201
|
Bocca C, Bozzo F, Cannito S, Colombatto S, Miglietta A. CLA reduces breast cancer cell growth and invasion through ERalpha and PI3K/Akt pathways. Chem Biol Interact 2010; 183:187-93. [PMID: 19800873 DOI: 10.1016/j.cbi.2009.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/21/2009] [Accepted: 09/25/2009] [Indexed: 12/24/2022]
Abstract
We previously reported that conjugated linoleic acid (CLA), a naturally occurring fatty acid, inhibits the growth of ERalpha(+) MCF-7 and ERalpha(-) MDA-MB-231 human breast cancer cells by negative modulation of the ERK/MAPK pathway and apoptosis induction. Here we show that in these cell lines CLA also down-regulates the PI3K/Akt cascade. In MCF-7 cells CLA also triggers ERalpha/PP2A complex formation reducing the phosphorylation state and transcriptional activity of Eralpha whereas in MDA-MB-231 cells CLA does not induce PP2A activation. Moreover, CLA induces the expression of proteins involved in cell adhesion and inhibits cell migration and MMP-2 activity. These findings suggest that CLA may induce the down-regulation of ERalpha signalling and the reduction of cell invasion through the modulation of balancing between phosphatases and kinases.
Collapse
Affiliation(s)
- C Bocca
- Department of Experimental Medicine and Oncology, University of Torino, C.so Raffaello 30, 10125 Torino, Italy.
| | | | | | | | | |
Collapse
|
202
|
Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F. Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res 2009; 316:138-48. [PMID: 19747913 DOI: 10.1016/j.yexcr.2009.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/26/2009] [Accepted: 09/02/2009] [Indexed: 12/15/2022]
Abstract
Tumor infiltrating neutrophil granulocytes do not only exhibit tumor eliminating functions but also promote tumor progression. We have recently shown that neutrophil granulocytes can serve as linking cells for the adhesion of MDA-MB-468 breast carcinoma cells to pulmonary endothelium. Neutrophil granulocytes but not MDA-MB-468 cells express beta(2)-integrins, the ligands of the intercellular adhesion molecule (ICAM)-1, whereas ICAM-1 is strongly expressed on MDA-MB-468 cells. Consequently, the herein presented study was performed to investigate if this interaction has also an influence on the migratory activity of the tumor cells and whether ICAM-1 signaling plays a role in this process, too. We found that the continuous release of interleukin-8 (IL-8) and GRO-alpha by MDA-MB-468 cells increases the migratory activity of neutrophil granulocytes and attracts these cells towards the tumor cells which enables direct cell-cell interactions. These interactions in turn increase the migratory activity of the tumor cells in an ICAM-1 clustering-dependent mechanism since transfection of the tumor cells with specific siRNA against ICAM-1 abolished the effect. Moreover, ICAM-1 cross-linking on tumor cells induces the phosphorylation of focal adhesion components such as focal adhesion kinase and paxillin via src kinase as well as the activation of the p38 MAPK pathway via Rho kinase in a time-dependent manner. Our results provide evidence that ICAM-1 is coupled to intracellular signaling pathways involved in tumor cell migration. Thus, neutrophil granulocytes can act as modulators of the metastatic capability of tumor cells by ligation of ICAM-1.
Collapse
Affiliation(s)
- Carina Strell
- Institute of Immunology, Witten/Herdecke University, Stockumer Street 10, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
203
|
Takahashi M, Miyazaki H, Furihata M, Sakai H, Konakahara T, Watanabe M, Okada T. Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastasis 2009; 26:817-28. [PMID: 19629725 DOI: 10.1007/s10585-009-9281-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/10/2009] [Indexed: 12/28/2022]
Abstract
Bone is the most frequent site of breast cancer metastasis, and once such metastasis occurs, complete remission is extremely difficult to achieve. In an effort to define the mechanisms underlying metastatic spread of breast cancer to bone, we previously developed and characterized the highly bone metastatic 4T1E/M3 mouse breast cancer cells. We found that following injection into mice, 4T1E/M3 cells exhibited greater bone metastasis and greater in vitro anchorage-independent growth and cell migration than their parental cells (4T1E). We also found that expression of intracellular adhesion molecule-1 (ICAM-1) is crucially involved in these metastatic activities of 4T1E/M3 cells. In the present study, our analysis of gene and protein expression revealed that production of chemokine CCL2 (MCP-1) is dramatically reduced in 4T1E/M3 cells, and that restoration of CCL2 expression in 4T1E/M3 cells diminishes their metastasis to bone and lung. Overexpression of CCL2 in 4T1E/M3 cells significantly reduced not only in vitro anchorage-independent cell growth and cell migration, but also mRNA and cell surface expression of ICAM-1. Conversely, knocking down CCL2 in 4T1E parental cells augmented their metastatic spread to spine and lung. The expression of ICAM-1 was also upregulated in 4T1E-derived CCL2 knockdown cells. Taken together, these results suggest that CCL2 expression may negatively regulate breast cancer metastasis to bone marrow and lung in our model and that expression of ICAM-1 plays a crucial role in that process.
Collapse
Affiliation(s)
- Munehisa Takahashi
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
204
|
Li HZ, Gao Y, Zhao XL, Liu YX, Sun BC, Yang J, Yao Z. Effects of raf kinase inhibitor protein expression on metastasis and progression of human breast cancer. Mol Cancer Res 2009; 7:832-40. [PMID: 19531568 DOI: 10.1158/1541-7786.mcr-08-0403] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Raf kinase inhibitor protein (RKIP) has been shown to be a metastasis suppressor in many kinds of malignant tumors. But its function in breast cancer was not yet clarified completely. We detected RKIP expression in clinical samples of primary breast cancer, breast cancer metastases, and in different breast cancer cells. Compared with the normal breast epithelia, benign breast epithelia, or in situ ductal carcinoma, the expression level of RKIP is decreased in invasive carcinoma and significantly reduced or lost in the metastasis lymph node matched to the invasive carcinoma. To explore the potential role of RKIP in breast cancer metastasis, we studied the effect of RKIP on the malignant phenotypes of the breast cancer cells with ectopically overexpression or knockdown of RKIP. Cell proliferation, soft-agar colony formation, in vitro adhesion assay, invasion, and migation assays were done to examine the malignant phenotypes of the transfected cells. Consequently, RKIP has no effect on in vitro proliferation rate or colony-forming ability of MDA-MB-435 cells. In vitro cell invasion and migration assays indicated that the RKIP expression was inversely associated with the invasiveness of MDA-MB-435 cells. Consistent with these results, in the orthotopic murine models, we observed that overexpression of RKIP in breast cancer cells impaired invasiveness and metastasis, whereas down-regulation of RKIP expression promoted invasiveness and metastasis. These results indicate that RKIP is a metastasis suppressor gene of human breast cancer.
Collapse
Affiliation(s)
- Hong Zhao Li
- Department of Immunology, Tianjin Medical University, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
205
|
Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood) 2009; 234:825-49. [PMID: 19491364 DOI: 10.3181/0902-mr-78] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the fact cancer is primarily a preventable disease, recent statistics indicate cancer will become the number one killer worldwide in 2010. Since certain cancers are more prevalent in the people of some countries than others, suggests the role of lifestyle. For instance cancer incidence among people from the Indian subcontinent, where most spices are consumed, is much lower than that in the Western World. Spices have been consumed for centuries for a variety of purposes-as flavoring agents, colorants, and preservatives. However, there is increasing evidence for the importance of plant-based foods in regular diet to lowering the risk of most chronic diseases, so spices are now emerging as more than just flavor aids, but as agents that can not only prevent but may even treat disease. In this article, we discuss the role of 41 common dietary spices with over 182 spice-derived nutraceuticals for their effects against different stages of tumorigenesis. Besides suppressing inflammatory pathways, spice-derived nutraceuticals can suppress survival, proliferation, invasion, and angiogenesis of tumor cells. We discuss how spice-derived nutraceuticals mediate such diverse effects and what their molecular targets are. Overall our review suggests "adding spice to your life" may serve as a healthy and delicious way to ward off cancer and other chronic diseases.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, BOX 143, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
206
|
Debily MA, Marhomy SE, Boulanger V, Eveno E, Mariage-Samson R, Camarca A, Auffray C, Piatier-Tonneau D, Imbeaud S. A functional and regulatory network associated with PIP expression in human breast cancer. PLoS One 2009; 4:e4696. [PMID: 19262752 PMCID: PMC2650800 DOI: 10.1371/journal.pone.0004696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 01/11/2009] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. PRINCIPAL FINDINGS Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP-] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. CONCLUSIONS Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator.
Collapse
Affiliation(s)
- Marie-Anne Debily
- Array s/IMAGE, Genexpress, Functional Genomics and Systems Biology for Health, LGN-UMR 7091-CNRS and Pierre & Marie Curie University, Paris VI, Villejuif, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumor antigen that mediates prostate cancer cell invasion. J Mol Med (Berl) 2009; 87:507-14. [PMID: 19219419 PMCID: PMC2796542 DOI: 10.1007/s00109-009-0446-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 01/19/2009] [Indexed: 12/24/2022]
Abstract
Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell surface antigens that accompany this transition, we studied the changes in cell surface antigenic profiles between a hormone-sensitive prostate cancer line LNCaP and its hormone-refractory derivative C4-2B, using an antibody library-based affinity proteomic approach. We selected a naïve phage antibody display library to identify human single-chain antibodies that bind specifically to C4-2B but not LNCaP. Using mass spectrometry, we identified one of the antibody-targeted antigens as the ICAM-1/CD54/human rhinovirus receptor. Recombinant IgG1 derived from this single-chain antibody binds to a neutralizing epitope of ICAM-1 and blocks C4-2B cell invasion through extracellular matrix in vitro. ICAM-1 is thus differentially expressed during the transition of the hormone-sensitive prostate cancer cell line LNCaP to its hormone-refractory derivative C4-2B, plays an important role in imparting the C4-2B line with the ability to invade, and may therefore be a target for therapeutic intervention.
Collapse
|
208
|
Mendoza M, Khanna C. Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 2009; 41:1452-62. [PMID: 19401145 DOI: 10.1016/j.biocel.2009.01.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 12/12/2022]
Abstract
Metastasis remains the overwhelming cause of death for cancer patients. During metastasis, cancer cells will leave the primary tumor, intravasate into the bloodstream, arrest at a distant organ, and eventually develop into gross lesions at the secondary sites. This intricate process is influenced by innumerable factors and complex cellular interactions described in 1889 by Stephen Paget as the seed and soil hypothesis. In this review, we revisit this seed and soil hypothesis with an emerging understanding of the cancer cell (i.e. seed) and its microenvironment (i.e. soil). We will provide background to suggest that a critical outcome of the seed-soil interaction is resistance of the stresses that would otherwise impede metastasis.
Collapse
Affiliation(s)
- Martin Mendoza
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
209
|
Cao TC, Thirkill TL, Wells M, Barakat AI, Douglas GC. ORIGINAL ARTICLE: Trophoblasts and Shear Stress Induce an Asymmetric Distribution of ICAM-1 in Uterine Endothelial Cells. Am J Reprod Immunol 2008; 59:167-81. [DOI: 10.1111/j.1600-0897.2007.00542.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
210
|
Sun Y, Mi W, Cai J, Ying W, Liu F, Lu H, Qiao Y, Jia W, Bi X, Lu N, Liu S, Qian X, Zhao X. Quantitative proteomic signature of liver cancer cells: tissue transglutaminase 2 could be a novel protein candidate of human hepatocellular carcinoma. J Proteome Res 2008; 7:3847-59. [PMID: 18646787 DOI: 10.1021/pr800153s] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common diseases worldwide, with extremely poor prognosis due to failure in diagnosing it early. Alpha-fetoprotein (AFP) is the only available biomarker for HCC diagnosis; however, its use in the early detection of HCC is limited, especially because about one-third of patients afflicted with HCC have normal levels of serum AFP. Thus, identifying additional biomarkers that may be used in combination with AFP to improve early detection of HCC is greatly needed. A quantitative proteomic analysis approach using stable isotope labeling with amino acids in cell culture (SILAC) combined with LTQ-FT-MS/MS identification was used to explore differentially expressed protein profiles between normal (HL-7702) and cancer (HepG2 and SK-HEP-1) cells. A total of 116 proteins were recognized as potential markers that could distinguish between HCC and normal liver cells. Certain proteins, such as AFP, intercellular adhesion molecule-1 (ICAM-1), IQ motif containing GTPase activating protein 2 (IQGAP2), claudin-1 (CLDN1) and tissue transglutaminase 2 (TGM2), were validated both in multiple cell lines and in 61 specimens of clinical HCC cases. TGM2 was overexpressed in some of the AFP-deficient HCC cells (SK-HEP-1 and Bel-7402) and in about half of the tumor tissues with low levels of serum AFP (17/32, AFP-negative HCC). Trace amounts of TGM2 were found to be expressed in the samples with high serum AFP (26/29, AFP-positive HCC). Moreover, TGM2 expression in liver tissues showed an inverse correlation with the level of serum AFP in HCC patients. Notably, TGM2 existed in the supernatant of the AFP-deficient SK-HEP-1, SMMC-7721 and HLE cells, and it was found to be induced in AFP-producing cells (HepG2) by specific siRNA silence assay. Serum TGM2 levels of 109 HCC patients and 42 healthy controls were further measured by an established ELISA assay; the levels were significantly higher in HCC patients, and they correlated with the histological grade and tumor size. These data suggest that TGM2 may serve as a novel histological/serologic candidate involved in HCC, especially for the individuals with normal serum AFP. These novel findings may provide important clues to identify new biomarkers of HCC and indirectly improve early detection of the disease.
Collapse
Affiliation(s)
- Yulin Sun
- State Key Laboratory of Molecular Oncology, Department of Abdominal Surgery, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021 P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Takahashi M, Furihata M, Akimitsu N, Watanabe M, Kaul S, Yumoto N, Okada T. A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin Exp Metastasis 2008; 25:517-29. [PMID: 18340424 DOI: 10.1007/s10585-008-9163-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 03/03/2008] [Indexed: 11/28/2022]
Abstract
To understand the mechanisms underlying bone marrow metastasis precisely, we established the highly metastatic 4T1E/M3 murine breast cancer cell line. 4T1 murine breast cancer cells were transfected with the neomycin resistance gene, selected in G418, intravenously injected into mice, and harvested from bone marrow. By repeating this protocol three times, we established the 4T1E/M3 cells. The clonality of 4T1E/M3 cells was markedly high confirmed by genomic southern analysis using neo-gene probe. When tissues harvested from mice after intravenous injection of 4T1E/M3 cells were examined histologically, markedly enhanced bone marrow metastasis was observed; 77% of spines from 4T1E/M3-injected mouse showed metastasis as compared to 14% metastasis seen with the parent cells. In vitro, 4T1E/M3 cells attached more strongly to the plastic plate and to bone marrow-derived endothelial cells. DNA micro arrays, real time RT-PCR and FACS analyses revealed that the expression of ICAM-1 and beta2 integrin was upregulated in 4T1E/M3 cells at both the mRNA and cell surface protein levels. 4T1E/M3 cells also showed greater anchorage-independent proliferation in soft agar, and migrated markedly faster than the parent cells in wound healing assays. Anti-ICAM-1 antibodies strongly inhibited both the colony formation and the migration activity of 4T1E/M3 suggesting the importance of the role of ICAM-1. Our newly established highly metastatic 4T1E/M3 cells may provide a potentially powerful tool to study the molecular mechanisms of bone marrow metastasis and to identify new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Munehisa Takahashi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
212
|
Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res Treat 2008; 113:21-30. [DOI: 10.1007/s10549-008-9899-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 01/07/2008] [Indexed: 11/26/2022]
|
213
|
Lin YC, Shun CT, Wu MS, Chen CC. A novel anticancer effect of thalidomide: inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression of nuclear factor-kappaB. Clin Cancer Res 2007; 12:7165-73. [PMID: 17145842 DOI: 10.1158/1078-0432.ccr-06-1393] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Thalidomide has been reported to have antiangiogenic and antimetastatic effects. Intercellular adhesion molecule-1 (ICAM-1) was shown to be involved in monocyte adherence to epithelial cells and cancer cell invasion. In this study, we further investigated the role of ICAM-1 in tumorigenesis, including tumor formation and metastasis. ICAM-1 as a molecular target for cancer and the anticancer effect of thalidomide were investigated. EXPERIMENTAL DESIGN Expression of ICAM-1 protein in human lung cancer specimens was assessed by immunohistochemistry. ICAM-1 overexpressing A549 cells (A549/ICAM-1) were established to investigate the direct effect of ICAM-1 on in vitro cell invasion and in vivo tumor metastasis. Transient transfection and luciferase assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation were done to assess the activity and binding of nuclear factor-kappaB to the ICAM-1 promoter. A xenograft model in nude mice was conducted to evaluate the anticancer effect of thalidomide. RESULTS High expression of ICAM-1 in human lung cancer specimens was correlated with a greater risk of advanced cancers (stages III and IV). A549/ICAM-1 cells were shown to induce in vitro cell invasion and in vivo tumor metastasis. Anti-ICAM-1 antibody and thalidomide had inhibitory effect on these events. Thalidomide also suppressed tumor necrosis factor-alpha-induced ICAM-1 expression through inhibition of nuclear factor-kappaB binding to the ICAM-1 promoter. The in vivo xenograft model showed the effectiveness of thalidomide on tumor formation. CONCLUSION These studies provide a framework for targeting ICAM-1 as a biologically based therapy for cancer, and thalidomide might be effective in human lung cancer.
Collapse
Affiliation(s)
- Yi-Chu Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
214
|
Iyer JK, Amaladoss A, Genesan S, Ganesan S, Preiser PR. Variable expression of the 235 kDa rhoptry protein ofPlasmodium yoeliimediate host cell adaptation and immune evasion. Mol Microbiol 2007; 65:333-46. [PMID: 17590237 DOI: 10.1111/j.1365-2958.2007.05786.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The severity of infections caused by the malaria parasite Plasmodium is in part due to the rapid multiplication cycles in the blood of an infected individual. A fundamental step in this phenomenon is the invasion of selected erythrocytes of the host by the parasite. The py235 rhoptry protein multigene family of the rodent malaria parasite Plasmodium yoelii has been implicated in mediating host cell selection during erythrocyte invasion and virulence. Here we show using quantitative real-time polymerase chain reaction and Western blot analysis that variations in the amounts of py235 may be a mechanism that the parasite uses to define its host cell repertoire. High levels of py235 expression leads to a wider range of erythrocytes invaded and therefore increased virulence. In contrast, to evade PY235-specific immunity, the parasite downregulates py235 thereby decreasing the host cell repertoire and virulence. These results demonstrate a new mechanism where variations in the amounts of parasite ligand define the parasite host cell repertoire and enable it to evade host immunity.
Collapse
Affiliation(s)
- Jayasree Kaveri Iyer
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
215
|
Esseghir S, Reis-Filho JS, Kennedy A, James M, O'Hare MJ, Jeffery R, Poulsom R, Isacke CM. Identification of transmembrane proteins as potential prognostic markers and therapeutic targets in breast cancer by a screen for signal sequence encoding transcripts. J Pathol 2007; 210:420-30. [PMID: 17054309 DOI: 10.1002/path.2071] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study demonstrates, through a combination of stringent screening methods and thorough validation, that it is possible to identify transmembrane proteins preferentially expressed in primary breast tumour cells. mRNA was extracted from tumour cells isolated from invasive breast cancers and it was then subtracted against normal breast tissue mRNA prior to the generation of a signal sequence-trap library. Screening of the library identified 31 positive clones encoding 12 cell-surface and 12 secreted proteins. The expression of a subset of transmembrane genes was then interrogated using a high-throughput method (tissue microarray) coupled with cutting-edge in situ techniques in a large cohort of patients who had undergone uniform adjuvant chemotherapy. Expression of CD98 heavy chain (CD98HC) and low-level expression of the insulin-like growth factor 2 receptor/mannose-6-phosphate receptor (IGF2R/M6PR) correlated with poor patient prognosis in the whole cohort. Expression of bradykinin receptor B1 (BDKRB1) and testis enhanced gene transcript (TEGT) correlated with good prognosis in woman with oestrogen receptor (ER)-negative breast tumours. These results indicate that this combined approach of isolating primary tumour cells, generating a library to specifically isolate signal-sequence-containing transcripts, and in situ hybridization on tissue microarrays successfully identified novel prognostic markers (BDKRB1, CD98hc, and TEGT) and potential transmembrane therapeutic targets (CD98hc) in breast cancer.
Collapse
Affiliation(s)
- S Esseghir
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Clarke CJ, Truong TG, Hannun YA. Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem 2006; 282:1384-96. [PMID: 17085432 DOI: 10.1074/jbc.m609216200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutral sphingomyelinases (N-SMases) are major candidates for stress-induced ceramide production. However, there is little information on the physiological regulation and roles of the cloned N-SMase enzyme, nSMase2. In this study, nSMase2 was found to translocate acutely to the plasma membrane of A549 epithelial cells in response to tumor necrosis factor alpha (TNF-alpha) in a time- and dose-dependent manner. Additionally, TNF-alpha increased N-SMase activity rapidly and transiently both endogenously and in cells overexpressing nSMase2. Furthermore, the translocation of nSMase2 was regulated by p38-alpha MAPK, but not ERK or JNK, and the increase in endogenous N-SMase activity was abrogated by p38 MAPK inhibition. In addition, both p38-alpha MAPK and nSMase2 were implicated in the TNF-alpha-stimulated up-regulation of the adhesion proteins vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM), but this was largely independent of NF-kappaB activation. These data reveal p38 MAPK as an upstream regulator of nSMase2 and indicate a role for nSMase2 in pro-inflammatory responses induced by TNF-alpha as a regulator of adhesion proteins.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
217
|
Mitra AP, Almal AA, George B, Fry DW, Lenehan PF, Pagliarulo V, Cote RJ, Datar RH, Worzel WP. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer. BMC Cancer 2006; 6:159. [PMID: 16780590 PMCID: PMC1550424 DOI: 10.1186/1471-2407-6-159] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 06/16/2006] [Indexed: 11/30/2022] Open
Abstract
Background Previous studies on bladder cancer have shown nodal involvement to be an independent indicator of prognosis and survival. This study aimed at developing an objective method for detection of nodal metastasis from molecular profiles of primary urothelial carcinoma tissues. Methods The study included primary bladder tumor tissues from 60 patients across different stages and 5 control tissues of normal urothelium. The entire cohort was divided into training and validation sets comprised of node positive and node negative subjects. Quantitative expression profiling was performed for a panel of 70 genes using standardized competitive RT-PCR and the expression values of the training set samples were run through an iterative machine learning process called genetic programming that employed an N-fold cross validation technique to generate classifier rules of limited complexity. These were then used in a voting algorithm to classify the validation set samples into those associated with or without nodal metastasis. Results The generated classifier rules using 70 genes demonstrated 81% accuracy on the validation set when compared to the pathological nodal status. The rules showed a strong predilection for ICAM1, MAP2K6 and KDR resulting in gene expression motifs that cumulatively suggested a pattern ICAM1>MAP2K6>KDR for node positive cases. Additionally, the motifs showed CDK8 to be lower relative to ICAM1, and ANXA5 to be relatively high by itself in node positive tumors. Rules generated using only ICAM1, MAP2K6 and KDR were comparably robust, with a single representative rule producing an accuracy of 90% when used by itself on the validation set, suggesting a crucial role for these genes in nodal metastasis. Conclusion Our study demonstrates the use of standardized quantitative gene expression values from primary bladder tumor tissues as inputs in a genetic programming system to generate classifier rules for determining the nodal status. Our method also suggests the involvement of ICAM1, MAP2K6, KDR, CDK8 and ANXA5 in unique mathematical combinations in the progression towards nodal positivity. Further studies are needed to identify more class-specific signatures and confirm the role of these genes in the evolution of nodal metastasis in bladder cancer.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR 312, Los Angeles CA 90033, USA
| | - Arpit A Almal
- Genetics Squared Inc., 210 South 5th Avenue, Suite A, Ann Arbor MI 48104, USA
| | - Ben George
- Department of Internal Medicine, Gundersen Lutheran Medical Center, 1900 South Avenue, La Crosse WI 54601, USA
| | - David W Fry
- Genetics Squared Inc., 210 South 5th Avenue, Suite A, Ann Arbor MI 48104, USA
| | - Peter F Lenehan
- Genetics Squared Inc., 210 South 5th Avenue, Suite A, Ann Arbor MI 48104, USA
| | - Vincenzo Pagliarulo
- Dipartimento Emergenza e Trapianti d'Organo, Sezione di Urologia, Università di Bari, Piazza G. Cesare 11, Bari 70124, Italy
| | - Richard J Cote
- Department of Pathology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR 312, Los Angeles CA 90033, USA
| | - Ram H Datar
- Department of Pathology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR 312, Los Angeles CA 90033, USA
| | - William P Worzel
- Genetics Squared Inc., 210 South 5th Avenue, Suite A, Ann Arbor MI 48104, USA
| |
Collapse
|
218
|
Chen H, Hernandez W, Shriver MD, Ahaghotu CA, Kittles RA. ICAM gene cluster SNPs and prostate cancer risk in African Americans. Hum Genet 2006; 120:69-76. [PMID: 16733712 DOI: 10.1007/s00439-006-0184-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/30/2006] [Indexed: 11/30/2022]
Abstract
Intercellular adhesion molecules (ICAMs) are known to be involved in various human cancers. An ICAM gene cluster lying within a 26 kb region on chromosome 19p13.2, and containing ICAM1, ICAM4, and ICAM5 has recently been identified as harboring a breast and prostate cancer susceptibility locus in two populations of European ancestry from Germany and Australia. The objective of this study was to confirm the ICAM association with prostate cancer in a sample of African American prostate cancer cases (N = 286) and controls (N = 391). Six single nucleotide polymorphisms (SNPs) within the three ICAM genes were genotyped. To control for potential population stratification an ancestry-adjusted association analysis was performed. We found that ICAM1 SNPs, -9A/C (rs5490) and K469E (rs5498) were associated with prostate cancer risk in men with a family history of prostate cancer (P = 0.008). Specifically, increased risk was observed for individuals who possessed the CC genotype of the -9 A/C variant (odds ratio = 2.5; 95% CI = 1.0-6.3) and at least one G allele of non-synonymous K469E variant (odds ratio = 1.8; 95% CI = 1.2-3.1). Strong linkage disequilibrium was observed across the ICAM region (P < 0.001). A common haplotype within the ICAM gene cluster, harboring the -9A/C variant was significantly associated with prostate cancer (P = 0.03), mainly due to men with family history (P = 0.01). Our results replicate previous findings of association of the ICAM gene cluster with prostate cancer and suggest that common genetic variation within ICAM1 and not ICAM5 may be an important risk factor for prostate cancer.
Collapse
Affiliation(s)
- Hankui Chen
- Human Cancer Genetics, Comprehensive Cancer Center, The Ohio State University, 494 Tzagournis Medical Research Facility, 420 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|