgorzata Badura
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | | | | | - Wojciech Nizanski
- grid.411200.60000 0001 0694 6014Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Stanislaw Dzimira
- grid.411200.60000 0001 0694 6014Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Marek Switonski
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| |
Collapse
|
206
|
Pierron F, Heroin D, Daffe G, Daramy F, Barré A, Bouchez O, Romero-Ramirez A, Gonzalez P, Nikolski M. Genetic and epigenetic interplay allows rapid transgenerational adaptation to metal pollution in zebrafish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac022. [PMID: 36474803 PMCID: PMC9716877 DOI: 10.1093/eep/dvac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Despite still being a matter of debate, there is growing evidence that pollutant-induced epigenetic changes can be propagated across generations. Whereas such modifications could have long-lasting effects on organisms and even on population, environmentally relevant data from long-term exposure combined with follow-up through multiple generations remain scarce for non-mammalian species. We performed a transgenerational experiment comprising four successive generations of zebrafish. Only fish from the first generation were exposed to an environmentally realistic concentration of cadmium (Cd). Using a whole methylome analysis, we first identified the DNA regions that were differentially methylated in response to Cd exposure and common to fish of the first two generations. Among them, we then focused our investigations on the exon 3 (ex3) of the cep19 gene. We indeed recorded transgenerational growth disorders in Cd-exposed fish, and a mutation in this exon is known to cause morbid obesity in mammals. Its methylation level was thus determined in zebrafish from all the four generations by means of a targeted and base resolution method. We observed a transgenerational inheritance of Cd-induced DNA methylation changes up to the fourth generation. However, these changes were closely associated with genetic variations, mainly a single nucleotide polymorphism. This single nucleotide polymorphism was itself at the origin of the creation or deletion of a methylation site and deeply impacted the methylation level of neighboring methylation sites. Cd-induced epigenetic changes were associated with different mRNA transcripts and an improved condition of Cd fish. Our results emphasize a tight relationship between genetic and epigenetic mechanisms and suggest that their interplay and pre-existing diversity can allow rapid adaptation to anthropogenic environmental changes.
Collapse
Affiliation(s)
- Fabien Pierron
- *Correspondence address. UMR 5805 EPOC – OASU, Station Marine d’Arcachon, Université de Bordeaux, Place du Docteur Bertrand Peyneau, Arcachon 33120, France. Tel: +335 56 22 39 33; Fax: +335 40 70 85 04; E-mail:
| | - Débora Heroin
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - Guillemine Daffe
- University of Bordeaux, CNRS, INRAE, La Rochelle University, UMS 2567 POREA, Pessac 33615, France
| | - Flore Daramy
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - Aurélien Barré
- University of Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, 33076, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan 31326, France
| | | | - Patrice Gonzalez
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - Macha Nikolski
- University of Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, 33076, France
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux 33077, France
| |
Collapse
|
207
|
Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules. Sci Rep 2022; 12:17588. [PMID: 36266399 PMCID: PMC9584888 DOI: 10.1038/s41598-022-21732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/30/2022] [Indexed: 01/13/2023] Open
Abstract
Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one's own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA-protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations ( https://bioinfo-wuerz.de/aimodules/ ; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules ). The application is free and open source whether used online, on-site, or locally.
Collapse
|
208
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
209
|
Tang XY, Xiong YL, Zhao YB, Yang J, Shi AP, Zheng KF, Liu YJ, Shu C, Jiang T, Ma N, Zhao JB. Dual immunological and proliferative regulation of immune checkpoint FGL1 in lung adenocarcinoma: The pivotal role of the YY1–FGL1–MYH9 axis. Front Immunol 2022; 13:1014053. [PMID: 36268014 PMCID: PMC9577086 DOI: 10.3389/fimmu.2022.1014053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rational Lung cancer is the most common tumor worldwide, with the highest mortality rate and second highest incidence. Immunotherapy is one of the most important treatments for lung adenocarcinoma (LUAD); however, it has relatively low response rate and high incidence of adverse events. Herein, we explored the therapeutic potential of fibrinogen-like protein 1 (FGL1) for LUAD. Methods Data from GEPIA and ACLBI databases were assessed to explore gene–gene correlations and tumor immune infiltration patterns. A total of 200 patients with LUAD were recruited. FGL1 levels in the serum and cellular supernatant were determined by enzyme-linked immunosorbent assay. In vitro and in vivo experiments were performed to assess the effect FGL1 on the proliferation of LUAD cells. Cocultures were performed to explore the effect of FGL1 knockdown in lung cancer cells on T cells, concerning cytokine secretion and viability. PROMO and hTFtarget databases were used for transcription factor prediction. Quantitative polymerase chain reaction (qPCR), chromatin immunoprecipitation, and dual luciferase reporter assays were performed to validate the identified transcription factor of FGL1. Immunoprecipitation, mass spectrometry and gene ontology analysis were performed to explore the downstream partners of FGL1. Results FGL1 expression in LUAD was positively associated with PDL1, but not for PD1 expression. Moreover, FGL1 was positively associated with the CD3D expression and negatively associated with FOXP3, S100A9, and TPSB2 within the tumor site. FGL1 promotes the secretion of interleukin-2 by T cells in vitro, simultaneously inducing their apoptosis. Indeed, YY1 is the upstream molecule of FGL1 was found to be transcriptionally regulated by YY1 and to directly by to MYH9 to promote the proliferation of LUAD cells in vitro and in vivo. Conclusions FGL1 is involved in the immunological and proliferative regulation of LUAD cells by controlling the secretion of important immune-related cytokines via the YY1–FGL1–MYH9 axis. Hence, targeting FGL1 in LUAD may pave the way for the development of new immunotherapies for tackling this malignancy.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ya-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jie Yang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - An-Ping Shi
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chen Shu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jin-Bo Zhao, ; Nan Ma, ; Tao Jiang,
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jin-Bo Zhao, ; Nan Ma, ; Tao Jiang,
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jin-Bo Zhao, ; Nan Ma, ; Tao Jiang,
| |
Collapse
|
210
|
Dominkuš PP, Mesic A, Hudler P. PLK2 Single Nucleotide Variant in Gastric Cancer Patients Affects miR-23b-5p Binding. J Gastric Cancer 2022; 22:348-368. [PMID: 36316110 PMCID: PMC9633926 DOI: 10.5230/jgc.2022.22.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Chromosomal instability is a hallmark of gastric cancer (GC). It can be driven by single nucleotide variants (SNVs) in cell cycle genes. We investigated the associations between SNVs in candidate genes, PLK2, PLK3, and ATM, and GC risk and clinicopathological features. MATERIALS AND METHODS The genotyping study included 542 patients with GC and healthy controls. Generalized linear models were used for the risk and clinicopathological association analyses. Survival analysis was performed using the Kaplan-Meier method. The binding of candidate miRs was analyzed using a luciferase reporter assay. RESULTS The PLK2 Crs15009-Crs963615 haplotype was under-represented in the GC group compared to that in the control group (Pcorr=0.050). Male patients with the PLK2 rs963615 CT genotype had a lower risk of GC, whereas female patients had a higher risk (P=0.023; P=0.026). The PLK2 rs963615 CT genotype was associated with the absence of vascular invasion (P=0.012). The PLK3 rs12404160 AA genotype was associated with a higher risk of GC in the male population (P=0.015). The ATM Trs228589-Ars189037-Grs4585 haplotype was associated with a higher risk of GC (P<0.001). The ATM rs228589, rs189037, and rs4585 genotypes TA+AA, AG+GG, and TG+GG were associated with the absence of perineural invasion (P=0.034). In vitro analysis showed that the cancer-associated miR-23b-5p mimic specifically bound to the PLK2 rs15009 G allele (P=0.0097). Moreover, low miR-23b expression predicted longer 10-year survival (P=0.0066) in patients with GC. CONCLUSIONS PLK2, PLK3, and ATM SNVs could potentially be helpful for the prediction of GC risk and clinicopathological features. PLK2 rs15009 affects the binding of miR-23b-5p. MiR-23b-5p expression status could serve as a prognostic marker for survival in patients with GC.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Ljubljana, Slovenia
| | - Aner Mesic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Petra Hudler
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Ljubljana, Slovenia.
| |
Collapse
|
211
|
Xiang R, Liu Y, Fan L, Jiang B, Wang F. RNA adenosine deaminase (ADAR1) alleviates high-fat diet-induced nonalcoholic fatty liver disease by inhibiting NLRP3 inflammasome. J Transl Med 2022; 102:1088-1100. [PMID: 36775349 DOI: 10.1038/s41374-022-00805-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic inflammatory disease in which nucleotide-binding domain of leucine-rich repeat protein 3 (NLRP3) inflammasome plays an important role. The present research was aimed to explore the protective function of ADAR1, an RNA editing enzyme, against inflammatory damages in high-fat diet (HFD)-induced NAFLD through inhibiting NLRP3 inflammasome and subsequent inflammation. A total of 30 patients with NAFLD were investigated, and ADAR1 mRNA expression in peripheral blood monocytes surveyed. The in vivo study used lentivirus to explore the function of ADAR1 overexpression in the HFD-induced mouse model of NAFLD. The in vitro study used lentivirus and siRNA to explore the function of ADAR1 on the NLRP3 inflammasome activation in THP-1 cells. Results shown that the ADAR1 expression was upregulated in NAFLD patients in comparison to healthy controls. In vivo, the upregulation of ADAR1 impaired NLRP3 inflammasome activation and alleviated liver disease in HFD mice in comparison to the control group. Moreover, ADAR1 overexpression attenuated NLRP3 inflammasome in lipopolysaccharide (LPS)+ palmitic acid (PA)-induced THP-1 cells, while ADAR1 knockdown increased the NLRP3 inflammasome activation. Furthermore, we speculated that c-Jun may participate in ADAR1's inhibition of NLRP3 inflammasome. Our results suggested that ADAR1 is a potential treatment target for NAFLD via regulating the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Rong Xiang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Yuxing Liu
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Boyue Jiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Fang Wang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China. .,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
212
|
Nayara Góes de Araújo J, Fernandes de Oliveira V, Bassani Borges J, Dagli-Hernandez C, da Silva Rodrigues Marçal E, Caroline Costa de Freitas R, Medeiros Bastos G, Marques Gonçalves R, Arpad Faludi A, Elim Jannes C, da Costa Pereira A, Dominguez Crespo Hirata R, Hiroyuki Hirata M, Ducati Luchessi A, Nogueira Silbiger V. In silico analysis of upstream variants in Brazilian patients with Familial Hypercholesterolemia. Gene X 2022; 849:146908. [PMID: 36167182 DOI: 10.1016/j.gene.2022.146908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a prevalent autosomal genetic disease associated with increased risk of early cardiovascular events and death due to chronic exposure to very high levels of low-density lipoprotein cholesterol (LDL-c). Pathogenic variants in the coding regions of LDLR, APOB and PCSK9 account for most FH cases, and variants in non-coding regions maybe involved in FH as well. Variants in the upstream region of LDLR, APOB and PCSK9 were screened by targeted next-generation sequencing and their effects were explored using in silico tools. Twenty-five patients without pathogenic variants in FH-related genes were selected. 3 kb upstream regions of LDLR, APOB and PCSK9 were sequenced using the AmpliSeq (Illumina) and Miseq Reagent Nano Kit v2 (Illumina). Sequencing data were analyzed using variant discovery and functional annotation tools. Potentially regulatory variants were selected by integrating data from public databases, published data and context-dependent regulatory prediction score. Thirty-four single nucleotide variants (SNVs) in upstream regions were identified (6 in LDLR, 15 in APOB, and 13 in PCSK9). Five SNVs were prioritized as potentially regulatory variants (rs934197, rs9282606, rs36218923, rs538300761, g.55038486A>G). APOB rs934197 was previously associated with increased rate of transcription, which in silico analysis suggests that could be due to reducing binding affinity of a transcriptional repressor. Our findings highlight the importance of variant screening outside of coding regions of all relevant genes. Further functional studies are necessary to confirm that prioritized variants could impact gene regulation and contribute to the FH phenotype.
Collapse
Affiliation(s)
- Jéssica Nayara Góes de Araújo
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil; Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | | | - André Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Cinthia Elim Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo 05403-900, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo 05403-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - André Ducati Luchessi
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Vivian Nogueira Silbiger
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| |
Collapse
|
213
|
Potential Involvement of ewsr1-w Gene in Ovarian Development of Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2022; 12:ani12192503. [PMID: 36230245 PMCID: PMC9559465 DOI: 10.3390/ani12192503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Sexual dimorphism is a phenomenon commonly existing in animals. Chinese tongue sole Cynoglossus semilaevis is an economical marine fish with obvious female-biased size dimorphism. So, it is important to explore the molecular mechanism beyond gonadal development for sex control in aquaculture industry. RNA-binding protein Ewing Sarcoma protein-like (ewsr1) gene is important for mouse gonadal development and reproduction, however there are limited studies on this gene in teleost. In this study, two ewsr1 genes were cloned and characterized from C. semilaevis. The ewsr1-w gene, located in W chromosomes, showed female-biased expression during C. semilaevis gonadal development. In addition, knock-down effect and transcriptional regulation of Cs-ewsr1-w further suggested its essential role in ovarian development. This study broadened our understanding on ewsr1 function in teleost, and provided genetic resources for the further development of sex control breeding techniques in C. semilaevis aquaculture. Abstract Ewsr1 encodes a protein that acts as a multifunctional molecule in a variety of cellular processes. The full-length of Cs-ewsr1-w and Cs-ewsr1-z were cloned in Chinese tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of Cs-ewsr1-w was 1,767 bp that encoded 589 amino acids, while Cs-ewsr1-z was 1,794 bp that encoded 598 amino acids. Real-time PCR assays showed that Cs-ewsr1-w exhibited significant female-biased expression and could be hardly detected in male. It has the most abundant expression in ovaries among eight healthy tissues. Its expression in ovary increased gradually from 90 d to 3 y with C. semilaevis ovarian development and reached the peak at 3 y. After Cs-ewsr1-w knockdown with siRNA interference, several genes related to gonadal development including foxl2, sox9b and pou5f1 were down-regulated in ovarian cell line, suggesting the possible participation of Cs-ewsr1-w in C. semilaevis ovarian development. The dual-luciferase reporter assay revealed that the -733/-154 bp Cs-ewsr1-w promoter fragment exhibited strong transcription activity human embryonic kidney (HEK) 293T cell line. The mutation of a MAF BZIP Transcription Factor K (Mafk) binding site located in this fragment suggested that transcription factor Mafk might play an important role in Cs-ewsr1-w basal transcription. Our results will provide clues on the gene expression level, transcriptional regulation and knock-down effect of ewsr1 gene during ovarian development in teleost.
Collapse
|
214
|
Sun T, Zhang K, Li W, Liu Y, Pangeni RP, Li A, Arvanitis L, Raz DJ. Transcription factor AP2 enhances malignancy of non-small cell lung cancer through upregulation of USP22 gene expression. Cell Commun Signal 2022; 20:147. [PMID: 36123698 PMCID: PMC9484186 DOI: 10.1186/s12964-022-00946-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ubiquitin-specific protease 22 (USP22), a putative cancer stem cell marker, is frequently upregulated in cancers, and USP22 overexpression is associated with aggressive growth, metastasis, and therapy resistance in various human cancers including lung cancer. However, USP22 gene amplification seldom occurs, and the mechanism underlying USP22 upregulation in human cancers remains largely unknown. METHODS A luciferase reporter driven by a promoter region of USP22 gene was selectively constructed to screen against a customized siRNA library targeting 89 selected transcription factors to identify potential transcription factors (TFs) that regulate USP22 expression in human non-small cell lung cancers (NSCLC). Association of identified TFs with USP22 and potential role of the TFs were validated and explored in NSCLC by biological assays and immunohistochemistry analysis. RESULTS Luciferase reporter assays revealed that SP1 and activating transcription factor 3 (ATF3) inhibit USP22 transcription, while transcription factor AP-2 Alpha/Beta (TFAP2A/2B) and c-Myc promote USP22 transcription. Binding site-directed mutagenesis and chromosome immunoprecipitation (ChIP) assays validated AP2α and AP2β are novel TFs of USP22. Furthermore, overexpression of AP2A and AP2B significantly upregulates USP22 expression, and its target: Cyclin D1, concurrently enhances the proliferation, migration, and invasion of NSCLC A549 and H1299 cells in a partially USP22-dependent manner. Moreover, AP2 protein level correlated with USP22 protein in human NSCLC tissues. CONCLUSION Our findings indicate AP2α and AP2β are important transcription factors driving USP22 gene expression to promote the progression of NSCLC, and further support USP22 as a potential biomarker and therapeutic target for lung cancer. Video Abstract.
Collapse
Affiliation(s)
- Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Laboratory of Surgery, The General Hospital of Ningxia Medical University, Yinchuan, China
- Faculty of Health Science, University of Macau, Macau, China
| | - Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yunze Liu
- Faculty of Health Science, University of Macau, Macau, China
| | - Rajendra P Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
215
|
Liang F, Wang GZ, Wang Y, Yang YN, Wen ZS, Chen DN, Fang WF, Zhang B, Yang L, Zhang C, Han SC, Yang FY, Wang D, Liang LJ, Wang Z, Zhao Y, Wang CL, Zhang L, Zhou GB. Tobacco carcinogen induces tryptophan metabolism and immune suppression via induction of indoleamine 2,3-dioxygenase 1. Signal Transduct Target Ther 2022; 7:311. [PMID: 36068203 PMCID: PMC9448807 DOI: 10.1038/s41392-022-01127-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), the enzyme that catabolizes tryptophan (Trp) metabolism to promote regulatory T cells (Tregs) and suppress CD8+ T cells, is regulated by several intrinsic signaling pathways. Here, we found that tobacco smoke, a major public health concern that kills 8 million people each year worldwide, induced IDO1 in normal and malignant lung epithelial cells in vitro and in vivo. The carcinogen nicotine-derived nitrosaminoketone (NNK) was the tobacco compound that upregulated IDO1 via activation of the transcription factor c-Jun, which has a binding site for the IDO1 promoter. The NNK receptor α7 nicotinic acetylcholine receptor (α7nAChR) was required for NNK-induced c-Jun activation and IDO1 upregulation. In A/J mice, NNK reduced CD8+ T cells and increased Tregs. Clinically, smoker patients with non-small-cell lung cancer (NSCLC) exhibited high IDO1 levels and low Trp/kynurenine (Kyn) ratios. In NSCLC patients, smokers with lower IDO1 responded better to anti-PD1 antibody treatment than those with higher IDO1. These data indicate that tobacco smoke induces IDO1 to catabolize Trp metabolism and immune suppression to promote carcinogenesis, and lower IDO1 might be a potential biomarker for anti-PD1 antibodies in smoker patients, whereas IDO1-high smoker patients might benefit from IDO1 inhibitors in combination with anti-PD1 antibodies.
Collapse
Affiliation(s)
- Fan Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Ning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe-Sheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Ni Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Feng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Si-Chong Han
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Jun Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
216
|
Zheng H, Guo X, Li N, Qin L, Li X, Lou G. Increased expression of SYCP2 predicts poor prognosis in patients suffering from breast carcinoma. Front Genet 2022; 13:922401. [PMID: 36159998 PMCID: PMC9491682 DOI: 10.3389/fgene.2022.922401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Overexpression of synaptonemal complex protein-2 (SYCP2) has been identified in various human papillomavirus (HPV)–related carcinomas, whereas its significant role in breast carcinoma remains unclear. The aim of this study was to elucidate the prognostic value and potential function of SYCP2 in breast carcinoma. Herein, data for breast carcinoma patients from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas database (TCGA) were analyzed. The enrichment analysis of SYCP2 including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Friends, and GSEA was performed. Kaplan–Meier analysis, Cox regression, and receiver operating characteristic (ROC) curves were employed for determining the predictive value of SYCP2 on clinical outcomes in patients suffering from breast carcinoma. A nomogram was generated to predict the effect arising from SYCP2 on prognosis. The association analysis of SYCP2 gene expression and diverse immune infiltration levels was conducted through ssGSEA and ESTIMATE analysis, which consisted of dendritic cell (DC), neutrophil, eosinophil, macrophage, mast cell, NK cell, and other 18 cell subtypes. The results showed that SYCP2 expression was significantly elevated in breast carcinoma tissues as compared with that of normal tissues (p < 0.001). SYCP2 plays a certain role in pathways related to DNA methylation, keratinocyte differentiation, steroid hormone biosynthesis, and immune infiltration. The high expression of SYCP2 had a significant relationship to age, pathological type, ER expression, and PR expression (p < 0.001). Kaplan–Meier survival analysis showed that patients suffering from breast carcinoma characterized by high-SYCP2 expression had a poorer prognosis than patients with low-SYCP2 expression (p = 0.005). Univariate and multivariate Cox regression analyses revealed that SYCP2 had an independent relationship to overall survival (p = 0.049). Moreover, ROC curves suggested the significant diagnostic ability of SYCP2 for breast carcinoma, and as time went on, SYCP2 had more accurate prognostic efficacy. Furthermore, a high level of SYCP2 expression was found to have a relationship to poor prognosis of breast carcinoma in the subgroups of T3, N0, and M0, and infiltrating ductal carcinoma (HR > 1, p < 0.05). The calibration plot of the nomogram indicated that the SYCP2 model has an effective predictive performance for breast carcinoma patients. Conclusively, SYCP2 plays a vital role in the pathogenesis and progression of human breast carcinoma, so it may serve as a promising prognostic molecular marker of poor survival.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyao Qin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Ge Lou,
| |
Collapse
|
217
|
Tian Y, Gao M, Huang L, Zhou H, Wang J. ATP6AP1 is a potential prognostic biomarker and is associated with iron metabolism in breast cancer. Front Genet 2022; 13:958290. [PMID: 36147483 PMCID: PMC9486317 DOI: 10.3389/fgene.2022.958290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer occurrence and progression may be facilitated by aberrant expression of ATPase H+ transporting accessory protein 1 (ATP6AP1). However, the clinical relevance of ATP6AP1 in breast cancer remains unclear. In this study, we investigated the association between ATP6AP1 and breast cancer. Data collected from patients with breast cancer from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were used in this study. To determine the relationship between ATP6AP1 and breast cancer survival rates, Kaplan-Meier analysis was used. To determine the prognostic value of ATP6AP1, a receiver operating characteristic (ROC) curve was constructed. To identify the major pathways involving ATP6AP1, we performed functional enrichment analysis using gene set enrichment analysis (GSEA). We analyzed the association between ATP6AP1 expression and tumor immunity using the ESTIMATE algorithm and single-sample GSEA (ssGSEA). A nomogram based on a Cox regression analysis was constructed to predict the impact of ATP6AP1 on prognosis. ATP6AP1 expression was significantly upregulated in breast cancer tissues. Moreover, patients with elevated ATP6AP1 expression had shorter total survival rates than those with lower expression levels (p = 0.032). The area under the receiver operating characteristic curve for ATP6AP1 was 0.939. Gene set enrichment analysis revealed that reaction iron uptake and transport, proteasome degradation, glutathione metabolism, and pyruvate metabolism were enriched in the ATP6AP1 high expression phenotype. The relationship between immune infiltration cells and ATP6AP1 expression, including macrophages, B cells, dendritic cells, cytotoxic cells, NK cells, and T cells, was found to be negative, suggesting that ATP6AP1 overexpression results in immunosuppression. Based on the Cox regression analyses, the calibration plot of the nomogram demonstrated effective performance in predicting breast cancer patients. ATP6AP1 may facilitate breast cancer progression by inhibiting antitumor immunity and promoting iron metabolism and may be a biomarker for breast cancer prognosis.
Collapse
Affiliation(s)
- Ye Tian
- Department of Thyroid and Breast Surgery, Wuhan No, 1 Hospital, Wuhan, China
| | - Ming Gao
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Huang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhou
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Wang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juan Wang,
| |
Collapse
|
218
|
Zhang Z. POLD2 is activated by E2F1 to promote triple-negative breast cancer proliferation. Front Oncol 2022; 12:981329. [PMID: 36119494 PMCID: PMC9479206 DOI: 10.3389/fonc.2022.981329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant breast cancer subtype with a poor prognosis. Improved insight into the molecular biology basis of TNBC progression is urgently needed. Herein, we reported that POLD2 was highly expressed in TNBC and patients with high POLD2 expression in their tumors had poor clinical outcomes. In functional studies, knockdown of POLD2 inhibited the proliferation of TNBC. Mechanistically, we revealed that transcription factor E2F1 directly bound to the promoter of POLD2 and regulated its expression in TNBC cells, which in turn contributed to the proliferation of TNBC. Additionally, rescue experiments validated that E2F1-mediated cell proliferation in TNBC was dependent on POLD2. Taken together, our results elucidated a novel mechanism of the E2F1-POLD2 axis in TNBC proliferation, and POLD2 may be a potential therapeutic target for TNBC treatment.
Collapse
|
219
|
Mańkowska A, Brym P, Sobiech P, Fraser L. Promoter polymorphisms in STK35 and IFT27 genes and their associations with boar sperm freezability. Theriogenology 2022; 189:199-208. [DOI: 10.1016/j.theriogenology.2022.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022]
|
220
|
Gotoh H, Chimhanda TA, Nomura T, Ono K. STAT3 transcriptionally regulates the expression of genes related to glycogen metabolism in developing motor neurons. FEBS Lett 2022; 596:2940-2951. [PMID: 36050761 DOI: 10.1002/1873-3468.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Motor neurons in the spinal cord are essential for movement. During the embryonic period, developing motor neurons store glycogen to protect against hypoglycemic and hypoxic stress. However, the mechanisms by which glycogen metabolism is regulated in motor neurons remain unclear. We herein investigated the transcriptional regulation of genes related to glycogen metabolism in the developing spinal cord. We focused on the regulatory mechanism of glycogen synthase (Gys1) and glycogen phosphorylase brain isoform (PygB), which play central roles in glycogen metabolism, and found that the transcription factor STAT3 regulated the expression of Gys1 and PygB via cis-regulatory promoter sequences in the developing spinal cord. These results suggest that STAT3 is important for the regulation of glycogen metabolism during motor neuron development.
Collapse
Affiliation(s)
- Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| | - Tatenda Alois Chimhanda
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan.,Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| |
Collapse
|
221
|
Regulation of MMP9 transcription by ETS1 in immortalized salivary gland epithelial cells of patients with salivary hypofunction and primary Sjögren's syndrome. Sci Rep 2022; 12:14552. [PMID: 36008454 PMCID: PMC9411565 DOI: 10.1038/s41598-022-18576-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/16/2022] [Indexed: 12/21/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) patients exhibit enhanced degradation of the salivary epithelium initially through MMP9 overexpression. We assessed the expression of MMP9 and an associated transcription factor, ETS1, in primary salivary gland epithelial cells (SGECs) and investigated potential regulatory mechanism(s) in immortalized SGECs. SGECs and iSGECs were derived from pSS and/or xerostomic “sicca” patients. siRNA knockdown of ETS1 in iSGECs was performed to determine MMP9 mRNA (qRT-PCR) and protein expression (ELISA). ETS1 binding to MMP9 promoter was assessed by luciferase activity and binding confirmed by mutagenesis and ChIP. Effects of ETS1 overexpression on progenitor and Epithelial-Mesenchymal transition (EMT) associated markers were determined by Western blot. Expression of ETS1 and its phosphorylated form in iSGECs was determined by immunofluorescence microscopy. ETS1 and MMP9 were overexpressed in SGECs of pSS and non-pSS sicca patients with salivary gland lymphocytic infiltration compared to non-pSS sicca patients without infiltration. ETS1 siRNA knockdown reduced both MMP9 mRNA and protein levels. ETS1 overexpression affected the expression of EMT and progenitor cell markers. Lastly, ETS1 bound the MMP9 promoter within the DNA region of −296 bp to −339 bp. ETS1 may impair salivary function through direct transcriptional control of the MMP9 promoter. ETS1 upregulation may also affect other factors involved in repair of the dysfunctional pSS salivary epithelium.
Collapse
|
222
|
Li Y, Xiao X, Li J, Byun J, Cheng C, Bossé Y, McKay J, Albanes D, Lam S, Tardon A, Chen C, Bojesen SE, Landi MT, Johansson M, Risch A, Bickeböller H, Wichmann HE, Christiani DC, Rennert G, Arnold S, Goodman G, Field JK, Davies MPA, Shete SS, Le Marchand L, Melander O, Brunnström H, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Shen H, Sun R, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Teare DM, Hong YC, Lazarus P, Schabath MB, Aldrich MC, Schwartz AG, Gorlov I, Purrington K, Yang P, Liu Y, Han Y, Bailey-Wilson JE, Pinney SM, Mandal D, Willey JC, Gaba C, Brennan P, Amos CI, INTEGRAL-ILCCO lung cancer consortium. Genome-wide interaction analysis identified low-frequency variants with sex disparity in lung cancer risk. Hum Mol Genet 2022; 31:2831-2843. [PMID: 35138370 PMCID: PMC9402242 DOI: 10.1093/hmg/ddac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 01/12/2023] Open
Abstract
Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry. Three low-frequency variants (minor allele frequency < 0.05), rs17662871 [odds ratio (OR) = 0.71, P = 4.29×10-8); rs79942605 (OR = 2.17, P = 2.81×10-8) and rs208908 (OR = 0.70, P = 4.54×10-8) were identified with different risk effect of lung cancer between men and women. Further expression quantitative trait loci and functional annotation analysis suggested rs208908 affects lung cancer risk through differential regulation of Coxsackie virus and adenovirus receptor gene expression in lung tissues between men and women. Our study is one of the first studies to provide novel insights about the genetic and molecular basis for sex disparity in lung cancer development.
Collapse
Affiliation(s)
- Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City G1V 4G5, Canada
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Stephen Lam
- Department of Integrative Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias 33003, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen 2600, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2177, Denmark
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Angela Risch
- Thoraxklinik at University Hospital Heidelberg, Heidelberg 69126, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg 69120, Germany
- University of Salzburg and Cancer Cluster Salzburg, 5020, Austria
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37099, Germany
| | - H-Erich Wichmann
- Institute of Medical Statistics and Epidemiology, Technical University Munich, 80333, Germany
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa 3436212, Israel
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, Kentucky 40536, USA
| | - Gary Goodman
- Swedish Cancer Institute, Seattle, WA 98104, USA
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Michael P A Davies
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Sanjay S Shete
- Department of Biostatistics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Olle Melander
- Faculty of Medicine, Lund University, Lund 22184, Sweden
| | | | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, CA ON, M5G 2C1, Canada
| | - Rayjean J Hung
- Luenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto ON, M5G 1X5, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto ON, M5T 3M7, Canada
| | - Angeline S Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Ryan Sun
- Department of Biostatistics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå 901 87, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Umeå University, Umeå 901 87, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Dawn M Teare
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99202, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center Nashville, TN 37232, USA
| | - Ann G Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Ping Yang
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinics Rochester, MN, 55905, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Susan M Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - James C Willey
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
223
|
Chava S, Bugide S, Malvi P, Gupta R. Co-targeting of specific epigenetic regulators in combination with CDC7 potently inhibit melanoma growth. iScience 2022; 25:104752. [PMID: 35942091 PMCID: PMC9356103 DOI: 10.1016/j.isci.2022.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a highly aggressive skin cancer that frequently metastasizes, but current therapies only benefit some patients. Here, we demonstrate that the serine/threonine kinase cell division cycle 7 (CDC7) is overexpressed in melanoma, and patients with higher expression have shorter survival. Transcription factor ELK1 regulates CDC7 expression, and CDC7 inhibition promotes cell cycle arrest, senescence, and apoptosis, leading to inhibition of melanoma tumor growth and metastasis. Our chemical genetics screen with epigenetic inhibitors revealed stronger melanoma tumor growth inhibition when XL413 is combined with the EZH2 inhibitor GSK343 or BRPF1/2/3 inhibitor OF1. Mechanistically, XL413 with GSK343 or OF1 synergistically altered the expression of tumor-suppressive genes, leading to higher apoptosis than the single agent alone. Collectively, these results identify CDC7 as a driver of melanoma tumor growth and metastasis that can be targeted alone or in combination with EZH2 or BRPF1/2/3 inhibitors.
Collapse
Affiliation(s)
- Suresh Chava
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
224
|
Alpoim-Moreira J, Fernandes C, Pimenta J, Bliebernicht M, Rebordão MR, Castelo-Branco P, Szóstek-Mioduchowska A, Skarzynski DJ, Ferreira-Dias G. Metallopeptidades 2 and 9 genes epigenetically modulate equine endometrial fibrosis. Front Vet Sci 2022; 9:970003. [PMID: 36032279 PMCID: PMC9412240 DOI: 10.3389/fvets.2022.970003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Endometrium type I (COL1) and III (COL3) collagen accumulation, periglandular fibrosis and mare infertility characterize endometrosis. Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover. Since epigenetic changes may control fibroproliferative diseases, we hypothesized that epigenetic mechanisms could modulate equine endometrosis. Epigenetic changes can be reversed and therefore extremely promising for therapeutic use. Methylation pattern analysis of a particular gene zone is used to detect epigenetic changes. DNA methylation commonly mediates gene repression. Thus, this study aimed to evaluate if the transcription of some genes involved in equine endometrosis was altered with endometrial fibrosis, and if the observed changes were epigenetically modulated, through DNA methylation analysis. Endometrial biopsies collected from cyclic mares were histologically classified (Kenney and Doig category I, n = 6; category IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1 genes were evaluated. Both MMP2 and MMP9 transcripts decreased with fibrosis, when compared with healthy endometrium (category I) (P < 0.05). TIMP1 transcripts were higher in category III, when compared to category I endometrium (P < 0.05). No differences were found for COL1A1, COL1A2, COL3A1 and TIMP2 transcripts between endometrial categories. There were higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P < 0.01), when compared to category I; (ii) MMP2 in category III, when compared to category I (P < 0.001) and IIA (P < 0.05); and (iii) MMP9 in category III, when compared to category I and IIA (P < 0.05). No differences in TIMP1 methylation levels were observed between endometrial categories. The hypermethylation of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with a decrease in their mRNA levels, with endometrial fibrosis, suggesting that this hypermethylation is responsible for repressing their transcription. Our results show that endometrosis is epigenetically modulated by anti-fibrotic genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and therefore, might be promising targets for therapeutic use.
Collapse
Affiliation(s)
- Joana Alpoim-Moreira
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Carina Fernandes
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Jorge Pimenta
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos (UEISBR), Instituto Nacional de Investigação Agrária e Veterinária, I. P. (INIAV), Vairão, Portugal
| | | | - Maria Rosa Rebordão
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Coimbra, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | | | | | - Graça Ferreira-Dias
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- *Correspondence: Graça Ferreira-Dias
| |
Collapse
|
225
|
Salaroglio IC, Belisario DC, Akman M, La Vecchia S, Godel M, Anobile DP, Ortone G, Digiovanni S, Fontana S, Costamagna C, Rubinstein M, Kopecka J, Riganti C. Mitochondrial ROS drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. J Exp Clin Cancer Res 2022; 41:243. [PMID: 35953814 PMCID: PMC9373288 DOI: 10.1186/s13046-022-02447-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Solid tumors subjected to intermittent hypoxia are characterized by resistance to chemotherapy and immune-killing by effector T-lymphocytes, particularly tumor-infiltrating Vγ9Vδ2 T-lymphocytes. The molecular circuitries determining this double resistance are not known. Methods We analyzed a panel of 28 human non-small cell lung cancer (NSCLC) lines, using an in vitro system simulating continuous and intermittent hypoxia. Chemosensitivity to cisplatin and docetaxel was evaluated by chemiluminescence, ex vivo Vγ9Vδ2 T-lymphocyte expansion and immune-killing by flow cytometry. Targeted transcriptomics identified efflux transporters and nuclear factors involved in this chemo-immuno-resistance. The molecular mechanism linking Hypoxia-inducible factor-1α (HIF-1α), CCAAT/Enhancer Binding Protein-β (C/EBP-β) isoforms LAP and LIP, ABCB1, ABCC1 and ABCA1 transporters were evaluated by immunoblotting, RT-PCR, RNA-IP, ChIP. Oxidative phosphorylation, mitochondrial ATP, ROS, depolarization, O2 consumption were monitored by spectrophotometer and electronic sensors. The role of ROS/HIF-1α/LAP axis was validated in knocked-out or overexpressing cells, and in humanized (Hu-CD34+NSG) mice bearing LAP-overexpressing tumors. The clinical meaning of LAP was assessed in 60 NSCLC patients prospectively enrolled, treated with chemotherapy. Results By up-regulating ABCB1 and ABCC1, and down-regulating ABCA1, intermittent hypoxia induced a stronger chemo-immuno-resistance than continuous hypoxia in NSCLC cells. Intermittent hypoxia impaired the electron transport chain and reduced O2 consumption, increasing mitochondrial ROS that favor the stabilization of C/EBP-β mRNA mediated by HIF-1α. HIF-1α/C/EBP-β mRNA binding increases the splicing of C/EBP-β toward the production of LAP isoform that transcriptionally induces ABCB1 and ABCC1, promoting the efflux of cisplatin and docetaxel. LAP also decreases ABCA1, limiting the efflux of isopentenyl pyrophosphate, i.e. the endogenous activator of Vγ9Vδ2 T-cells, and reducing the immune-killing. In NSCLC patients subjected to cisplatin-based chemotherapy, C/EBP-β LAP was abundant in hypoxic tumors and was associated with lower response to treatment and survival. LAP-overexpressing tumors in Hu-CD34+NSG mice recapitulated the patients’ chemo-immuno-resistant phenotype. Interestingly, the ROS scavenger mitoquinol chemo-immuno-sensitized immuno-xenografts, by disrupting the ROS/HIF-1α/LAP cascade. Conclusions The impairment of mitochondrial metabolism induced by intermittent hypoxia increases the ROS-dependent stabilization of HIF-1α/LAP complex in NSCLC, producing chemo-immuno-resistance. Clinically used mitochondrial ROS scavengers may counteract such double resistance. Moreover, we suggest C/EBP-β LAP as a new predictive and prognostic factor in NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02447-6.
Collapse
|
226
|
Swierkowska J, Karolak JA, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Decreased Levels of DNA Methylation in the PCDHA Gene Cluster as a Risk Factor for Early-Onset High Myopia in Young Children. Invest Ophthalmol Vis Sci 2022; 63:31. [PMID: 36036911 PMCID: PMC9434983 DOI: 10.1167/iovs.63.9.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose High myopia (HM), an eye disorder with at least –6.0 diopters refractive error, has a complex etiology with environmental, genetic, and likely epigenetic factors involved. To complement the DNA methylation assessment in children with HM, we analyzed genes that had significantly lower DNA methylation levels. Methods The DNA methylation pattern was studied based on the genome-wide methylation data of 18 Polish children with HM paired with 18 controls. Genes overlapping CG dinucleotides with decreased methylation level in HM cases were assessed by enrichment analyses. From those, genes with CG dinucleotides in promoter regions were further evaluated based on exome sequencing (ES) data of 16 patients with HM from unrelated Polish families, Sanger sequencing data of the studied children, and the RNA sequencing data of human retinal ARPE-19 cells. Results The CG dinucleotide with the most decreased methylation level in cases was identified in a promoter region of PCDHA10 that overlaps intronic regions of PCDHA1–9 of the PCDHA gene cluster in myopia 5q31 locus. Also, two single nucleotide variants, rs200661444, detected in our ES, and rs246073, previously found as associated with a refractive error in a genome-wide association study, were revealed within this gene cluster. Additionally, genes previously linked to ocular phenotypes, myopia-related traits, or loci, including ADAM20, ZFAND6, ETS1, ABHD13, SBSPON, SORBS2, LMOD3, ATXN1, and FARP2, were found to have decreased methylation. Conclusions Alterations in the methylation pattern of specific CG dinucleotides may be associated with early-onset HM, so this could be used to develop noninvasive biomarkers of HM in children and adolescents.
Collapse
Affiliation(s)
| | - Justyna A Karolak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Bialystok, Poland
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
227
|
Martin TM, Burke SJ, Batdorf HM, Burk DH, Ghosh S, Dupuy SD, Karlstad MD, Collier JJ. ICAM-1 Abundance Is Increased in Pancreatic Islets of Hyperglycemic Female NOD Mice and Is Rapidly Upregulated by NF-κB in Pancreatic β-Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:569-581. [PMID: 35851539 PMCID: PMC9845432 DOI: 10.4049/jimmunol.2200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes (T1D) is classified as an autoimmune disease where pancreatic β-cells are specifically targeted by cells of the immune system. The molecular mechanisms underlying this process are not completely understood. Herein, we identified that the Icam1 gene and ICAM-1 protein were selectively elevated in female NOD mice relative to male mice, fitting with the sexual dimorphism of diabetes onset in this key mouse model of T1D. In addition, ICAM-1 abundance was greater in hyperglycemic female NOD mice than in age-matched normoglycemic female NOD mice. Moreover, we discovered that the Icam1 gene was rapidly upregulated in response to IL-1β in mouse, rat, and human islets and in 832/13 rat insulinoma cells. This early temporal genetic regulation requires key components of the NF-κB pathway and was associated with rapid recruitment of the p65 transcriptional subunit of NF-κB to corresponding κB elements within the Icam1 gene promoter. In addition, RNA polymerase II recruitment to the Icam1 gene promoter in response to IL-1β was consistent with p65 occupancy at κB elements, histone chemical modifications, and increased mRNA abundance. Thus, we conclude that β-cells undergo rapid genetic reprogramming by IL-1β to enhance expression of the Icam1 gene and that elevations in ICAM-1 are associated with hyperglycemia in NOD mice. These findings are highly relevant to, and highlight the importance of, pancreatic β-cell communication with the immune system. Collectively, these observations reveal a portion of the complex molecular events associated with onset and progression of T1D.
Collapse
Affiliation(s)
- Thomas M. Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - David H. Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke NUS Medical School, Singapore
| | - Samuel D. Dupuy
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D. Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| |
Collapse
|
228
|
Maitra S, Chatterjee M, Roychowdhury A, Panda CK, Sinha S, Mukhopadhyay K. Specific dopaminergic genetic variants influence impulsivity, cognitive deficit, and disease severity of Indian ADHD probands. Mol Biol Rep 2022; 49:7315-7325. [PMID: 35553330 DOI: 10.1007/s11033-022-07521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impulsivity (Imp), being one of the cardinal symptoms of Attention Deficit Hyperactivity Disorder (ADHD), often leads to inappropriate responses to stimuli. Since the dopaminergic system is the primary target for pharmaceutical intervention in ADHD, we investigated the association between ADHD-related Imp and functional gene variants of the dopamine transporter (SLC6A3) and catechol-O-methyltransferase involved in dopamine clearance. METHODS AND RESULTS Indo-Caucasoid families with ADHD probands (N = 217) were recruited based on the Diagnostic and Statistical Manual of Mental Disorders (DSM). Imp of the probands was assessed using the Domain Specific Imp Scale for Children and DSM. Peripheral blood was collected after obtaining informed written consent for participation, genomic DNA was isolated, and target sites were genotyped by DNA sequencing. The association of genetic variants with Imp was examined by the Quantitative trait analysis (QTA) and Analysis of variance (ANOVA). Post-Hoc analysis following QTA and ANOVA showed significant associations of rs2254408, rs2981359, and rs2239393 with different domains of Imp (P < 0.05). Various haplotypic combinations also showed statistically significant associations with Imp (P < 0.05). Multifactor dimensionality reduction models revealed strong effects of the variants on Imp. ADHD probands harboring the risk alleles exhibited a deficit in performance during cognitive assessment. Longitudinal follow-up revealed a significant association of rs2254408 with trait persistence. CONCLUSION The present study indicates the influence of the studied genetic variants on ADHD-associated imp, executive deficit, and disease persistence. Thus, these variants may be helpful as predictors for the success of individual therapeutic sessions during cognitive training.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India.,Umea University, Umeå, Sweden
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India
| | - Anirban Roychowdhury
- Department of Internal Medicine, Virginia Commonwealth University, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, S.P. Mukherjee Road, Kolkata, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India.
| |
Collapse
|
229
|
Zhou Y, Li J, Xu F, Ji E, Wang C, Pan Z. Long noncoding RNA H19 alleviates inflammation in osteoarthritis through interactions between TP53, IL-38, and IL-36 receptor. Bone Joint Res 2022; 11:594-607. [PMID: 35942891 PMCID: PMC9396924 DOI: 10.1302/2046-3758.118.bjr-2021-0188.r1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA. Methods Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro. Results IL-38 was highly expressed in lentivirus vector-mediated OA mice. Meanwhile, injection of exogenous IL-38 to OA mice alleviated the cartilage damage, and reduced the levels of proinflammatory factors and chondrocyte apoptosis. TP53 was responsible for lncRNA H19-mediated upregulation of IL-38. Furthermore, it was found that the anti-inflammatory effects of IL-38 were achieved by its binding with the IL-36 receptor (IL-36R). Overexpression of H19 reduced the expression of inflammatory factors and chondrocyte apoptosis, which was abrogated by knockdown of IL-38 or TP53. Conclusion Collectively, our findings evidenced that upregulation of lncRNA H19 attenuates inflammation and ameliorates cartilage damage and chondrocyte apoptosis in OA by upregulating TP53, IL-38, and by activating IL-36R. Cite this article: Bone Joint Res 2022;11(8):594–607.
Collapse
Affiliation(s)
- Yeli Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Li
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Xu
- Surgical Department, Wuhan Pulmonary Hospital, Wuhan, China
| | - Encheng Ji
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglong Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheer Pan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
230
|
Liang S, Xiang T, Liu S, Xiang W. Inhibition of NLRC5 attenuates the malignant growth and enhances the sensitivity of gastric cancer cells to 5‑FU chemotherapy by blocking the carcinogenic effect of YY1. Exp Ther Med 2022; 24:601. [PMID: 35949331 PMCID: PMC9353549 DOI: 10.3892/etm.2022.11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
Gastric cancer (GC) is one of the commonest malignant tumors of the digestive system, characterized by high morbidity and mortality rates. It has been reported that NOD like receptor (NLR) family, CARD domain containing 5 (NLRC5) serves an important role in the occurrence and development of GC. Therefore, the current study aimed to investigate the role of NLRC5 in GC. The mRNA and protein expression levels of NLRC5 in GC cell lines were determined by reverse transcription-quantitative PCR and western blot analysis, respectively. Additionally, following NLRC5 knockdown, cell proliferation, invasion and migration were evaluated using Cell Counting Kit 8, colony formation, wound healing and Transwell assays, and western blot analysis. The NLRC and Yin Yang 1 (YY1) expression in the AGS cells with 5-FU resistance were detected by western blotting. The sensitivity of GC cells to 5-fluorouracil (5-FU) was detected by flow cytometry and western blot analysis. Additionally, the binding capacity of YY1 on NLRC5 promoter was predicted using JASPAR database and it was further verified by chromatin immunoprecipitation and luciferase reporter assays. Finally, to elucidate the mechanism underlying the effect of NLRC5 on GC, YY1 was overexpressed and NLRC5 was silenced in GC cell lines. The results showed that NLRC5 was abnormally upregulated in GC cells. In addition, NLRC5 knockdown significantly attenuated the proliferation, invasion and migration abilities of GC cells, while it enhanced the sensitivity of GC cells to 5-FU. The above effects were regulated by the YY1 transcription factor. Overall, the results of the present study indicated that NLRC5 silencing could reduce the malignant growth and enhance the sensitivity of GC cells to 5-FU chemotherapy via inhibiting the carcinogenic effect of YY1.
Collapse
Affiliation(s)
- Shan Liang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Tingting Xiang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Shiyu Liu
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Wei Xiang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| |
Collapse
|
231
|
Saldanha PA, Bolanle IO, Palmer TM, Nikitenko LL, Rivero F. Complex Transcriptional Profiles of the PPP1R12A Gene in Cells of the Circulatory System as Revealed by In Silico Analysis and Reverse Transcription PCR. Cells 2022; 11:cells11152315. [PMID: 35954160 PMCID: PMC9367544 DOI: 10.3390/cells11152315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The myosin light chain phosphatase target subunit 1 (MYPT1), encoded by the PPP1R12A gene, is a key component of the myosin light chain phosphatase (MLCP) protein complex. MYPT1 isoforms have been described as products of the cassette-type alternative splicing of exons E13, E14, E22, and E24. Through in silico analysis of the publicly available EST and mRNA databases, we established that PPP1R12A contains 32 exons (6 more than the 26 previously reported), of which 29 are used in 11 protein-coding transcripts. An in silico analysis of publicly available RNAseq data combined with validation by reverse transcription (RT)-PCR allowed us to determine the relative abundance of each transcript in three cell types of the circulatory system where MYPT1 plays important roles: human umbilical vein endothelial cells (HUVEC), human saphenous vein smooth muscle cells (HSVSMC), and platelets. All three cell types express up to 10 transcripts at variable frequencies. HUVECs and HSVSMCs predominantly express the full-length variant (58.3% and 64.3%, respectively) followed by the variant skipping E13 (33.7% and 23.1%, respectively), whereas in platelets the predominant variants are those skipping E14 (51.4%) and E13 (19.9%), followed by the full-length variant (14.4%). Variants including E24 account for 5.4% of transcripts in platelets but are rare (<1%) in HUVECs and HSVSMCs. Complex transcriptional profiles were also found across organs using in silico analysis of RNAseq data from the GTEx project. Our findings provide a platform for future studies investigating the specific (patho)physiological roles of understudied MYPT1 isoforms.
Collapse
|
232
|
Zhang T, Wang B, Su F, Gu B, Xiang L, Gao L, Zheng P, Li XM, Chen H. TCF7L2 promotes anoikis resistance and metastasis of gastric cancer by transcriptionally activating PLAUR. Int J Biol Sci 2022; 18:4560-4577. [PMID: 35864968 PMCID: PMC9295057 DOI: 10.7150/ijbs.69933] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the most common gastrointestinal malignant tumor, and distant metastasis is a critical factor in the prognosis of patients with GC. Understanding the mechanism of GC metastasis will help improve patient prognosis. Studies have confirmed that urokinase-type plasminogen activator receptor (PLAUR) promotes GC metastasis; however, its relationship with anoikis resistance and associated mechanisms remains unclear. In this study, we demonstrated that PLAUR promotes the anoikis resistance and metastasis of GC cells and identified transcription Factor 7 Like 2 (TCF7L2) as an important transcriptional regulator of PLAUR. We also revealed that TCF7L2 is highly expressed in GC and promotes the anoikis resistance and metastasis of GC cells. Moreover, we found that TCF7L2 transcription activates PLAUR. Finally, we confirmed that TCF7L2 is an independent risk factor for poor prognosis of patients with GC. Our results show that TCF7L2 and PLAUR are candidate targets for developing therapeutic strategies for GC metastasis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bofang Wang
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fei Su
- Department of oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Baohong Gu
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng Zheng
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xue-Mei Li
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Cancer center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
233
|
Vaughan HJ, Zamboni CG, Hassan LF, Radant NP, Jacob D, Mease RC, Minn I, Tzeng SY, Gabrielson KL, Bhardwaj P, Guo X, Francisco D, Pomper MG, Green JJ. Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. SCIENCE ADVANCES 2022; 8:eabo6406. [PMID: 35857843 PMCID: PMC9299552 DOI: 10.1126/sciadv.abo6406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Hepatocellular carcinoma (HCC) develops predominantly in the inflammatory environment of a cirrhotic liver caused by hepatitis, toxin exposure, or chronic liver disease. A targeted therapeutic approach is required to enable cancer killing without causing toxicity and liver failure. Poly(beta-amino-ester) (PBAE) nanoparticles (NPs) were used to deliver a completely CpG-free plasmid harboring mutant herpes simplex virus type 1 sr39 thymidine kinase (sr39) DNA to human HCC cells. Transfection with sr39 enables cancer cell killing with the prodrug ganciclovir and accumulation of 9-(4-18F-fluoro-3-hydroxymethylbutyl)guanine (18F-FHBG) for in vivo imaging. Targeting was achieved using a CpG-free human alpha fetoprotein (AFP) promoter (CpGf-AFP-sr39). Expression was restricted to AFP-producing HCC cells, enabling selective transfection of orthotopic HCC xenografts. CpGf-AFP-sr39 NP treatment resulted in 62% reduced tumor size, and therapeutic gene expression was detectable by positron emission tomography (PET). This systemic nanomedicine achieved tumor-specific delivery, therapy, and imaging, representing a promising platform for targeted treatment of HCC.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Laboni F. Hassan
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas P. Radant
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Desmond Jacob
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Il Minn
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranshu Bhardwaj
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Francisco
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martin G. Pomper
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Departments of Neurosurgery, Oncology, Ophthalmology, and Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
234
|
Yu Y, Alvarado R, Petty LE, Bohlender RJ, Shaw DM, Below JE, Bejar N, Ruiz OE, Tandon B, Eisenhoffer GT, Kiss DL, Huff CD, Letra A, Hecht JT. Polygenic risk impacts PDGFRA mutation penetrance in non-syndromic cleft lip and palate. Hum Mol Genet 2022; 31:2348-2357. [PMID: 35147171 PMCID: PMC9307317 DOI: 10.1093/hmg/ddac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common, severe craniofacial malformation that imposes significant medical, psychosocial and financial burdens. NSCL/P is a multifactorial disorder with genetic and environmental factors playing etiologic roles. Currently, only 25% of the genetic variation underlying NSCL/P has been identified by linkage, candidate gene and genome-wide association studies. In this study, whole-genome sequencing and genome-wide genotyping followed by polygenic risk score (PRS) and linkage analyses were used to identify the genetic etiology of NSCL/P in a large three-generation family. We identified a rare missense variant in PDGFRA (c.C2740T; p.R914W) as potentially etiologic in a gene-based association test using pVAAST (P = 1.78 × 10-4) and showed decreased penetrance. PRS analysis suggested that variant penetrance was likely modified by common NSCL/P risk variants, with lower scores found among unaffected carriers. Linkage analysis provided additional support for PRS-modified penetrance, with a 7.4-fold increase in likelihood after conditioning on PRS. Functional characterization experiments showed that the putatively causal variant was null for signaling activity in vitro; further, perturbation of pdgfra in zebrafish embryos resulted in unilateral orofacial clefting. Our findings show that a rare PDGFRA variant, modified by additional common NSCL/P risk variants, have a profound effect on NSCL/P risk. These data provide compelling evidence for multifactorial inheritance long postulated to underlie NSCL/P and may explain some unusual familial patterns.
Collapse
Affiliation(s)
- Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rolando Alvarado
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan J Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bejar
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Oscar E Ruiz
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bhavna Tandon
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - George T Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| | - Jacqueline T Hecht
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| |
Collapse
|
235
|
Luo X, Zhan X, Ruan R, Xi Y, Shen C, Wang H, Wang M. Genome-wide identification of the Penicillium digitatum bZIP gene family and the roles of one key member, PdatfA. Res Microbiol 2022; 173:103970. [PMID: 35868518 DOI: 10.1016/j.resmic.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Penicillium digitatum is the most common cause of postharvest decay in citrus fruits around the world. Previous studies revealed that the bZIP gene family plays crucial roles in development, stress adaptation, and pathogenicity in fungi. However, little is known about the bZIP genes in P. digitatum. In this study, we systematically identified the bZIP family in 23 Penicillium species and analyzed their evolutionary relationships. We found that gene loss and gene duplication shaped the evolution of the Penicillium bZIP family. P. digitatum experienced 3 bZIP gene loss events, but with no gene duplication. We subsequently characterized the biological functions of one important member, PdatfA in P. digitatum by constructing the deletion mutant. Results showed that ΔPdatfA exhibited a moderate growth defect, reduced pigmentation, and slightly increased resistance to fungicides iprodione and fludioxonil. However, ΔPdatfA displayed similar rot symptoms to that of the wild type. The ΔPdatfA mycelia were not affected in response to oxidative stress while its conidia showed enhanced resistance due to the upregulation of catalases. Our results provide new insights into the evolution and functions of the bZIP gene family in Penicillium.
Collapse
Affiliation(s)
- Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruoxin Ruan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yue Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
236
|
Yoo HS, Rodriguez A, You D, Lee RA, Cockrum MA, Grimes JA, Wang JC, Kang S, Napoli JL. The glucocorticoid receptor represses, whereas C/EBPβ can enhance or repress CYP26A1 transcription. iScience 2022; 25:104564. [PMID: 35789854 PMCID: PMC9249609 DOI: 10.1016/j.isci.2022.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid (RA) counters insulin's metabolic actions. Insulin reduces liver RA biosynthesis by exporting FoxO1 from nuclei. RA induces its catabolism, catalyzed by CYP26A1. A CYP26A1 contribution to RA homeostasis with changes in energy status had not been investigated. We found that glucagon, cortisol, and dexamethasone decrease RA-induced CYP26A1 transcription, thereby reducing RA oxidation during fasting. Interaction between the glucocorticoid receptor and the RAR/RXR coactivation complex suppresses CYP26A1 expression, increasing RA's elimination half-life. Interaction between CCAAT-enhancer-binding protein beta (C/EBPβ) and the major allele of SNP rs2068888 enhances CYP26A1 expression; the minor allele restricts the C/EBPβ effect on CYP26A1. The major and minor alleles associate with impaired human health or reduction in blood triglycerides, respectively. Thus, regulating CYP26A1 transcription contributes to adapting RA to coordinate energy availability with metabolism. These results enhance insight into CYP26A1 effects on RA during changes in energy status and glucocorticoid receptor modification of RAR-regulated gene expression.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Adrienne Rodriguez
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Dongjoo You
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Rebecca A. Lee
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Michael A. Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jack A. Grimes
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| |
Collapse
|
237
|
Ding N, Jiang H, Thapa P, Hao Y, Alshahrani A, Allison D, Izumi T, Rangnekar VM, Liu X, Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J Biol Chem 2022; 298:102123. [PMID: 35697073 PMCID: PMC9257407 DOI: 10.1016/j.jbc.2022.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
High levels of redox enzymes have been commonly observed in various types of human cancer, although whether and how the enzymes contribute to cancer malignancy and therapeutic resistance have yet to be understood. Peroxiredoxin IV (Prx4) is an antioxidant with bona fide peroxidase and molecular chaperone functions. Here, we report that Prx4 is highly expressed in prostate cancer patient specimens, as well as established prostate cancer cell lines, and that its levels can be further stimulated through the activation of androgen receptor signaling. We used lentivirus-mediated shRNA knockdown and CRISPR-Cas9 based KO techniques to establish Prx4-depleted prostate cancer cells, which showed delayed cell cycle progression, reduced rate of cell proliferation, migration, and invasion compared to control cells. In addition, we used proteome profiler phosphokinase arrays to identify signaling changes in Prx4-depleted cells; we found that loss of Prx4 results in insufficient phosphorylation of both Akt and its downstream kinase GSK3α/β. Moreover, we demonstrate that Prx4-depleted cells are more sensitive to ionizing radiation as they display compromised ability to scavenge reactive oxygen species and increased accumulation of DNA damage. In mouse xenograft models, we show depletion of Prx4 leads to significant suppression of tumor growth, and tumors formed by Prx4-depleted cells respond more effectively to radiation therapy. Our findings suggest that increased levels of Prx4 contribute to the malignancy and radioresistance of prostate cancer through the activation of Akt/GSK3 signaling pathways. Therefore, strategies targeting Prx4 may be utilized to potentially inhibit tumor growth and overcome radioresistance in prostate cancer.
Collapse
Affiliation(s)
- Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Derek Allison
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vivek M Rangnekar
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
238
|
Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease. Sci Rep 2022; 12:10994. [PMID: 35768560 PMCID: PMC9243110 DOI: 10.1038/s41598-022-15299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The risk of Alzheimer’s disease (AD) has a strong genetic component, also in the case of late-onset AD (LOAD). Attempts to sequence whole genome in large populations of subjects have identified only a few mutations common to most of the patients with AD. Targeting smaller well-characterized groups of subjects where specific genetic variations in selected genes could be related to precisely defined psychological traits typical of dementia is needed to better understand the heritability of AD. More than one thousand participants, categorized according to cognitive deficits, were assessed using 14 psychometric tests evaluating performance in five cognitive domains (attention/working memory, memory, language, executive functions, visuospatial functions). CD36 was selected as a gene previously shown to be implicated in the etiology of AD. A total of 174 polymorphisms were tested for associations with cognition-related traits and other AD-relevant data using the next generation sequencing. Several associations between single nucleotide polymorphisms (SNP’s) and the cognitive deficits have been found (rs12667404 with language performance, rs3211827 and rs41272372 with executive functions, rs137984792 with visuospatial performance). The most prominent association was found between a group of genotypes in six genetically linked and the age at which the AD patients presented with, or developed, a full-blown dementia. The identified alleles appear to be associated with a delay in the onset of LOAD. In silico studies suggested that the SNP’s alter the expression of CD36 thus potentially affecting CD36-related neuroinflammation and other molecular and cellular mechanisms known to be involved in the neuronal loss leading to AD. The main outcome of the study is an identification of a set of six new mutations apparently conferring a distinct protection against AD and delaying the onset by about 8 years. Additional mutations in CD36 associated with certain traits characteristic of the cognitive decline in AD have also been found.
Collapse
|
239
|
Oelschlaegel D, Wensch-Dorendorf M, Kopke G, Jungnickel R, Waurich B, Rosner F, Döpfer D, Brenig B, Swalve HH. Functional Variants Associated With CMPK2 and in ASB16 Influence Bovine Digital Dermatitis. Front Genet 2022; 13:859595. [PMID: 35832195 PMCID: PMC9271848 DOI: 10.3389/fgene.2022.859595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine digital dermatitis (BDD) is an infectious disease of the hoof in cattle with multifactorial etiology and a polygenic influence on susceptibility. With our study, we identified genomic regions with the impact on occurrence and development of BDD. We used 5,040 genotyped animals with phenotype information based on the M-stage system for genome-wide association. Significant associations for single-nucleotide polymorphisms were found near genes CMPK2 (chromosome 11) and ASB16 (chromosome 19) both being implicated in immunological processes. A sequence analysis of the chromosomal regions revealed rs208894039 and rs109521151 polymorphisms as having significant influence on susceptibility to the disease. Specific genotypes were significantly more likely to be affected by BDD and developed chronic lesions. Our study provides an insight into the genomic background for a genetic predisposition related to the pathogenesis of BDD. Results might be implemented in cattle-breeding programs and could pave the way for the establishment of a BDD prescreening test.
Collapse
Affiliation(s)
- Diana Oelschlaegel
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Monika Wensch-Dorendorf
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Grit Kopke
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Roswitha Jungnickel
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benno Waurich
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Frank Rosner
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann H. Swalve
- Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- *Correspondence: Hermann H. Swalve,
| |
Collapse
|
240
|
Osmond B, Facey COB, Zhang C, Boman BM. HOXA9 Overexpression Contributes to Stem Cell Overpopulation That Drives Development and Growth of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126799. [PMID: 35743243 PMCID: PMC9224160 DOI: 10.3390/ijms23126799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/22/2023] Open
Abstract
HOX proteins are transcription factors that regulate stem cell (SC) function, but their role in the SC origin of cancer is under-studied. Aberrant expression of HOX genes occurs in many cancer types. Our goal is to ascertain how retinoic acid (RA) signaling and the regulation of HOXA9 expression might play a role in the SC origin of human colorectal cancer (CRC). Previously, we reported that aldehyde dehydrogenase (ALDH) and other RA pathway components are co-expressed in colonic cancer SCs (CSCs) and that overpopulation of ALDH-positive CSCs occurs during colon tumorigenesis. Our hypothesis is RA signaling regulates HOXA9 expression, and dysregulated RA signaling results in HOXA9 overexpression, which contributes to CSC overpopulation in CRC. Immunostaining showed that HOXA9 was selectively expressed in ALDH-positive SCs, and HOXA9 expression was increased in CRCs compared to normal epithelium. Modulating RA signaling in CRC cells (HT29 and SW480) with ATRA and DEAB decreased cell proliferation and reduced HOXA9 expression. Bioinformatics analyses identified a network of proteins that functionally interact with HOXA9, and the genes that encode these proteins, as well as HOXA9, contain RA receptor binding sites. These findings indicate that the expression of HOXA9 and its functional network is regulated by RA signaling in normal colonic SCs, and, when dysregulated, HOXA9 may contribute to CSC overpopulation that drives CRC development and growth. Our study provides a regulatory mechanism that might be useful in developing treatments against CSC overpopulation in CRC.
Collapse
Affiliation(s)
- Brian Osmond
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
| | - Chi Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
| | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence: ; Tel.: +1-267-303-9241
| |
Collapse
|
241
|
Zheng J, Lou J, Li Y, Qian P, He W, Hao Y, Xue T, Li Y, Song YH. Satellite cell-specific deletion of Cipc alleviates myopathy in mdx mice. Cell Rep 2022; 39:110939. [PMID: 35705041 DOI: 10.1016/j.celrep.2022.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Skeletal muscle regeneration relies on satellite cells that can proliferate, differentiate, and form new myofibers upon injury. Emerging evidence suggests that misregulation of satellite cell fate and function influences the severity of Duchenne muscular dystrophy (DMD). The transcription factor Pax7 determines the myogenic identity and maintenance of the pool of satellite cells. The circadian clock regulates satellite cell proliferation and self-renewal. Here, we show that the CLOCK-interacting protein Circadian (CIPC) a negative-feedback regulator of the circadian clock, is up-regulated during myoblast differentiation. Specific deletion of Cipc in satellite cells alleviates myopathy, improves muscle function, and reduces fibrosis in mdx mice. Cipc deficiency leads to activation of the ERK1/2 and JNK1/2 signaling pathways, which activates the transcription factor SP1 to trigger the transcription of Pax7 and MyoD. Therefore, CIPC is a negative regulator of satellite cell function, and loss of Cipc in satellite cells promotes muscle regeneration.
Collapse
Affiliation(s)
- Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Jing Lou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Panting Qian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Wei He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yingxue Hao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery and Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China.
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
242
|
Osteoprotegerin Gene Polymorphisms Are Associated with Subclinical Atherosclerosis in the Mexican Mestizo Population. Diagnostics (Basel) 2022; 12:diagnostics12061433. [PMID: 35741244 PMCID: PMC9221599 DOI: 10.3390/diagnostics12061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Subclinical atherosclerosis (SA) is the presence of coronary calcification in the absence of cardiovascular symptoms, and it usually progresses to atherosclerotic disease. Studies have shown an association of osteoprotegerin gene (OPG) variants with calcification process in cardiovascular diseases; however, to this day there are no studies that evaluate individuals in the asymptomatic stage of atherosclerotic disease. Therefore, the purpose of this study was to analyze the association of four genetic variants and haplotypes of the OPG gene with the development of SA, through TaqMan genotyping assays. We also aimed to identify potential response elements for transcription factors in these genetic variants. The study included 1413 asymptomatic participants (1041 were controls and 372 were individuals with SA). The rs3102735 polymorphism appeared as a protective marker (OR = 0.693; 95% CI = 0.493−0.974; pheterozygote = 0.035; OR = 0.699; 95% CI = 0.496−0.985; pcodominant 1 = 0.040) and two haplotypes were associated with SA, one as a decreased risk: GACC (OR = 0.641, 95% CI = 0.414−0.990, p = 0.045) and another as an increased risk: GACT (OR = 1.208, 95% CI = 1.020−1.431, p = 0.029). Our data suggest a lower risk of SA in rs3102735 C carriers in a representative sample of Mexican mestizo population.
Collapse
|
243
|
Adams DE, Zhen Y, Qi X, Shao WH. Axl Expression in Renal Mesangial Cells Is Regulated by Sp1, Ap1, MZF1, and Ep300, and the IL-6/miR-34a Pathway. Cells 2022; 11:cells11121869. [PMID: 35740998 PMCID: PMC9221537 DOI: 10.3390/cells11121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Axl receptor tyrosine kinase expression in the kidney contributes to a variety of inflammatory renal disease by promoting glomerular proliferation. Axl expression in the kidney is negligible in healthy individuals but upregulated under inflammatory conditions. Little is known about Axl transcriptional regulation. We analyzed the 4.4 kb mouse Axl promoter region and found that many transcription factor (TF)-binding sites and regulatory elements are located within a 600 bp fragment proximal to the translation start site. Among four TFs (Sp1, Ap1, MZF1, and Ep300) identified, Sp1 was the most potent TF that promotes Axl expression. Luciferase assays confirmed the siRNA results and revealed additional mechanisms that regulate Axl expression, including sequences encoding a 5'-UTR mini-intron and potential G-quadruplex forming regions. Deletion of the Axl 5'-UTR mini-intron resulted in a 3.2-fold increases in luciferase activity over the full-length UTR (4.4 kb Axl construct). The addition of TMPyP4, a G-quadruplex stabilizer, resulted in a significantly decreased luciferase activity. Further analysis of the mouse Axl 3'-UTR revealed a miRNA-34a binding site, which inversely regulates Axl expression. The inhibitory role of miRNA-34a in Axl expression was demonstrated in mesangial cells using miRNA-34a mimicry and in primary kidney cells with IL-6 stimulated STAT3 activation. Taken together, Axl expression in mouse kidney is synergistically regulated by multiple factors, including TFs and secondary structures, such as mini-intron and G-quadruplex. A unique IL6/STAT3/miRNA-34a pathway was revealed to be critical in inflammatory renal Axl expression.
Collapse
Affiliation(s)
- David E. Adams
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (D.E.A.); (Y.Z.)
| | - Yuxuan Zhen
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (D.E.A.); (Y.Z.)
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (D.E.A.); (Y.Z.)
- Correspondence:
| |
Collapse
|
244
|
Barakat R, Campbell CA, Espin-Palazon R. Identification of Transcription Factor Binding Sites by Cleavage Under Target and Release Using Nuclease in Zebrafish. Zebrafish 2022; 19:104-108. [PMID: 35704898 PMCID: PMC9246268 DOI: 10.1089/zeb.2021.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cleavage Under Targets and Release Using Nuclease (CUT&RUN) has emerged as a chromatin profiling strategy that excels traditional methods. Although CUT&RUN has been widely utilized in mammalian cells, its use in the zebrafish is at its early stages. In this study, we have developed a protocol to successfully perform CUT&RUN to map transcription factor (TF) binding sites in embryonic, adult tissues, and FACS-sorted zebrafish cells. We also provide a detailed workflow for the identification of predicted TF binding sites that can be utilized in any animal species. Altogether, our strategy will expand this invaluable tool to the zebrafish community, improving the epigenetic resolution that can be achieved in this model organism.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
245
|
Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, Eliseev RA. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. eLife 2022; 11:e75023. [PMID: 35635445 PMCID: PMC9191891 DOI: 10.7554/elife.75023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Brianna H Kalicharan
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | | | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of RochesterRochesterUnited States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
- Department of Pharmacology & Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
246
|
Sulforaphane Enhanced Proliferation of Porcine Satellite Cells via Epigenetic Augmentation of SMAD7. Animals (Basel) 2022; 12:ani12111365. [PMID: 35681828 PMCID: PMC9179638 DOI: 10.3390/ani12111365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs’ viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter’s methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.
Collapse
|
247
|
Ha SE, Jin B, Jorgensen BG, Zogg H, Wei L, Singh R, Park C, Kurahashi M, Kim S, Baek G, Poudrier SM, Lee MY, Sanders KM, Ro S. Transcriptome profiling of subepithelial PDGFRα cells in colonic mucosa reveals several cell-selective markers. PLoS One 2022; 17:e0261743. [PMID: 35560163 PMCID: PMC9106222 DOI: 10.1371/journal.pone.0261743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Subepithelial platelet-derived growth factor receptor alpha (PDGFRα)+ cells found in the colonic mucosal tissue come in close contact with epithelial cells, immune cells, neurons, capillaries, and lymphatic networks. Mucosal subepithelial PDGFRα+ cells (MuPαC) are important regulators in various intestinal diseases including fibrosis and inflammation. However, the transcriptome of MuPαC has not yet been elucidated. Using Pdgfra-eGFP mice and flow cytometry, we isolated colonic MuPαC and obtained their transcriptome data. In analyzing the transcriptome, we identified three novel, and selectively expressed, markers (Adamdec1, Fin1, and Col6a4) found in MuPαC. In addition, we identified a unique set of MuPαC-enriched genetic signatures including groups of growth factors, transcription factors, gap junction proteins, extracellular proteins, receptors, cytokines, protein kinases, phosphatases, and peptidases. These selective groups of genetic signatures are linked to the unique cellular identity and function of MuPαC. Furthermore, we have added this MuPαC transcriptome data to our Smooth Muscle Genome Browser that contains the transcriptome data of jejunal and colonic smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and smooth muscle resident PDGFRα+ cells: (https://med.unr.edu/physio/transcriptome). This online resource provides a comprehensive reference of all currently known genetic transcripts expressed in primary MuPαC in the colon along with smooth muscle resident PDGFRα cells, SMC, and ICC in the murine colon and jejunum.
Collapse
Affiliation(s)
- Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Byungchang Jin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Hannah Zogg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Masaaki Kurahashi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Lowa, Lowa City, Lowa, United States of America
| | - Sei Kim
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Gain Baek
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Sandra M. Poudrier
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Moon Young Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Chonbuk, Korea
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| |
Collapse
|
248
|
Positive allosteric regulation of PAC1-R up-regulates PAC1-R and its specific ligand PACAP. Acta Biochim Biophys Sin (Shanghai) 2022; 54:657-672. [PMID: 35593471 PMCID: PMC9828401 DOI: 10.3724/abbs.2022041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PAC1-R is a recognized preferential receptor for the neuropeptide of pituitary adenylate cyclase-activating polypeptide (PACAP), which mediates neuroprotective and nerve regenerative activities of PACAP. In this study, we found that in both PAC1R-CHO cells with high expression of PAC1R-eGFP and retinal ganglion cells (RGC-5) with the natural expression of PAC1-R, oligo-peptide PACAP(28-38) and the positively charged arginine-rich penetrating peptide TAT, as positive allosteric modulators of PAC1-R, significantly trigger the nuclear translocation of PAC1-R. The chromatin immunoprecipitation (ChIP)-PCR results show that the nuclear translocated PAC1-R binds with the promoter regions of PAC1-R and its specific ligand PACAP. The up-regulated promoter activities of PAC1-R and PACAP induced by PACAP(28-38) or TAT are positively correlative with the increase of the expression levels of PAC1-R and PACAP. Moreover, the nuclear translocation of PAC1-R induced by PACAP(28-38) or TAT is significantly inhibited by the mutation of PAC1-R on Cys25 and the palmitoylation inhibitor 2-bromopalmitate. Meanwhile, the increase in both PAC1-R and PACAP levels and the neuroprotective activities of PACAP(28-38) and TAT in MPP-induced cell model of Parkinson ' s disease are synchronously inhibited by 2-bromopalmitate, which are positively correlated with the nuclear translocation of PAC1-R induced by PACAP(28-38) or TAT. Bioinformatics analysis and motif enrichment analysis following ChIP-sequencing show that the transcription factors including SP1, Zic2, GATA1, REST and YY1 may be recruited by nuclear PAC1-R and involved in regulating the promoter activities of PAC1-R and PACAP. ChIP-sequencing and related bioinformatics analysis show that the downstream target genes regulated by the nuclear PAC1-R are mostly involved in the process of cellular stress and related to neuroprotection, neuronal genesis and development.
Collapse
|
249
|
Sottoriva K, Paik NY, White Z, Bandara T, Shao L, Sano T, Pajcini KV. A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight 2022; 7:e157015. [PMID: 35349492 PMCID: PMC9090257 DOI: 10.1172/jci.insight.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells. IL-21 receptor expression was driven by Notch activation in CLPs, and in vivo treatment with IL-21 induced Notch-dependent CLP proliferation. Taking advantage of this potentially novel signaling axis, we generated T cell progenitors ex vivo, which improved repopulation of the thymus and peripheral lymphoid organs of mice in an allogeneic transplant model. Importantly, Notch and IL-21 activation were equally effective in the priming and expansion of human cord blood cells toward the T cell fate, confirming the translational potential of the combined treatment.
Collapse
Affiliation(s)
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine and
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine and
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
250
|
Ni Z, Sun P, Zheng J, Wu M, Yang C, Cheng M, Yin M, Cui C, Wang G, Yuan L, Gao Q, Li Y. JNK Signaling Promotes Bladder Cancer Immune Escape by Regulating METTL3-Mediated m6A Modification of PD-L1 mRNA. Cancer Res 2022; 82:1789-1802. [PMID: 35502544 DOI: 10.1158/0008-5472.can-21-1323] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/15/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
The RNA N6-methyladenosine (m6A) writer methyltransferase-like 3 (METTL3) is upregulated in many types of cancer and promotes cancer progression by increasing expression of several oncogenes. Therefore, a better understanding of the mechanisms regulating METTL3 expression and the key targets of METTL3 in cancer cells could provide new therapeutic targets. In this study, we found that activated JNK signaling is associated with increased METTL3 expression in bladder cancer. Knockdown of JNK1 or administration of a JNK inhibitor impaired the binding of c-Jun with the METTL3 promoter, thereby decreasing the expression of METTL3 and global RNA m6A levels. Moreover, RNA m6A sequencing indicated enrichment of m6A in the 3'-UTR of immune checkpoint PD-L1 mRNA, which could be recognized by the m6A reader IGF2BP1 to mediate RNA stability and expression levels of PD-L1. Inhibition of JNK signaling suppressed m6A abundance in PD-L1 mRNA, leading to decreased PD-L1 expression. Functionally, METTL3 was essential for bladder cancer cells to resist the cytotoxicity of CD8+ T cells by regulating PD-L1 expression. Additionally, JNK signaling contributed to tumor immune escape in a METTL3-dependent manner both in vitro and in vivo. These data reveal the JNK/METTL3 axis as a mechanism of aberrant m6A modification and immune regulation in bladder cancer. SIGNIFICANCE The identification of a novel m6A-dependent mechanism underlying immune system evasion by bladder cancer cells reveals JNK signaling as a potential target for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Zegui Ni
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Pengli Sun
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Jin Zheng
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Hongkou District, Shanghai, China
| | - Mingqing Wu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Congcong Yang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Maosheng Cheng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Mingwei Yin
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Chengying Cui
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Guangxian Wang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Lin Yuan
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Hongkou District, Shanghai, China
| | - Qian Gao
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China.,Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China.,Clinic Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|