201
|
Colell EA, Iserte JA, Simonetti FL, Marino-Buslje C. MISTIC2: comprehensive server to study coevolution in protein families. Nucleic Acids Res 2019; 46:W323-W328. [PMID: 29905875 PMCID: PMC6030873 DOI: 10.1093/nar/gky419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
Correlated mutations between residue pairs in evolutionarily related proteins arise from constraints needed to maintain a functional and stable protein. Identifying these inter-related positions narrows down the search for structurally or functionally important sites. MISTIC is a server designed to assist users to calculate covariation in protein families and provide them with an interactive tool to visualize the results. Here, we present MISTIC2, an update to the previous server, that allows to calculate four covariation methods (MIp, mfDCA, plmDCA and gaussianDCA). The results visualization framework has been reworked for improved performance, compatibility and user experience. It includes a circos representation of the information contained in the alignment, an interactive covariation network, a 3D structure viewer and a sequence logo. Others components provide additional information such as residue annotations, a roc curve for assessing contact prediction, data tables and different ways of filtering the data and exporting figures. Comparison of different methods is easily done and scores combination is also possible. A newly implemented web service allows users to access MISTIC2 programmatically using an API to calculate covariation and retrieve results. MISTIC2 is available at: https://mistic2.leloir.org.ar.
Collapse
Affiliation(s)
- Eloy A Colell
- Fundación Instituto Leloir. Av. Patricias Argentinas 435 - Ciudad Autónoma de Buenos Aires, Argentina. CP C1405BWE
| | - Javier A Iserte
- Fundación Instituto Leloir. Av. Patricias Argentinas 435 - Ciudad Autónoma de Buenos Aires, Argentina. CP C1405BWE
| | - Franco L Simonetti
- Fundación Instituto Leloir. Av. Patricias Argentinas 435 - Ciudad Autónoma de Buenos Aires, Argentina. CP C1405BWE
| | - Cristina Marino-Buslje
- Fundación Instituto Leloir. Av. Patricias Argentinas 435 - Ciudad Autónoma de Buenos Aires, Argentina. CP C1405BWE
| |
Collapse
|
202
|
Zeng H, Wang S, Zhou T, Zhao F, Li X, Wu Q, Xu J. ComplexContact: a web server for inter-protein contact prediction using deep learning. Nucleic Acids Res 2019; 46:W432-W437. [PMID: 29790960 PMCID: PMC6030867 DOI: 10.1093/nar/gky420] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/20/2018] [Indexed: 12/15/2022] Open
Abstract
ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.
Collapse
Affiliation(s)
- Hong Zeng
- School of Computer Science and Technology, Hangzhou Dianzi University, China
| | - Sheng Wang
- King Abdullah University of Science and Technology (KAUST), Saudi Arabia.,Toyota Technological Institute at Chicago, USA
| | - Tianming Zhou
- Toyota Technological Institute at Chicago, USA.,Institute for Interdisciplinary Information Sciences, Tsinghua University, China
| | - Feifeng Zhao
- School of Computer Science and Technology, Hangzhou Dianzi University, China
| | - Xiufeng Li
- School of Computer Science and Technology, Hangzhou Dianzi University, China
| | - Qing Wu
- School of Computer Science and Technology, Hangzhou Dianzi University, China
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, USA
| |
Collapse
|
203
|
Marks C, Deane CM. Increasing the accuracy of protein loop structure prediction with evolutionary constraints. Bioinformatics 2019; 35:2585-2592. [PMID: 30535347 DOI: 10.1093/bioinformatics/bty996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Accurate prediction of loop structures remains challenging. This is especially true for long loops where the large conformational space and limited coverage of experimentally determined structures often leads to low accuracy. Co-evolutionary contact predictors, which provide information about the proximity of pairs of residues, have been used to improve whole-protein models generated through de novo techniques. Here we investigate whether these evolutionary constraints can enhance the prediction of long loop structures. RESULTS As a first stage, we assess the accuracy of predicted contacts that involve loop regions. We find that these are less accurate than contacts in general. We also observe that some incorrectly predicted contacts can be identified as they are never satisfied in any of our generated loop conformations. We examined two different strategies for incorporating contacts, and on a test set of long loops (10 residues or more), both approaches improve the accuracy of prediction. For a set of 135 loops, contacts were predicted and hence our methods were applicable in 97 cases. Both strategies result in an increase in the proportion of near-native decoys in the ensemble, leading to more accurate predictions and in some cases improving the root-mean-square deviation of the final model by more than 3 Å. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claire Marks
- Department of Statistics, University of Oxford, Oxford, UK
| | | |
Collapse
|
204
|
Kandathil SM, Greener JG, Jones DT. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13. Proteins 2019; 87:1092-1099. [PMID: 31298436 PMCID: PMC6899903 DOI: 10.1002/prot.25779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 12/28/2022]
Abstract
In this article, we describe our efforts in contact prediction in the CASP13 experiment. We employed a new deep learning‐based contact prediction tool, DeepMetaPSICOV (or DMP for short), together with new methods and data sources for alignment generation. DMP evolved from MetaPSICOV and DeepCov and combines the input feature sets used by these methods as input to a deep, fully convolutional residual neural network. We also improved our method for multiple sequence alignment generation and included metagenomic sequences in the search. We discuss successes and failures of our approach and identify areas where further improvements may be possible. DMP is freely available at: https://github.com/psipred/DeepMetaPSICOV.
Collapse
Affiliation(s)
- Shaun M Kandathil
- Department of Computer Science, University College London, London, UK.,Biomedical Data Science Laboratory, The Francis Crick Institute, London, UK
| | - Joe G Greener
- Department of Computer Science, University College London, London, UK.,Biomedical Data Science Laboratory, The Francis Crick Institute, London, UK
| | - David T Jones
- Department of Computer Science, University College London, London, UK.,Biomedical Data Science Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
205
|
Hockenberry AJ, Wilke CO. Evolutionary couplings detect side-chain interactions. PeerJ 2019; 7:e7280. [PMID: 31328041 PMCID: PMC6622159 DOI: 10.7717/peerj.7280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022] Open
Abstract
Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.
Collapse
Affiliation(s)
- Adam J Hockenberry
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
206
|
Bardiaux B, de Amorim GC, Luna Rico A, Zheng W, Guilvout I, Jollivet C, Nilges M, Egelman EH, Izadi-Pruneyre N, Francetic O. Structure and Assembly of the Enterohemorrhagic Escherichia coli Type 4 Pilus. Structure 2019; 27:1082-1093.e5. [PMID: 31056419 PMCID: PMC7003672 DOI: 10.1016/j.str.2019.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/18/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
Abstract
Bacterial type 4a pili are dynamic surface filaments that promote bacterial adherence, motility, and macromolecular transport. Their genes are highly conserved among enterobacteria and their expression in enterohemorrhagic Escherichia coli (EHEC) promotes adhesion to intestinal epithelia and pro-inflammatory signaling. To define the molecular basis of EHEC pilus assembly, we determined the structure of the periplasmic domain of its major subunit PpdD (PpdDp), a prototype of an enterobacterial pilin subfamily containing two disulfide bonds. The structure of PpdDp, determined by NMR, was then docked into the density envelope of purified EHEC pili obtained by cryoelectron microscopy (cryo-EM). Cryo-EM reconstruction of EHEC pili at ∼8 Å resolution revealed extremely high pilus flexibility correlating with a large extended region of the pilin stem. Systematic mutagenesis combined with functional and interaction analyses identified charged residues essential for pilus assembly. Structural information on exposed regions and interfaces between EHEC pilins is relevant for vaccine and drug discovery.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Gisele Cardoso de Amorim
- NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Areli Luna Rico
- NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ingrid Guilvout
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Camille Jollivet
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France; NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| |
Collapse
|
207
|
Schmiedel JM, Lehner B. Determining protein structures using deep mutagenesis. Nat Genet 2019; 51:1177-1186. [PMID: 31209395 PMCID: PMC7610650 DOI: 10.1038/s41588-019-0431-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Determining the three-dimensional structures of macromolecules is a major goal of biological research, because of the close relationship between structure and function; however, thousands of protein domains still have unknown structures. Structure determination usually relies on physical techniques including X-ray crystallography, NMR spectroscopy and cryo-electron microscopy. Here we present a method that allows the high-resolution three-dimensional backbone structure of a biological macromolecule to be determined only from measurements of the activity of mutant variants of the molecule. This genetic approach to structure determination relies on the quantification of genetic interactions (epistasis) between mutations and the discrimination of direct from indirect interactions. This provides an alternative experimental strategy for structure determination, with the potential to reveal functional and in vivo structures.
Collapse
Affiliation(s)
- Jörn M Schmiedel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
208
|
Heo L, Arbour CF, Feig M. Driven to near-experimental accuracy by refinement via molecular dynamics simulations. Proteins 2019; 87:1263-1275. [PMID: 31197841 DOI: 10.1002/prot.25759] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.
Collapse
Affiliation(s)
- Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Collin F Arbour
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
209
|
Wu Q, Peng Z, Anishchenko I, Cong Q, Baker D, Yang J. Protein contact prediction using metagenome sequence data and residual neural networks. Bioinformatics 2019; 36:41-48. [PMID: 31173061 PMCID: PMC8792440 DOI: 10.1093/bioinformatics/btz477] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Almost all protein residue contact prediction methods rely on the availability of deep multiple sequence alignments (MSAs). However, many proteins from the poorly populated families do not have sufficient number of homologs in the conventional UniProt database. Here we aim to solve this issue by exploring the rich sequence data from the metagenome sequencing projects. RESULTS Based on the improved MSA constructed from the metagenome sequence data, we developed MapPred, a new deep learning-based contact prediction method. MapPred consists of two component methods, DeepMSA and DeepMeta, both trained with the residual neural networks. DeepMSA was inspired by the recent method DeepCov, which was trained on 441 matrices of covariance features. By considering the symmetry of contact map, we reduced the number of matrices to 231, which makes the training more efficient in DeepMSA. Experiments show that DeepMSA outperforms DeepCov by 10-13% in precision. DeepMeta works by combining predicted contacts and other sequence profile features. Experiments on three benchmark datasets suggest that the contribution from the metagenome sequence data is significant with P-values less than 4.04E-17. MapPred is shown to be complementary and comparable the state-of-the-art methods. The success of MapPred is attributed to three factors: the deeper MSA from the metagenome sequence data, improved feature design in DeepMSA and optimized training by the residual neural networks. AVAILABILITY AND IMPLEMENTATION http://yanglab.nankai.edu.cn/mappred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qi Wu
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- To whom correspondence should be addressed. E-mail: or
| | - Ivan Anishchenko
- Department of Biochemistry, Seattle, WA 98105, USA,Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Qian Cong
- Department of Biochemistry, Seattle, WA 98105, USA,Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Department of Biochemistry, Seattle, WA 98105, USA,Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Jianyi Yang
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
210
|
Methods for the Refinement of Protein Structure 3D Models. Int J Mol Sci 2019; 20:ijms20092301. [PMID: 31075942 PMCID: PMC6539982 DOI: 10.3390/ijms20092301] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
The refinement of predicted 3D protein models is crucial in bringing them closer towards experimental accuracy for further computational studies. Refinement approaches can be divided into two main stages: The sampling and scoring stages. Sampling strategies, such as the popular Molecular Dynamics (MD)-based protocols, aim to generate improved 3D models. However, generating 3D models that are closer to the native structure than the initial model remains challenging, as structural deviations from the native basin can be encountered due to force-field inaccuracies. Therefore, different restraint strategies have been applied in order to avoid deviations away from the native structure. For example, the accurate prediction of local errors and/or contacts in the initial models can be used to guide restraints. MD-based protocols, using physics-based force fields and smart restraints, have made significant progress towards a more consistent refinement of 3D models. The scoring stage, including energy functions and Model Quality Assessment Programs (MQAPs) are also used to discriminate near-native conformations from non-native conformations. Nevertheless, there are often very small differences among generated 3D models in refinement pipelines, which makes model discrimination and selection problematic. For this reason, the identification of the most native-like conformations remains a major challenge.
Collapse
|
211
|
Lubecka EA, Liwo A. Introduction of a bounded penalty function in contact-assisted simulations of protein structures to omit false restraints. J Comput Chem 2019; 40:2164-2178. [PMID: 31037754 DOI: 10.1002/jcc.25847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/29/2019] [Accepted: 04/14/2019] [Indexed: 12/26/2022]
Abstract
Contact-assisted simulations, the contacts being predicted or determined experimentally, have become very important in the determination of the structures of proteins and other biological macromolecules. In this work, the effect of contact-distance restraints on the simulated structures was investigated with the use of multiplexed replica exchange simulations with the coarse-grained UNRES force field. A modified bounded flat-bottom restraint function that does not generate a gradient when a restraint cannot be satisfied was implemented. Calculations were run with (i) a set of four small proteins, with contact restraints derived from experimental structures, and (ii) selected CASP11 and CASP12 targets, with restraints as used at prediction time. The bounded penalty function largely omitted false contacts, which were usually inconsistent. It was found that at least 20% of correct contacts must be present in the restraint set to improve model quality with respect to unrestrained simulations. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
212
|
The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes. Curr Opin Struct Biol 2019; 56:179-186. [PMID: 31029927 DOI: 10.1016/j.sbi.2019.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Abstract
Evolution imposes constraints at the interface of interacting biomolecules in order to preserve function or maintain fitness. This pressure may have a direct effect on the sequence composition of interacting biomolecules. As a result, statistical patterns of amino acid or nucleotide covariance that encode for physical and functional interactions are observed in sequences of extant organisms. In recent years, global pairwise models of amino acid and nucleotide coevolution from multiple sequence alignments have been developed and utilized to study molecular interactions in structural biology. In proteins, for which the energy landscape is funneled and minimally frustrated, a direct connection between the physical and sequence space landscapes can be established. Estimating coevolutionary information from sequences of interacting molecules has a broad impact in molecular biology. Applications include the accurate determination of 3D structures of molecular complexes, inference of protein interaction partners, models of protein-protein interaction specificity, the elucidation, and design of protein-nucleic acid recognition as well as the discovery of genome-wide epistatic effects. The current state of the art of coevolutionary analysis includes biomedical applications ranging from mutational landscapes and drug-design to vaccine development.
Collapse
|
213
|
Hou J, Wu T, Cao R, Cheng J. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins 2019; 87:1165-1178. [PMID: 30985027 PMCID: PMC6800999 DOI: 10.1002/prot.25697] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022]
Abstract
Predicting residue‐residue distance relationships (eg, contacts) has become the key direction to advance protein structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure prediction system with three major components: contact distance prediction based on deep convolutional neural networks, distance‐driven template‐free (ab initio) modeling, and protein model ranking empowered by deep learning and contact prediction. Our experiment demonstrates that contact distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out of all 98 predictors in both template‐free and template‐based structure modeling in CASP13. Deep convolutional neural network can utilize global information in pairwise residue‐residue features such as coevolution scores to substantially improve contact distance prediction, which played a decisive role in correctly folding some free modeling and hard template‐based modeling targets. Deep learning also successfully integrated one‐dimensional structural features, two‐dimensional contact information, and three‐dimensional structural quality scores to improve protein model quality assessment, where the contact prediction was demonstrated to consistently enhance ranking of protein models for the first time. The success of MULTICOM system clearly shows that protein contact distance prediction and model selection driven by deep learning holds the key of solving protein structure prediction problem. However, there are still challenges in accurately predicting protein contact distance when there are few homologous sequences, folding proteins from noisy contact distances, and ranking models of hard targets.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Tianqi Wu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, Washington
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| |
Collapse
|
214
|
Bhattacharya S, Bhattacharya D. Does inclusion of residue-residue contact information boost protein threading? Proteins 2019; 87:596-606. [PMID: 30882932 DOI: 10.1002/prot.25684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| |
Collapse
|
215
|
Dyrka W, Pyzik M, Coste F, Talibart H. Estimating probabilistic context-free grammars for proteins using contact map constraints. PeerJ 2019; 7:e6559. [PMID: 30918754 PMCID: PMC6428041 DOI: 10.7717/peerj.6559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/03/2019] [Indexed: 02/04/2023] Open
Abstract
Interactions between amino acids that are close in the spatial structure, but not necessarily in the sequence, play important structural and functional roles in proteins. These non-local interactions ought to be taken into account when modeling collections of proteins. Yet the most popular representations of sets of related protein sequences remain the profile Hidden Markov Models. By modeling independently the distributions of the conserved columns from an underlying multiple sequence alignment of the proteins, these models are unable to capture dependencies between the protein residues. Non-local interactions can be represented by using more expressive grammatical models. However, learning such grammars is difficult. In this work, we propose to use information on protein contacts to facilitate the training of probabilistic context-free grammars representing families of protein sequences. We develop the theory behind the introduction of contact constraints in maximum-likelihood and contrastive estimation schemes and implement it in a machine learning framework for protein grammars. The proposed framework is tested on samples of protein motifs in comparison with learning without contact constraints. The evaluation shows high fidelity of grammatical descriptors to protein structures and improved precision in recognizing sequences. Finally, we present an example of using our method in a practical setting and demonstrate its potential beyond the current state of the art by creating a grammatical model of a meta-family of protein motifs. We conclude that the current piece of research is a significant step towards more flexible and accurate modeling of collections of protein sequences. The software package is made available to the community.
Collapse
Affiliation(s)
- Witold Dyrka
- Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Politechnika Wrocławska, Wrocław, Poland
| | - Mateusz Pyzik
- Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Politechnika Wrocławska, Wrocław, Poland
| | | | | |
Collapse
|
216
|
Structure of SPH (self-incompatibility protein homologue) proteins: a widespread family of small, highly stable, secreted proteins. Biochem J 2019; 476:809-826. [PMID: 30782970 DOI: 10.1042/bcj20180828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
SPH (self-incompatibility protein homologue) proteins are a large family of small, disulfide-bonded, secreted proteins, initially found in the self-incompatibility response in the field poppy (Papaver rhoeas), but now known to be widely distributed in plants, many containing multiple members of this protein family. Using the Origami strain of Escherichia coli, we expressed one member of this family, SPH15 from Arabidopsis thaliana, as a folded thioredoxin fusion protein and purified it from the cytosol. The fusion protein was cleaved and characterised by analytical ultracentrifugation, circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. This showed that SPH15 is monomeric and temperature stable, with a β-sandwich structure. The four strands in each sheet have the same topology as the unrelated proteins: human transthyretin, bacterial TssJ and pneumolysin, with no discernible sequence similarity. The NMR-derived structure was compared with a de novo model, made using a new deep learning algorithm based on co-evolution/correlated mutations, DeepCDPred, validating the method. The DeepCDPred de novo method and homology modelling to SPH15 were then both used to derive models of the 3D structure of the three known PrsS proteins from P. rhoeas, which have only 15-18% sequence homology to SPH15. The DeepCDPred method gave models with lower discreet optimised protein energy scores than the homology models. Three loops at one end of the poppy structures are postulated to interact with their respective pollen receptors to instigate programmed cell death in pollen tubes.
Collapse
|
217
|
Jing X, Dong Q, Lu R, Dong Q. Protein Inter-Residue Contacts Prediction: Methods, Performances and Applications. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181109130430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Protein inter-residue contacts prediction play an important role in the field of protein structure and function research. As a low-dimensional representation of protein tertiary structure, protein inter-residue contacts could greatly help de novo protein structure prediction methods to reduce the conformational search space. Over the past two decades, various methods have been developed for protein inter-residue contacts prediction.Objective:We provide a comprehensive and systematic review of protein inter-residue contacts prediction methods.Results:Protein inter-residue contacts prediction methods are roughly classified into five categories: correlated mutations methods, machine-learning methods, fusion methods, templatebased methods and 3D model-based methods. In this paper, firstly we describe the common definition of protein inter-residue contacts and show the typical application of protein inter-residue contacts. Then, we present a comprehensive review of the three main categories for protein interresidue contacts prediction: correlated mutations methods, machine-learning methods and fusion methods. Besides, we analyze the constraints for each category. Furthermore, we compare several representative methods on the CASP11 dataset and discuss performances of these methods in detail.Conclusion:Correlated mutations methods achieve better performances for long-range contacts, while the machine-learning method performs well for short-range contacts. Fusion methods could take advantage of the machine-learning and correlated mutations methods. Employing more effective fusion strategy could be helpful to further improve the performances of fusion methods.
Collapse
Affiliation(s)
- Xiaoyang Jing
- School of Computer Science, Fudan University, Shanghai, China
| | - Qimin Dong
- Vocational and Technical Education Center of Linxi County, Chifeng, Inner Mongolia, China
| | - Ruqian Lu
- School of Computer Science, Fudan University, Shanghai, China
| | - Qiwen Dong
- Faculty of Education, East China Normal University, Shanghai, China
| |
Collapse
|
218
|
DESTINI: A deep-learning approach to contact-driven protein structure prediction. Sci Rep 2019; 9:3514. [PMID: 30837676 PMCID: PMC6401133 DOI: 10.1038/s41598-019-40314-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/12/2019] [Indexed: 11/09/2022] Open
Abstract
The amino acid sequence of a protein encodes the blueprint of its native structure. To predict the corresponding structural fold from the protein’s sequence is one of most challenging problems in computational biology. In this work, we introduce DESTINI (deep structural inference for proteins), a novel computational approach that combines a deep-learning algorithm for protein residue/residue contact prediction with template-based structural modelling. For the first time, the significantly improved predictive ability is demonstrated in the large-scale tertiary structure prediction of over 1,200 single-domain proteins. DESTINI successfully predicts the tertiary structure of four times the number of “hard” targets (those with poor quality templates) that were previously intractable, viz, a “glass-ceiling” for previous template-based approaches, and also improves model quality for “easy” targets (those with good quality templates). The significantly better performance by DESTINI is largely due to the incorporation of better contact prediction into template modelling. To understand why deep-learning accomplishes more accurate contact prediction, systematic clustering reveals that deep-learning predicts coherent, native-like contact patterns compared to co-evolutionary analysis. Taken together, this work presents a promising strategy towards solving the protein structure prediction problem.
Collapse
|
219
|
Adhikari B, Hou J, Cheng J. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics 2019; 34:1466-1472. [PMID: 29228185 PMCID: PMC5925776 DOI: 10.1093/bioinformatics/btx781] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Motivation Significant improvements in the prediction of protein residue–residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. Results In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks—the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. Availability and implementation The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Badri Adhikari
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Jie Hou
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Jianlin Cheng
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA.,Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
220
|
Wuyun Q, Zheng W, Peng Z, Yang J. A large-scale comparative assessment of methods for residue-residue contact prediction. Brief Bioinform 2019; 19:219-230. [PMID: 27802931 DOI: 10.1093/bib/bbw106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/14/2022] Open
Abstract
Sequence-based prediction of residue-residue contact in proteins becomes increasingly more important for improving protein structure prediction in the big data era. In this study, we performed a large-scale comparative assessment of 15 locally installed contact predictors. To assess these methods, we collected a big data set consisting of 680 nonredundant proteins covering different structural classes and target difficulties. We investigated a wide range of factors that may influence the precision of contact prediction, including target difficulty, structural class, the alignment depth and distribution of contact pairs in a protein structure. We found that: (1) the machine learning-based methods outperform the direct-coupling-based methods for short-range contact prediction, while the latter are significantly better for long-range contact prediction. The consensus-based methods, which combine machine learning and direct-coupling methods, perform the best. (2) The target difficulty does not have clear influence on the machine learning-based methods, while it does affect the direct-coupling and consensus-based methods significantly. (3) The alignment depth has relatively weak effect on the machine learning-based methods. However, for the direct-coupling-based methods and consensus-based methods, the predicted contacts for targets with deeper alignment tend to be more accurate. (4) All methods perform relatively better on β and α + β proteins than on α proteins. (5) Residues buried in the core of protein structure are more prone to be in contact than residues on the surface (22 versus 6%). We believe these are useful results for guiding future development of new approach to contact prediction.
Collapse
Affiliation(s)
- Qiqige Wuyun
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Wei Zheng
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin, China
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin, China
| |
Collapse
|
221
|
Abstract
Thanks to the explosion of genomic sequencing, coevolutionary analysis of protein sequences has gained great and ever-increasing popularity in the last decade, and it is currently an important and well-established tool in structural bioinformatics and computational biology. This chapter concisely introduces the theoretical foundation and the practical aspects of coevolutionary analysis, as well as discusses the molecular modeling strategies to exploit its results in the study of protein structure, dynamics, and interactions. We present here a complete pipeline from sequence extraction to contact prediction through two examples, focusing on the predictions of inter-residue contacts in a single protein domain and on the analysis of a multi-domain protein that undergoes functional, large-scale conformational transitions.
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratory of Statistical Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
222
|
Dehghani T, Naghibzadeh M, Eghdami M. BetaDL: A protein beta-sheet predictor utilizing a deep learning model and independent set solution. Comput Biol Med 2019; 104:241-249. [PMID: 30530227 DOI: 10.1016/j.compbiomed.2018.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
The sequence-based prediction of beta-residue contacts and beta-sheet structures contain key information for protein structure prediction. However, the determination of beta-sheet structures poses numerous challenges due to long-range beta-residue interactions and the huge number of possible beta-sheet structures. Recently gaining attention has been the prediction of residue contacts based on deep learning models whose results have led to improvement in protein structure prediction. In addition, to reduce the computational complexity of determining beta-sheet structures, it has been suggested that this problem be transformed into graph-based solutions. Consequently, the current work proposes BetaDL, a combination of a deep learning and a graph-based beta-sheet structure predictor. BetaDL adopts deep learning models to capture beta-residue contacts and improve beta-sheet structure predictions. In addition, a graph-based approach is presented to model the beta-sheets conformational space and a new score function is introduced to evaluate beta-sheets. Furthermore, the present study demonstrates that the beta-sheet structure can be predicted within an acceptable computational time by the utilization of a heuristic maximum weight independent set solution. When compared to state-of-the-art methods, experimental results from BetaSheet916 and BetaSheet1452 datasets indicate that BetaDL improves the accuracy of beta-residue contact and beta-sheet structure prediction. Using BetaDL, beta-sheet structures are predicted with a 4% and 6% improvement in the F1-score at the residue and strand levels, respectively. BetaDL's source code and data are available at http://kerg.um.ac.ir/index.php/datasets/#BetaDL.
Collapse
Affiliation(s)
- Toktam Dehghani
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Naghibzadeh
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahdie Eghdami
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
223
|
Neuwald AF, Altschul SF. Statistical investigations of protein residue direct couplings. PLoS Comput Biol 2018; 14:e1006237. [PMID: 30596639 PMCID: PMC6329532 DOI: 10.1371/journal.pcbi.1006237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/11/2019] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Protein Direct Coupling Analysis (DCA), which predicts residue-residue contacts based on covarying positions within a multiple sequence alignment, has been remarkably effective. This suggests that there is more to learn from sequence correlations than is generally assumed, and calls for deeper investigations into DCA and perhaps into other types of correlations. Here we describe an approach that enables such investigations by measuring, as an estimated p-value, the statistical significance of the association between residue-residue covariance and structural interactions, either internal or homodimeric. Its application to thirty protein superfamilies confirms that direct coupling (DC) scores correlate with 3D pairwise contacts with very high significance. This method also permits quantitative assessment of the relative performance of alternative DCA methods, and of the degree to which they detect direct versus indirect couplings. We illustrate its use to assess, for a given protein, the biological relevance of alternative conformational states, to investigate the possible mechanistic implications of differences between these states, and to characterize subtle aspects of direct couplings. Our analysis indicates that direct pairwise correlations may be largely distinct from correlated patterns associated with functional specialization, and that the joint analysis of both types of correlations can yield greater power. Data, programs, and source code are freely available at http://evaldca.igs.umaryland.edu.
Collapse
Affiliation(s)
- Andrew F. Neuwald
- Institute for Genome Sciences and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen F. Altschul
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
224
|
Ding W, Mao W, Shao D, Zhang W, Gong H. DeepConPred2: An Improved Method for the Prediction of Protein Residue Contacts. Comput Struct Biotechnol J 2018; 16:503-510. [PMID: 30505403 PMCID: PMC6247404 DOI: 10.1016/j.csbj.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
Information of residue-residue contacts is essential for understanding the mechanism of protein folding, and has been successfully applied as special topological restraints to simplify the conformational sampling in de novo protein structure prediction. Prediction of protein residue contacts has experienced amazingly rapid progresses recently, with prediction accuracy approaching impressively high levels in the past two years. In this work, we introduce a second version of our residue contact predictor, DeepConPred2, which exhibits substantially improved performance and sufficiently reduced running time after model re-optimization and feature updates. When testing on the CASP12 free modeling targets, our program reaches at least the same level of prediction accuracy as the best contact predictors so far and provides information complementary to other state-of-the-art methods in contact-assisted folding.
Collapse
Affiliation(s)
- Wenze Ding
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Wenzhi Mao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Di Shao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Wenxuan Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
225
|
Vorberg S, Seemayer S, Söding J. Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction. PLoS Comput Biol 2018; 14:e1006526. [PMID: 30395601 PMCID: PMC6237422 DOI: 10.1371/journal.pcbi.1006526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/15/2018] [Accepted: 09/24/2018] [Indexed: 12/01/2022] Open
Abstract
Compensatory mutations between protein residues in physical contact can manifest themselves as statistical couplings between the corresponding columns in a multiple sequence alignment (MSA) of the protein family. Conversely, large coupling coefficients predict residue contacts. Methods for de-novo protein structure prediction based on this approach are becoming increasingly reliable. Their main limitation is the strong systematic and statistical noise in the estimation of coupling coefficients, which has so far limited their application to very large protein families. While most research has focused on improving predictions by adding external information, little progress has been made to improve the statistical procedure at the core, because our lack of understanding of the sources of noise poses a major obstacle. First, we show theoretically that the expectation value of the coupling score assuming no coupling is proportional to the product of the square roots of the column entropies, and we propose a simple entropy bias correction (EntC) that subtracts out this expectation value. Second, we show that the average product correction (APC) includes the correction of the entropy bias, partly explaining its success. Third, we have developed CCMgen, the first method for simulating protein evolution and generating realistic synthetic MSAs with pairwise statistical residue couplings. Fourth, to learn exact statistical models that reliably reproduce observed alignment statistics, we developed CCMpredPy, an implementation of the persistent contrastive divergence (PCD) method for exact inference. Fifth, we demonstrate how CCMgen and CCMpredPy can facilitate the development of contact prediction methods by analysing the systematic noise contributions from phylogeny and entropy. Using the entropy bias correction, we can disentangle both sources of noise and find that entropy contributes roughly twice as much noise as phylogeny. Knowledge about the three-dimensional structure of proteins is key to understanding their function and role in biological processes and diseases. The experimental structure determination techniques, such as X-ray crystallography or electron cryo-microscopy, are labour intensive, time-consuming and expensive. Therefore, complementary computational methods to predict a protein’s structure have become indispensable. Over the last years, immense progress has been made in predicting protein structures from their amino acid sequence by utilizing highly accurate predictions of spatial contacts between amino acid residues as constraints in folding simulations. However, contact prediction methods require large numbers of homologous protein sequences in order to discriminate between signal and noise. A major obstacle preventing progress on the statistical methodology is our limited understanding of the different components of noise that are known to affect the predictions. We provide two tools, CCMpredPy and CCMgen, that can be used to learn highly accurate statistical models for contact prediction and to simulate protein evolution according to the statistical constraints between positions of residues as specified by these models, respectively. We showcase their usefulness by quantifying the relative contribution of noise arising from entropy and phylogeny on the predicted contacts, which will facilitate the improvement of the statistical methodology.
Collapse
Affiliation(s)
- Susann Vorberg
- Quantitative and Computational Biology Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Seemayer
- Quantitative and Computational Biology Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Johannes Söding
- Quantitative and Computational Biology Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
226
|
Jones DT, Kandathil SM. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics 2018; 34:3308-3315. [PMID: 29718112 PMCID: PMC6157083 DOI: 10.1093/bioinformatics/bty341] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/06/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Motivation In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Results Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. Availability and implementation DeepCov is freely available at https://github.com/psipred/DeepCov. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David T Jones
- Department of Computer Science, University College London, London, UK
- Biomedical Data Science Laboratory, The Francis Crick Institute, London, UK
| | - Shaun M Kandathil
- Department of Computer Science, University College London, London, UK
- Biomedical Data Science Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
227
|
de Oliveira SHP, Shi J, Deane CM. Comparing co-evolution methods and their application to template-free protein structure prediction. Bioinformatics 2018; 33:373-381. [PMID: 28171606 PMCID: PMC5860252 DOI: 10.1093/bioinformatics/btw618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 02/01/2023] Open
Abstract
Motivation Co-evolution methods have been used as contact predictors to identify pairs of residues that share spatial proximity. Such contact predictors have been compared in terms of the precision of their predictions, but there is no study that compares their usefulness to model generation. Results We compared eight different co-evolution methods for a set of ∼3500 proteins and found that metaPSICOV stage 2 produces, on average, the most precise predictions. Precision of all the methods is dependent on SCOP class, with most methods predicting contacts in all α and membrane proteins poorly. The contact predictions were then used to assist in de novo model generation. We found that it was not the method with the highest average precision, but rather metaPSICOV stage 1 predictions that consistently led to the best models being produced. Our modelling results show a correlation between the proportion of predicted long range contacts that are satisfied on a model and its quality. We used this proportion to effectively classify models as correct/incorrect; discarding decoys classified as incorrect led to an enrichment in the proportion of good decoys in our final ensemble by a factor of seven. For 17 out of the 18 cases where correct answers were generated, the best models were not discarded by this approach. We were also able to identify eight cases where no correct decoy had been generated. Availability and Implementation Data is available for download from: http://opig.stats.ox.ac.uk/resources. Contact saulo.deoliveira@dtc.ox.ac.uk Supplimentary Information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Jiye Shi
- Department of Informatics, UCB Pharma, Slough SL1 3WE, UK,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | |
Collapse
|
228
|
Holland J, Pan Q, Grigoryan G. Contact prediction is hardest for the most informative contacts, but improves with the incorporation of contact potentials. PLoS One 2018; 13:e0199585. [PMID: 29953468 PMCID: PMC6023208 DOI: 10.1371/journal.pone.0199585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/11/2018] [Indexed: 11/18/2022] Open
Abstract
Co-evolution between pairs of residues in a multiple sequence alignment (MSA) of homologous proteins has long been proposed as an indicator of structural contacts. Recently, several methods, such as direct-coupling analysis (DCA) and MetaPSICOV, have been shown to achieve impressive rates of contact prediction by taking advantage of considerable sequence data. In this paper, we show that prediction success rates are highly sensitive to the structural definition of a contact, with more permissive definitions (i.e., those classifying more pairs as true contacts) naturally leading to higher positive predictive rates, but at the expense of the amount of structural information contributed by each contact. Thus, the remaining limitations of contact prediction algorithms are most noticeable in conjunction with geometrically restrictive contacts—precisely those that contribute more information in structure prediction. We suggest that to improve prediction rates for such “informative” contacts one could combine co-evolution scores with additional indicators of contact likelihood. Specifically, we find that when a pair of co-varying positions in an MSA is occupied by residue pairs with favorable statistical contact energies, that pair is more likely to represent a true contact. We show that combining a contact potential metric with DCA or MetaPSICOV performs considerably better than DCA or MetaPSICOV alone, respectively. This is true regardless of contact definition, but especially true for stricter and more informative contact definitions. In summary, this work outlines some remaining challenges to be addressed in contact prediction and proposes and validates a promising direction towards improvement.
Collapse
Affiliation(s)
- Jack Holland
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States of America
| | - Qinxin Pan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States of America
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States of America
- * E-mail:
| |
Collapse
|
229
|
Puranen S, Pesonen M, Pensar J, Xu YY, Lees JA, Bentley SD, Croucher NJ, Corander J. SuperDCA for genome-wide epistasis analysis. Microb Genom 2018; 4. [PMID: 29813016 PMCID: PMC6096938 DOI: 10.1099/mgen.0.000184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 104-105 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 105 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.
Collapse
Affiliation(s)
- Santeri Puranen
- 2Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland.,1Department of Computer Science, Aalto University, FI-00076 Espoo, Finland
| | - Maiju Pesonen
- 1Department of Computer Science, Aalto University, FI-00076 Espoo, Finland.,2Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
| | - Johan Pensar
- 2Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
| | - Ying Ying Xu
- 1Department of Computer Science, Aalto University, FI-00076 Espoo, Finland.,2Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
| | - John A Lees
- 3Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Stephen D Bentley
- 3Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- 4Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Jukka Corander
- 5Department of Biostatistics, University of Oslo, 0317 Oslo, Norway.,2Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland.,3Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
230
|
Simkovic F, Thomas JMH, Rigden DJ. ConKit: a python interface to contact predictions. Bioinformatics 2018; 33:2209-2211. [PMID: 28369168 PMCID: PMC5870551 DOI: 10.1093/bioinformatics/btx148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 11/19/2022] Open
Abstract
Summary Recent advances in protein residue contact prediction algorithms have led to the emergence of many new methods and a variety of file formats. We present ConKit, an open source, modular and extensible Python interface which allows facile conversion between formats and provides an interface to analyses of sequence alignments and sets of contact predictions. Availability and Implementation ConKit is available via the Python Package Index. The documentation can be found at http://www.conkit.org. ConKit is licensed under the BSD 3-Clause. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Felix Simkovic
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jens M H Thomas
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel J Rigden
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
231
|
Mao W, Wang T, Zhang W, Gong H. Identification of residue pairing in interacting β-strands from a predicted residue contact map. BMC Bioinformatics 2018; 19:146. [PMID: 29673311 PMCID: PMC5907701 DOI: 10.1186/s12859-018-2150-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 12/04/2022] Open
Abstract
Background Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Results Our algorithm RDb2C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb2C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb2C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb2C. Conclusion Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. Availability All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C. Electronic supplementary material The online version of this article (10.1186/s12859-018-2150-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenzhi Mao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Tong Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Wenxuan Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
232
|
Gil N, Fiser A. Identifying functionally informative evolutionary sequence profiles. Bioinformatics 2018; 34:1278-1286. [PMID: 29211823 PMCID: PMC5905606 DOI: 10.1093/bioinformatics/btx779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
Abstract
Motivation Multiple sequence alignments (MSAs) can provide essential input to many bioinformatics applications, including protein structure prediction and functional annotation. However, the optimal selection of sequences to obtain biologically informative MSAs for such purposes is poorly explored, and has traditionally been performed manually. Results We present Selection of Alignment by Maximal Mutual Information (SAMMI), an automated, sequence-based approach to objectively select an optimal MSA from a large set of alternatives sampled from a general sequence database search. The hypothesis of this approach is that the mutual information among MSA columns will be maximal for those MSAs that contain the most diverse set possible of the most structurally and functionally homogeneous protein sequences. SAMMI was tested to select MSAs for functional site residue prediction by analysis of conservation patterns on a set of 435 proteins obtained from protein-ligand (peptides, nucleic acids and small substrates) and protein-protein interaction databases. Availability and implementation: A freely accessible program, including source code, implementing SAMMI is available at https://github.com/nelsongil92/SAMMI.git. Contact andras.fiser@einstein.yu.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nelson Gil
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
233
|
Nicoludis JM, Gaudet R. Applications of sequence coevolution in membrane protein biochemistry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:895-908. [PMID: 28993150 PMCID: PMC5807202 DOI: 10.1016/j.bbamem.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.
Collapse
Affiliation(s)
- John M Nicoludis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, United States.
| |
Collapse
|
234
|
He B, Mortuza SM, Wang Y, Shen HB, Zhang Y. NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers. Bioinformatics 2018; 33:2296-2306. [PMID: 28369334 DOI: 10.1093/bioinformatics/btx164] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Motivation Recent CASP experiments have witnessed exciting progress on folding large-size non-humongous proteins with the assistance of co-evolution based contact predictions. The success is however anecdotal due to the requirement of the contact prediction methods for the high volume of sequence homologs that are not available to most of the non-humongous protein targets. Development of efficient methods that can generate balanced and reliable contact maps for different type of protein targets is essential to enhance the success rate of the ab initio protein structure prediction. Results We developed a new pipeline, NeBcon, which uses the naïve Bayes classifier (NBC) theorem to combine eight state of the art contact methods that are built from co-evolution and machine learning approaches. The posterior probabilities of the NBC model are then trained with intrinsic structural features through neural network learning for the final contact map prediction. NeBcon was tested on 98 non-redundant proteins, which improves the accuracy of the best co-evolution based meta-server predictor by 22%; the magnitude of the improvement increases to 45% for the hard targets that lack sequence and structural homologs in the databases. Detailed data analysis showed that the major contribution to the improvement is due to the optimized NBC combination of the complementary information from both co-evolution and machine learning predictions. The neural network training also helps to improve the coupling of the NBC posterior probability and the intrinsic structural features, which were found particularly important for the proteins that do not have sufficient number of homologous sequences to derive reliable co-evolution profiles. Availiablity and Implementation On-line server and standalone package of the program are available at http://zhanglab.ccmb.med.umich.edu/NeBcon/ . Contact zhng@umich.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Baoji He
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - S M Mortuza
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanting Wang
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bin Shen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
235
|
Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin AM. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age. Proteins 2018; 86 Suppl 1:51-66. [PMID: 29071738 PMCID: PMC5820169 DOI: 10.1002/prot.25407] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Following up on the encouraging results of residue-residue contact prediction in the CASP11 experiment, we present the analysis of predictions submitted for CASP12. The submissions include predictions of 34 groups for 38 domains classified as free modeling targets which are not accessible to homology-based modeling due to a lack of structural templates. CASP11 saw a rise of coevolution-based methods outperforming other approaches. The improvement of these methods coupled to machine learning and sequence database growth are most likely the main driver for a significant improvement in average precision from 27% in CASP11 to 47% in CASP12. In more than half of the targets, especially those with many homologous sequences accessible, precisions above 90% were achieved with the best predictors reaching a precision of 100% in some cases. We furthermore tested the impact of using these contacts as restraints in ab initio modeling of 14 single-domain free modeling targets using Rosetta. Adding contacts to the Rosetta calculations resulted in improvements of up to 26% in GDT_TS within the top five structures.
Collapse
Affiliation(s)
- Joerg Schaarschmidt
- Faculty of Science ‐ ChemistryComputational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
| | | | | | - Alexandre M.J.J. Bonvin
- Faculty of Science ‐ ChemistryComputational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
236
|
Ludwiczak J, Jarmula A, Dunin-Horkawicz S. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design. J Struct Biol 2018; 203:54-61. [PMID: 29454111 DOI: 10.1016/j.jsb.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 01/15/2023]
Abstract
Computational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also applicable to de novo design tasks started from backbone structures without any sequence information. In addition, we implemented a protocol that can be used to assess the stability of designed models and to select the best candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible backbone design can be a viable method for protein design, especially for tasks that require a large pool of diverse sequences.
Collapse
Affiliation(s)
- Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Jarmula
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
237
|
Liu Y, Palmedo P, Ye Q, Berger B, Peng J. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks. Cell Syst 2018; 6:65-74.e3. [PMID: 29275173 PMCID: PMC5808454 DOI: 10.1016/j.cels.2017.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/04/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
While genes are defined by sequence, in biological systems a protein's function is largely determined by its three-dimensional structure. Evolutionary information embedded within multiple sequence alignments provides a rich source of data for inferring structural constraints on macromolecules. Still, many proteins of interest lack sufficient numbers of related sequences, leading to noisy, error-prone residue-residue contact predictions. Here we introduce DeepContact, a convolutional neural network (CNN)-based approach that discovers co-evolutionary motifs and leverages these patterns to enable accurate inference of contact probabilities, particularly when few related sequences are available. DeepContact significantly improves performance over previous methods, including in the CASP12 blind contact prediction task where we achieved top performance with another CNN-based approach. Moreover, our tool converts hard-to-interpret coupling scores into probabilities, moving the field toward a consistent metric to assess contact prediction across diverse proteins. Through substantially improving the precision-recall behavior of contact prediction, DeepContact suggests we are near a paradigm shift in template-free modeling for protein structure prediction.
Collapse
Affiliation(s)
- Yang Liu
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Perry Palmedo
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA; Department of Mathematics, MIT, Cambridge, MA 02139, USA; Division of Medical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Qing Ye
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA; Department of Mathematics, MIT, Cambridge, MA 02139, USA.
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
238
|
Prediction of Structures and Interactions from Genome Information. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:123-152. [DOI: 10.1007/978-981-13-2200-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
239
|
Affiliation(s)
- Ngoc Hieu Tran
- David R. Cheriton School of Computer Science; University of Waterloo; Waterloo, ON Canada
| | - Xianglilan Zhang
- David R. Cheriton School of Computer Science; University of Waterloo; Waterloo, ON Canada
- State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing P.R. China
| | - Ming Li
- David R. Cheriton School of Computer Science; University of Waterloo; Waterloo, ON Canada
| |
Collapse
|
240
|
Hong SH, Joung I, Flores-Canales JC, Manavalan B, Cheng Q, Heo S, Kim JY, Lee SY, Nam M, Joo K, Lee IH, Lee SJ, Lee J. Protein structure modeling and refinement by global optimization in CASP12. Proteins 2017; 86 Suppl 1:122-135. [PMID: 29159837 DOI: 10.1002/prot.25426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022]
Abstract
For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded.
Collapse
Affiliation(s)
- Seung Hwan Hong
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | - InSuk Joung
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jose C Flores-Canales
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | - Balachandran Manavalan
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | - Qianyi Cheng
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | - Seungryong Heo
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jong Yun Kim
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea
| | - Sun Young Lee
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea
| | - Mikyung Nam
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea
| | - Keehyoung Joo
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, South Korea
| | - In-Ho Lee
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea
| | - Sung Jong Lee
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,The Research Institute for Basic Sciences, Changwon National University, Changwon-Si, Gyeongsangnam-do, South Korea
| | - Jooyoung Lee
- Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, South Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea.,Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
241
|
Thomas JMH, Simkovic F, Keegan R, Mayans O, Zhang C, Zhang Y, Rigden DJ. Approaches to ab initio molecular replacement of α-helical transmembrane proteins. Acta Crystallogr D Struct Biol 2017; 73:985-996. [PMID: 29199978 PMCID: PMC5713875 DOI: 10.1107/s2059798317016436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023] Open
Abstract
α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.
Collapse
Affiliation(s)
- Jens M. H. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Felix Simkovic
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ronan Keegan
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Olga Mayans
- Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, Department of Biological Chemistry, Medical School, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, Department of Biological Chemistry, Medical School, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
242
|
Zhang C, Mortuza SM, He B, Wang Y, Zhang Y. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins 2017; 86 Suppl 1:136-151. [PMID: 29082551 DOI: 10.1002/prot.25414] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022]
Abstract
We develop two complementary pipelines, "Zhang-Server" and "QUARK", based on I-TASSER and QUARK pipelines for template-based modeling (TBM) and free modeling (FM), and test them in the CASP12 experiment. The combination of I-TASSER and QUARK successfully folds three medium-size FM targets that have more than 150 residues, even though the interplay between the two pipelines still awaits further optimization. Newly developed sequence-based contact prediction by NeBcon plays a critical role to enhance the quality of models, particularly for FM targets, by the new pipelines. The inclusion of NeBcon predicted contacts as restraints in the QUARK simulations results in an average TM-score of 0.41 for the best in top five predicted models, which is 37% higher than that by the QUARK simulations without contacts. In particular, there are seven targets that are converted from non-foldable to foldable (TM-score >0.5) due to the use of contact restraints in the simulations. Another additional feature in the current pipelines is the local structure quality prediction by ResQ, which provides a robust residue-level modeling error estimation. Despite the success, significant challenges still remain in ab initio modeling of multi-domain proteins and folding of β-proteins with complicated topologies bound by long-range strand-strand interactions. Improvements on domain boundary and long-range contact prediction, as well as optimal use of the predicted contacts and multiple threading alignments, are critical to address these issues seen in the CASP12 experiment.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - S M Mortuza
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Baoji He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Yanting Wang
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
243
|
Adhikari B, Hou J, Cheng J. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning. Proteins 2017; 86 Suppl 1:84-96. [PMID: 29047157 DOI: 10.1002/prot.25405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/08/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66.
Collapse
Affiliation(s)
- Badri Adhikari
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, Missouri
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| |
Collapse
|
244
|
Buchan DWA, Jones DT. Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins 2017; 86 Suppl 1:78-83. [PMID: 28901583 PMCID: PMC5836854 DOI: 10.1002/prot.25379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
In this paper, we present the results for the MetaPSICOV2 contact prediction server in the CASP12 community experiment (http://predictioncenter.org). Over the 35 assessed Free Modelling target domains the MetaPSICOV2 server achieved a mean precision of 43.27%, a substantial increase relative to the server's performance in the CASP11 experiment. In the following paper, we discuss improvements to the MetaPSICOV2 server, covering both changes to the neural network and attempts to integrate contact predictions on a domain basis into the prediction pipeline. We also discuss some limitations in the CASP12 assessment which may have overestimated the performance of our method.
Collapse
Affiliation(s)
- Daniel W A Buchan
- Department of Computer Science, University College London, London, UK
| | - David T Jones
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
245
|
Wang S, Li Z, Yu Y, Xu J. Folding Membrane Proteins by Deep Transfer Learning. Cell Syst 2017; 5:202-211.e3. [PMID: 28957654 PMCID: PMC5637520 DOI: 10.1016/j.cels.2017.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/01/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345-1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.
Collapse
Affiliation(s)
- Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhen Li
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA; Department of Computer Science, University of Hong Kong, Hong Kong
| | - Yizhou Yu
- Department of Computer Science, University of Hong Kong, Hong Kong
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
246
|
Taylor WR. Algorithms for matching partially labelled sequence graphs. Algorithms Mol Biol 2017; 12:24. [PMID: 29021818 PMCID: PMC5613400 DOI: 10.1186/s13015-017-0115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In order to find correlated pairs of positions between proteins, which are useful in predicting interactions, it is necessary to concatenate two large multiple sequence alignments such that the sequences that are joined together belong to those that interact in their species of origin. When each protein is unique then the species name is sufficient to guide this match, however, when there are multiple related sequences (paralogs) in each species then the pairing is more difficult. In bacteria a good guide can be gained from genome co-location as interacting proteins tend to be in a common operon but in eukaryotes this simple principle is not sufficient. RESULTS The methods developed in this paper take sets of paralogs for different proteins found in the same species and make a pairing based on their evolutionary distance relative to a set of other proteins that are unique and so have a known relationship (singletons). The former constitute a set of unlabelled nodes in a graph while the latter are labelled. Two variants were tested, one based on a phylogenetic tree of the sequences (the topology-based method) and a simpler, faster variant based only on the inter-sequence distances (the distance-based method). Over a set of test proteins, both gave good results, with the topology method performing slightly better. CONCLUSIONS The methods develop here still need refinement and augmentation from constraints other than the sequence data alone, such as known interactions from annotation and databases, or non-trivial relationships in genome location. With the ever growing numbers of eukaryotic genomes, it is hoped that the methods described here will open a route to the use of these data equal to the current success attained with bacterial sequences.
Collapse
|
247
|
Wang S, Sun S, Xu J. Analysis of deep learning methods for blind protein contact prediction in CASP12. Proteins 2017; 86 Suppl 1:67-77. [PMID: 28845538 DOI: 10.1002/prot.25377] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Abstract
Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method.
Collapse
Affiliation(s)
- Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois
| | - Siqi Sun
- Toyota Technological Institute at Chicago, Chicago, Illinois
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois
| |
Collapse
|
248
|
Jing X, Dong Q, Lu R. RRCRank: a fusion method using rank strategy for residue-residue contact prediction. BMC Bioinformatics 2017; 18:390. [PMID: 28865433 PMCID: PMC5581475 DOI: 10.1186/s12859-017-1811-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background In structural biology area, protein residue-residue contacts play a crucial role in protein structure prediction. Some researchers have found that the predicted residue-residue contacts could effectively constrain the conformational search space, which is significant for de novo protein structure prediction. In the last few decades, related researchers have developed various methods to predict residue-residue contacts, especially, significant performance has been achieved by using fusion methods in recent years. In this work, a novel fusion method based on rank strategy has been proposed to predict contacts. Unlike the traditional regression or classification strategies, the contact prediction task is regarded as a ranking task. First, two kinds of features are extracted from correlated mutations methods and ensemble machine-learning classifiers, and then the proposed method uses the learning-to-rank algorithm to predict contact probability of each residue pair. Results First, we perform two benchmark tests for the proposed fusion method (RRCRank) on CASP11 dataset and CASP12 dataset respectively. The test results show that the RRCRank method outperforms other well-developed methods, especially for medium and short range contacts. Second, in order to verify the superiority of ranking strategy, we predict contacts by using the traditional regression and classification strategies based on the same features as ranking strategy. Compared with these two traditional strategies, the proposed ranking strategy shows better performance for three contact types, in particular for long range contacts. Third, the proposed RRCRank has been compared with several state-of-the-art methods in CASP11 and CASP12. The results show that the RRCRank could achieve comparable prediction precisions and is better than three methods in most assessment metrics. Conclusions The learning-to-rank algorithm is introduced to develop a novel rank-based method for the residue-residue contact prediction of proteins, which achieves state-of-the-art performance based on the extensive assessment. Electronic supplementary material The online version of this article (10.1186/s12859-017-1811-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyang Jing
- School of Computer Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Qiwen Dong
- School of Data Science and Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Ruqian Lu
- School of Computer Science, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
249
|
Buchan DWA, Jones DT. EigenTHREADER: analogous protein fold recognition by efficient contact map threading. Bioinformatics 2017; 33:2684-2690. [PMID: 28419258 PMCID: PMC5860056 DOI: 10.1093/bioinformatics/btx217] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Protein fold recognition when appropriate, evolutionarily-related, structural templates can be identified is often trivial and may even be viewed as a solved problem. However in cases where no homologous structural templates can be detected, fold recognition is a notoriously difficult problem ( Moult et al., 2014 ). Here we present EigenTHREADER, a novel fold recognition method capable of identifying folds where no homologous structures can be identified. EigenTHREADER takes a query amino acid sequence, generates a map of intra-residue contacts, and then searches a library of contact maps of known structures. To allow the contact maps to be compared, we use eigenvector decomposition to resolve the principal eigenvectors these can then be aligned using standard dynamic programming algorithms. The approach is similar to the Al-Eigen approach of Di Lena et al. (2010) , but with improvements made both to speed and accuracy. With this search strategy, EigenTHREADER does not depend directly on sequence homology between the target protein and entries in the fold library to generate models. This in turn enables EigenTHREADER to correctly identify analogous folds where little or no sequence homology information is. RESULTS EigenTHREADER outperforms well-established fold recognition methods such as pGenTHREADER and HHSearch in terms of True Positive Rate in the difficult task of analogous fold recognition. This should allow template-based modelling to be extended to many new protein families that were previously intractable to homology based fold recognition methods. AVAILABILITY AND IMPLEMENTATION All code used to generate these results and the computational protocol can be downloaded from https://github.com/DanBuchan/eigen_scripts . EigenTHREADER, the benchmark code and the data this paper is based on can be downloaded from: http://bioinfadmin.cs.ucl.ac.uk/downloads/eigenTHREADER/ . CONTACT d.t.jones@ucl.ac.uk.
Collapse
Affiliation(s)
- Daniel W A Buchan
- Department of Computer Science, University College London, Gower Street, London, UK
| | - David T Jones
- Department of Computer Science, University College London, Gower Street, London, UK
| |
Collapse
|
250
|
Xiong D, Mao W, Gong H. Predicting the helix-helix interactions from correlated residue mutations. Proteins 2017; 85:2162-2169. [PMID: 28833538 DOI: 10.1002/prot.25370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/03/2017] [Accepted: 08/13/2017] [Indexed: 12/30/2022]
Abstract
Helix-helix interactions are crucial in the structure assembly, stability and function of helix-rich proteins including many membrane proteins. In spite of remarkable progresses over the past decades, the accuracy of predicting protein structures from their amino acid sequences is still far from satisfaction. In this work, we focused on a simpler problem, the prediction of helix-helix interactions, the results of which could facilitate practical protein structure prediction by constraining the sampling space. Specifically, we started from the noisy 2D residue contact maps derived from correlated residue mutations, and utilized ridge detection to identify the characteristic residue contact patterns for helix-helix interactions. The ridge information as well as a few additional features were then fed into a machine learning model HHConPred to predict interactions between helix pairs. In an independent test, our method achieved an F-measure of ∼60% for predicting helix-helix interactions. Moreover, although the model was trained mainly using soluble proteins, it could be extended to membrane proteins with at least comparable performance relatively to previous approaches that were generated purely using membrane proteins. All data and source codes are available at http://166.111.152.91/Downloads.html or https://github.com/dpxiong/HHConPred.
Collapse
Affiliation(s)
- Dapeng Xiong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing, China
| | - Wenzhi Mao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Innovation Center of Structural Biology, Tsinghua University, Beijing, China
| |
Collapse
|