201
|
Perumal S, Waminal NE, Lee J, Lee J, Choi BS, Kim HH, Grandbastien MA, Yang TJ. Elucidating the major hidden genomic components of the A, C, and AC genomes and their influence on Brassica evolution. Sci Rep 2017; 7:17986. [PMID: 29269833 PMCID: PMC5740159 DOI: 10.1038/s41598-017-18048-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Decoding complete genome sequences is prerequisite for comprehensive genomics studies. However, the currently available reference genome sequences of Brassica rapa (A genome), B. oleracea (C) and B. napus (AC) cover 391, 540, and 850 Mbp and represent 80.6, 85.7, and 75.2% of the estimated genome size, respectively, while remained are hidden or unassembled due to highly repetitive nature of these genome components. Here, we performed the first comprehensive genome-wide analysis using low-coverage whole-genome sequences to explore the hidden genome components based on characterization of major repeat families in the B. rapa and B. oleracea genomes. Our analysis revealed 10 major repeats (MRs) including a new family comprising about 18.8, 10.8, and 11.5% of the A, C and AC genomes, respectively. Nevertheless, these 10 MRs represented less than 0.7% of each assembled reference genome. Genomic survey and molecular cytogenetic analyses validates our insilico analysis and also pointed to diversity, differential distribution, and evolutionary dynamics in the three Brassica species. Overall, our work elucidates hidden portions of three Brassica genomes, thus providing a resource for understanding the complete genome structures. Furthermore, we observed that asymmetrical accumulation of the major repeats might be a cause of diversification between the A and C genomes.
Collapse
Affiliation(s)
- Sampath Perumal
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.,Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jonghoon Lee
- Joeun Seed, Goesan-Gun, Chungcheongbuk-Do, 28051, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13558, Republic of Korea
| | - Hyun Hee Kim
- Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
202
|
Suh A, Smeds L, Ellegren H. Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 2017; 27:99-111. [DOI: 10.1111/mec.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
203
|
Dodt WG, Gallus S, Phillips MJ, Nilsson MA. Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias. Sci Rep 2017; 7:16811. [PMID: 29196678 PMCID: PMC5711953 DOI: 10.1038/s41598-017-16148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/26/2017] [Indexed: 01/31/2023] Open
Abstract
Reconstructing phylogeny from retrotransposon insertions is often limited by access to only a single reference genome, whereby support for clades that do not include the reference taxon cannot be directly observed. Here we have developed a new statistical framework that accounts for this ascertainment bias, allowing us to employ phylogenetically powerful retrotransposon markers to explore the radiation of the largest living marsupials, the kangaroos and wallabies of the genera Macropus and Wallabia. An exhaustive in silico screening of the tammar wallaby (Macropus eugenii) reference genome followed by experimental screening revealed 29 phylogenetically informative retrotransposon markers belonging to a family of endogenous retroviruses. We identified robust support for the enigmatic swamp wallaby (Wallabia bicolor) falling within a paraphyletic genus, Macropus. Our statistical approach provides a means to test for incomplete lineage sorting and introgression/hybridization in the presence of the ascertainment bias. Using retrotransposons as “molecular fossils”, we reveal one of the most complex patterns of hemiplasy yet identified, during the rapid diversification of kangaroos and wallabies. Ancestral state reconstruction incorporating the new retrotransposon phylogenetic information reveals multiple independent ecological shifts among kangaroos into more open habitats, coinciding with the Pliocene onset of increased aridification in Australia from ~3.6 million years ago.
Collapse
Affiliation(s)
- William G Dodt
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| | - Susanne Gallus
- Senckenberg Biodiversity and Climate Research Centre (BiK-F) Frankfurt, Senckenberg Gesellschaft fuer Naturforschung, Senckenberganlage 25, Frankfurt am Main, Germany
| | - Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre (BiK-F) Frankfurt, Senckenberg Gesellschaft fuer Naturforschung, Senckenberganlage 25, Frankfurt am Main, Germany.
| |
Collapse
|
204
|
Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG, Oh S, Heiner C, Paxinos E, Andino R. The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the Aedes aegypti Genome. Curr Biol 2017; 27:3511-3519.e7. [PMID: 29129531 DOI: 10.1016/j.cub.2017.09.067] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/29/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
The Aedes aegypti mosquito transmits arboviruses, including dengue, chikungunya, and Zika virus. Understanding the mechanisms underlying mosquito immunity could provide new tools to control arbovirus spread. Insects exploit two different RNAi pathways to combat viral and transposon infection: short interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) [1, 2]. Endogenous viral elements (EVEs) are sequences from non-retroviral viruses that are inserted into the mosquito genome and can act as templates for the production of piRNAs [3, 4]. EVEs therefore represent a record of past infections and a reservoir of potential immune memory [5]. The large-scale organization of EVEs has been difficult to resolve with short-read sequencing because they tend to integrate into repetitive regions of the genome. To define the diversity, organization, and function of EVEs, we took advantage of the contiguity associated with long-read sequencing to generate a high-quality assembly of the Ae. aegypti-derived Aag2 cell line genome, an important and widely used model system. We show EVEs are acquired through recombination with specific classes of long terminal repeat (LTR) retrotransposons and organize into large loci (>50 kbp) characterized by high LTR density. These EVE-containing loci have increased density of piRNAs compared to similar regions without EVEs. Furthermore, we detected EVE-derived piRNAs consistent with a targeted processing of persistently infecting virus genomes. We propose that comparisons of EVEs across mosquito populations may explain differences in vector competence, and further study of the structure and function of these elements in the genome of mosquitoes may lead to epidemiological interventions.
Collapse
Affiliation(s)
- Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Patrick T Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA; Department of Biology, Stanford University, E200 Clark Center, 318 Campus Drive, Stanford, CA 94305, USA
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Matthew G Seetin
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Steve Oh
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Cheryl Heiner
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Ellen Paxinos
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA.
| |
Collapse
|
205
|
Abstract
Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.
Collapse
Affiliation(s)
- Gabriela Ecco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| |
Collapse
|
206
|
Chalopin D, Volff JN. Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:629-637. [PMID: 28921831 DOI: 10.1002/jez.b.22761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022]
Abstract
Teleost fish have been shown to contain many superfamilies of transposable elements (TEs) that are absent from most tetrapod genomes. Since theories predict an increase in TE activity following polyploidization, such diversity might be linked to the 3R whole-genome duplication that occurred approximately 300 million years ago before the teleost radiation. To test this hypothesis, we have analyzed the genome of the spotted gar Lepisosteus oculatus, which diverged from the teleost lineage before the 3R duplication. Our results indicate that TE diversity and copy numbers are similar in gar and teleost genomes, suggesting that TE diversity was ancestral and not linked to the 3R whole-genome duplication. We propose that about 25 distinct superfamilies of TEs were present in the last ancestor of gars and teleost fish about 300 million years ago in the ray-finned fish lineage.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
207
|
de Souza ÉMS, Gross MC, Silva CEFE, Sotero-Caio CG, Feldberg E. Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil. COMPARATIVE CYTOGENETICS 2017; 11:613-626. [PMID: 29114357 PMCID: PMC5672158 DOI: 10.3897/compcytogen.v11i4.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus.
Collapse
Affiliation(s)
- Érica Martinha Silva de Souza
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Maria Claudia Gross
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, 85857-190, Foz do Iguaçu, PR, Brazil
| | - Carlos Eduardo Faresin e Silva
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Cibele Gomes Sotero-Caio
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA 79409
- Laboratório de Genética e Citogenética Animal e Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária; CEP:50740-600; Recife-PE, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| |
Collapse
|
208
|
The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma. G3-GENES GENOMES GENETICS 2017; 7:2891-2898. [PMID: 28701376 PMCID: PMC5592917 DOI: 10.1534/g3.117.043687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community.
Collapse
|
209
|
Lee YCG, Karpen GH. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 2017; 6. [PMID: 28695823 PMCID: PMC5505702 DOI: 10.7554/elife.25762] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI:http://dx.doi.org/10.7554/eLife.25762.001 The DNA inside an organism encodes all the instructions needed for the organism to develop and work properly. Organisms carefully organize and maintain their DNA (collectively known as the genome) so that the genetic information remains intact and the cell can understand the instructions. However, there are some pieces of DNA that are capable of moving around the genome. For example, pieces known as transposable elements can make new copies of themselves and jump into new locations in the genome. Most transposons do not appear to have any important roles, and in fact they are usually harmful to organisms. Despite this, transposons are present in the genomes of almost all species. The number of transposons in a genome varies greatly between individuals and species, but it is not clear why this is the case. Organisms have evolved ways to limit the damage caused by transposons. For example, many cells package regions of DNA containing transposons into a tightly packed structure known as heterochromatin. However, this type of DNA packaging sometimes spreads to neighboring sections of DNA. This is a problem because cells are not usually able to read the information contained within heterochromatin. This means that transposons can prevent some instructions from being produced when they should be. Lee and Karpen used fruit flies to investigate to what extent transposons harm organisms by changing the way DNA is packaged, and whether this influences how transposons evolve. The experiments show that that more than half of the transposons in fruit flies cause neighboring sections of DNA to be packaged into heterochromatin. This can negatively impact up to 20% of genes in the genome. As a result, transposons that have harmful effects on DNA packaging are more likely to be lost from the fly population during evolution than transposons that do not have harmful effects. Fruit fly species containing transposons that tend to package more neighboring sections of DNA into heterochromatin generally have fewer transposons than genomes containing less harmful transposons. The findings of Lee and Karpen provide new insight as to why the numbers of transposons vary among organisms. The next challenge is to find out whether transposons that alter how DNA is packaged are also common in primates and other animals. DOI:http://dx.doi.org/10.7554/eLife.25762.002
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| |
Collapse
|
210
|
Gao B, Wang S, Wang Y, Shen D, Xue S, Chen C, Cui H, Song C. Low diversity, activity, and density of transposable elements in five avian genomes. Funct Integr Genomics 2017; 17:427-439. [PMID: 28190211 PMCID: PMC5486457 DOI: 10.1007/s10142-017-0545-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 12/16/2016] [Accepted: 01/30/2017] [Indexed: 11/29/2022]
Abstract
In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.
Collapse
Affiliation(s)
- Bo Gao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Saisai Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Yali Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Dan Shen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Songlei Xue
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Hengmi Cui
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Chengyi Song
- Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
211
|
Gao B, Chen W, Shen D, Wang S, Chen C, Zhang L, Wang W, Wang X, Song C. Characterization of autonomous families of Tc1/mariner transposons in neoteleost genomes. Mar Genomics 2017; 34:67-77. [PMID: 28545861 DOI: 10.1016/j.margen.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
We report the comprehensive analysis of Tc1/mariner transposons in six species of neoteleost (cod, tetraodon, fugu, medaka, stickleback, and tilapia) for which draft sequences are available. In total, 33 Tc1/mariner families were identified in these neoteleost genomes, with 3-7 families in each species. Thirty of these are in full length and designed as autonomous families, and were classified into the DD34E (Tc1) and DD×D (pogo) groups. The DD34E (Tc1) group was further classified into five clusters (Passport-like, SB-like, Frog Prince-like, Minos-like, and Bari-like). Within the genomes of cod, tetraodon, fugu, and stickleback, the Tc1/mariner DNA transposons exhibit very low proliferation with <1% of genome. In contrast, medaka and tilapia display high accumulation of Tc1/mariner transposons with 2.91% and 5.09% of genome coverages, respectively. Divergence analysis revealed that most identified Tc1/mariner transposons have undergone one round of recent accumulation, followed by a decrease in activity. One family in stickleback (Tc1_6_Ga) exhibits a very recent and strong expansion, which suggests that this element is a very young invader and putatively active. The structural organization of these Tc1/mariner elements is also described. Generally, the Tc1/mariner transposons display a high diversity and varied abundance in the neoteleost genomes with current and recent activity.
Collapse
Affiliation(s)
- Bo Gao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Chen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dan Shen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Saisai Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Zhang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
212
|
McCullers TJ, Steiniger M. Transposable elements in Drosophila. Mob Genet Elements 2017; 7:1-18. [PMID: 28580197 PMCID: PMC5443660 DOI: 10.1080/2159256x.2017.1318201] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/09/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster.
Collapse
Affiliation(s)
| | - Mindy Steiniger
- Department of Biology, University of Missouri, St. Louis, MO, USA
| |
Collapse
|
213
|
Ruggiero RP, Bourgeois Y, Boissinot S. LINE Insertion Polymorphisms are Abundant but at Low Frequencies across Populations of Anolis carolinensis. Front Genet 2017; 8:44. [PMID: 28450881 PMCID: PMC5389967 DOI: 10.3389/fgene.2017.00044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Vertebrate genomes differ considerably in size and structure. Among the features that show the most variation is the abundance of Long Interspersed Nuclear Elements (LINEs). Mammalian genomes contain 100,000s LINEs that belong to a single clade, L1, and in most species a single family is usually active at a time. In contrast, non-mammalian vertebrates (fish, amphibians and reptiles) contain multiple active families, belonging to several clades, but each of them is represented by a small number of recently inserted copies. It is unclear why vertebrate genomes harbor such drastic differences in LINE composition. To address this issue, we conducted whole genome resequencing to investigate the population genomics of LINEs across 13 genomes of the lizard Anolis carolinensis sampled from two geographically and genetically distinct populations in the Eastern Florida and the Gulf Atlantic regions of the United States. We used the Mobile Element Locator Tool to identify and genotype polymorphic insertions from five major clades of LINEs (CR1, L1, L2, RTE and R4) and the 41 subfamilies that constitute them. Across these groups we found large variation in the frequency of polymorphic insertions and the observed length distributions of these insertions, suggesting these groups vary in their activity and how frequently they successfully generate full-length, potentially active copies. Though we found an abundance of polymorphic insertions (over 45,000) most of these were observed at low frequencies and typically appeared as singletons. Site frequency spectra for most LINEs showed a significant shift toward low frequency alleles compared to the spectra observed for total genomic single nucleotide polymorphisms. Using Tajima's D, FST and the mean number of pairwise differences in LINE insertion polymorphisms, we found evidence that negative selection is acting on LINE families in a length-dependent manner, its effects being stronger in the larger Eastern Florida population. Our results suggest that a large effective population size and negative selection limit the expansion of polymorphic LINE insertions across these populations and that the probability of LINE polymorphisms reaching fixation is extremely low.
Collapse
|
214
|
Ventola GMM, Noviello TMR, D'Aniello S, Spagnuolo A, Ceccarelli M, Cerulo L. Identification of long non-coding transcripts with feature selection: a comparative study. BMC Bioinformatics 2017; 18:187. [PMID: 28335739 PMCID: PMC5364679 DOI: 10.1186/s12859-017-1594-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/10/2017] [Indexed: 01/15/2023] Open
Abstract
Background The unveiling of long non-coding RNAs as important gene regulators in many biological contexts has increased the demand for efficient and robust computational methods to identify novel long non-coding RNAs from transcripts assembled with high throughput RNA-seq data. Several classes of sequence-based features have been proposed to distinguish between coding and non-coding transcripts. Among them, open reading frame, conservation scores, nucleotide arrangements, and RNA secondary structure have been used with success in literature to recognize intergenic long non-coding RNAs, a particular subclass of non-coding RNAs. Results In this paper we perform a systematic assessment of a wide collection of features extracted from sequence data. We use most of the features proposed in the literature, and we include, as a novel set of features, the occurrence of repeats contained in transposable elements. The aim is to detect signatures (groups of features) able to distinguish long non-coding transcripts from other classes, both protein-coding and non-coding. We evaluate different feature selection algorithms, test for signature stability, and evaluate the prediction ability of a signature with a machine learning algorithm. The study reveals different signatures in human, mouse, and zebrafish, highlighting that some features are shared among species, while others tend to be species-specific. Compared to coding potential tools and similar supervised approaches, including novel signatures, such as those identified here, in a machine learning algorithm improves the prediction performance, in terms of area under precision and recall curve, by 1 to 24%, depending on the species and on the signature. Conclusions Understanding which features are best suited for the prediction of long non-coding RNAs allows for the development of more effective automatic annotation pipelines especially relevant for poorly annotated genomes, such as zebrafish. We provide a web tool that recognizes novel long non-coding RNAs with the obtained signatures from fasta and gtf formats. The tool is available at the following url: http://www.bioinformatics-sannio.org/software/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1594-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giovanna M M Ventola
- Department of Science and Technology, University of Sannio, via Port'Arsa, 11, Benevento, 82100, Italy.,BioGeM, Institute of Genetic Research "Gaetano Salvatore", c.da Camporeale, Ariano Irpino (AV), 83031, Italy
| | - Teresa M R Noviello
- Department of Science and Technology, University of Sannio, via Port'Arsa, 11, Benevento, 82100, Italy.,BioGeM, Institute of Genetic Research "Gaetano Salvatore", c.da Camporeale, Ariano Irpino (AV), 83031, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, via Port'Arsa, 11, Benevento, 82100, Italy
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, via Port'Arsa, 11, Benevento, 82100, Italy. .,BioGeM, Institute of Genetic Research "Gaetano Salvatore", c.da Camporeale, Ariano Irpino (AV), 83031, Italy.
| |
Collapse
|
215
|
Ayres-Alves T, Cardoso AL, Nagamachi CY, Sousa LMD, Pieczarka JC, Noronha RCR. Karyotypic Evolution and Chromosomal Organization of Repetitive DNA Sequences in Species of Panaque, Panaqolus, and Scobinancistrus (Siluriformes and Loricariidae) from the Amazon Basin. Zebrafish 2017; 14:251-260. [PMID: 28277948 DOI: 10.1089/zeb.2016.1373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Loricariidae family comprises the greatest variability of Neotropical catfish species, with more than 800 valid species. This family shows significant chromosomal diversity. Mapping of repetitive DNA sequences can be very useful in exploring such diversity, especially among groups that appear to share a preserved karyotypic macrostructure. We describe the karyotypes of Panaque armbrusteri and Panaqolus sp., as assessed using classical cytogenetic methods. Moreover, we offer a map of their repetitive sequences, including 18S and 5S ribosomal DNAs, the Rex1 and Rex3 retrotransposons, and the Tc1-mariner transposon in P. armbrusteri, Panaqolus sp., Scobinancistrus aureatus, and Scobinancistrus pariolispos. Those species share chromosome numbers of 2n = 52, but are divergent in their chromosome structures and the distributions of their repetitive DNA sequences. In situ hybridization with 18S and 5S rDNA probes confirms chromosome location in different pairs; in Panaqolus sp. these sites are in synteny. This multigene family organization can be explained by the occurrence of chromosome rearrangements, and possible events, such as transposition and unequal crossing-over. Rex1 and Rex3 retrotransposons and the Tc1-mariner transposon appeared predominantly dispersed and in small clusters in some chromosome regions. These data emphasize the importance of repetitive sequences in promoting the karyotypic evolution of these species.
Collapse
Affiliation(s)
- Thayana Ayres-Alves
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | - Adauto Lima Cardoso
- 2 Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista , Botucatu, Brazil
| | - Cleusa Yoshiko Nagamachi
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | | | - Julio Cesar Pieczarka
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | - Renata Coelho Rodrigues Noronha
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| |
Collapse
|
216
|
Biscotti MA, Canapa A, Forkoni M, Gerdol M, Pallavicini A, Schartl M, Barucca M. The small non-coding RNA processing machinery of two living fossil species, lungfish and coelacanth, gives new insights into the evolution of the Argonaute protein family. Genome Biol Evol 2017; 9:438-453. [PMID: 28206606 PMCID: PMC5381642 DOI: 10.1093/gbe/evx017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/21/2016] [Accepted: 02/04/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona (Italy)
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona (Italy)
| | - Mariko Forkoni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona (Italy)
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste (Italy)
| | | | - Manifred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Wuerzburg, Germany; and Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona (Italy)
| |
Collapse
|
217
|
|
218
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|
219
|
Chen CK, Yu CP, Li SC, Wu SM, Lu MYJ, Chen YH, Chen DR, Ng CS, Ting CT, Li WH. Identification and evolutionary analysis of long non-coding RNAs in zebra finch. BMC Genomics 2017; 18:117. [PMID: 28143393 PMCID: PMC5282891 DOI: 10.1186/s12864-017-3506-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are important in various biological processes, but very few studies on lncRNA have been conducted in birds. To identify IncRNAs expressed during feather development, we analyzed single-stranded RNA-seq (ssRNA-seq) data from the anterior and posterior dorsal regions during zebra finch (Taeniopygia guttata) embryonic development. Using published transcriptomic data, we further analyzed the evolutionary conservation of IncRNAs in birds and amniotes. Results A total of 1,081 lncRNAs, including 965 intergenic lncRNAs (lincRNAs), 59 intronic lncRNAs, and 57 antisense lncRNAs (lncNATs), were identified using our newly developed pipeline. These avian IncRNAs share similar characteristics with lncRNAs in mammals, such as shorter transcript length, lower exon number, lower average expression level and less sequence conservation than mRNAs. However, the proportion of lncRNAs overlapping with transposable elements in birds is much lower than that in mammals. We predicted the functions of IncRNAs based on the enriched functions of co-expressed protein-coding genes. Clusters of lncRNAs associated with natal down development were identified. The sequences and expression levels of candidate lncRNAs that shared conserved sequences among birds were validated by qPCR in both zebra finch and chicken. Finally, we identified three highly conserved lncRNAs that may be associated with natal down development. Conclusions Our study provides the first systematical identification of avian lncRNAs using ssRNA-seq analysis and offers a resource of embryonically expressed lncRNAs in zebra finch. We also predicted the biological function of identified lncRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3506-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sung-Chou Li
- Department of Medical Research, Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Siao-Man Wu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Di-Rong Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Chau-Ti Ting
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Life Science & Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, 40227, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
220
|
Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, Walenz BP, Knight J, Ekholm JM, Peluso P, Edvardsen RB, Tooming-Klunderud A, Skage M, Lien S, Jakobsen KS, Nederbragt AJ. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics 2017; 18:95. [PMID: 28100185 PMCID: PMC5241972 DOI: 10.1186/s12864-016-3448-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. RESULTS By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. CONCLUSIONS The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.
Collapse
Affiliation(s)
- Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
- Department of Natural Sciences, University of Agder, Kristiansand, NO-4604 Norway
| | - William B. Reinar
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Harald Grove
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, NO-1432 Norway
| | - Jason R. Miller
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, 20850 MD USA
| | - Brian P. Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 MD USA
| | - James Knight
- Yale School of Medicine, Yale University, New Haven, 06520 CT USA
| | | | | | | | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Morten Skage
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, NO-1432 Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Alexander J. Nederbragt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
- Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Oslo, NO-0316 Norway
| |
Collapse
|
221
|
Diversity, distribution, and significance of transposable elements in the genome of the only selfing hermaphroditic vertebrate Kryptolebias marmoratus. Sci Rep 2017; 7:40121. [PMID: 28071692 PMCID: PMC5223126 DOI: 10.1038/srep40121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/02/2016] [Indexed: 11/16/2022] Open
Abstract
The Kryptolebias marmoratus is unique because it is the only self-fertilizing hermaphroditic vertebrate, known to date. It primarily reproduces by internal self-fertilization in a mixed ovary/testis gonad. Here, we report on a high-quality genome assembly for the K. marmoratus South Korea (SK) strain highlighting the diversity and distribution of transposable elements (TEs). We find that K. marmoratus genome maintains number and composition of TEs. This can be an important genomic attribute promoting genome recombination in this selfing fish, while, in addition to a mixed mating strategy, it may also represent a mechanism contributing to the evolutionary adaptation to ecological pressure of the species. Future work should help clarify this point further once genomic information is gathered for other taxa of the family Rivulidae that do not self-fertilize. We provide a valuable genome resource that highlights the potential impact of TEs on the genome evolution of a fish species with an uncommon life cycle.
Collapse
|
222
|
de Freitas Mourão AA, Natal Daniel S, Teruo Hashimoto D, Cristina Ferreira D, Porto-Foresti F. Organization and Distribution of Repetitive DNA Classes in the Cichla kelberi and Cichla piquiti Genome. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP)
| | - Diogo Teruo Hashimoto
- Centro de Aquicultura de Jaboticabal (CAUNESP), Universidade Estadual Paulista (UNESP)
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP)
| |
Collapse
|
223
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
224
|
Kapusta A, Suh A. Evolution of bird genomes-a transposon's-eye view. Ann N Y Acad Sci 2016; 1389:164-185. [DOI: 10.1111/nyas.13295] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City Utah
| | - Alexander Suh
- Department of Evolutionary Biology (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
225
|
Detection of LINE RT elements in the olive flounder (Paralichthys olivaceus) genome and expression analysis after infection with S. parauberis. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
226
|
Jue NK, Batta-Lona PG, Trusiak S, Obergfell C, Bucklin A, O'Neill MJ, O'Neill RJ. Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, Salpa thompsoni (Urochordata, Thaliacea). Genome Biol Evol 2016; 8:3171-3186. [PMID: 27624472 PMCID: PMC5174732 DOI: 10.1093/gbe/evw215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni. Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these resources provide a genomic foundation supporting S. thompsoni as a model species for further examination of the exceptional rates and patterns of genomic evolution shown by urochordates. Additionally, genomic data will allow for the development of molecular indicators of key life history events and processes and afford new understandings and predictions of impacts of climate change on this key species of Antarctic pelagic ecosystems.
Collapse
Affiliation(s)
- Nathaniel K Jue
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, CT.,Present address: School of Natural Sciences, California State University, Monterey Bay, CA
| | - Paola G Batta-Lona
- Department of Marine Sciences, University of Connecticut, CT.,Present address: Departamento de Biotecnologia Marina, CICESE, Ensenada, B.C. Mexico
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, CT
| | - Craig Obergfell
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, CT
| | - Ann Bucklin
- Department of Marine Sciences, University of Connecticut, CT
| | - Michael J O'Neill
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, CT
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, CT
| |
Collapse
|
227
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
228
|
Noronha RCR, Barros LMR, Araújo REF, Marques DF, Nagamachi CY, Martins C, Pieczarka JC. New insights of karyoevolution in the Amazonian turtles Podocnemis expansa and Podocnemis unifilis (Testudines, Podocnemidae). Mol Cytogenet 2016; 9:73. [PMID: 27708713 PMCID: PMC5039792 DOI: 10.1186/s13039-016-0281-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cytogenetic studies were conducted in the Brazilian Amazon turtles, Podocnemis expansa Schweigger, 1912 (PEX) and Podocnemis unifilis Troschel, 1848 (PUN) to understand their karyoevolution. Their chromosomal complements were compared using banding techniques (C, G-, Ag-NOR and Chromomycin A3) and fluorescence in situ hybridization (FISH), and efforts were made to establish evolutionary chromosomal relationships within the Podocnemidae family. RESULTS Our results revealed that both species have a chromosome complement of 2n = 28. For PEX and PUN, the fundamental numbers (FNs) were 54 and 52, respectively and the karyotypic formulas (KFs) were 24 m/sm + 2st + 2a and 22 m/sm + 2st + 4a, respectively. G-banding evidenced homologies between the two species and allowed identify a heteromorphic pair (chromosome pair 10) in PUN. In PEX, constitutive heterochromatin (CH) was found in the centromeric regions of pairs 1, 2, 4, 6 and 11 and on 9p. In PUN, CH was observed in the centromeric regions of all chromosomes, and in small proximal bands on 1p, 2p, 3q, 4q, 5q, 9q, 10q and 11q. Moreover, CH amplification was seen in one of the homologs of pair 10 (the heteromorphic pair). The CMA3 staining results were consistent with the CH findings. Ag-NOR staining showed that nucleolar organizing regions (NORs) were localized in the pericentromeric region of pair 1 in both species, and this result was confirmed by the 18S rDNA FISH probe. FISH with telomeric probes identified telomeric sequences in the distal regions of all chromosomes. In addition, interstitial telomeric sequences (ITSs) were present in seven chromosome pairs of PUN, perhaps reflecting the amplification of telomere-like sequences. FISH with a probe against the transposable element (TE), Rex 6, revealed that it is dispersed in euchromatic regions of the first chromosome pairs of both species. This is the first report describing the FISH-based analysis of PEX and PUN for the 18S rDNA, Rex 6 and human telomeric sequences. CONCLUSIONS Our results contribute to clarifying the chromosomal homologies and rearrangement mechanisms that occurred during the evolution of these species, and may help researchers uncover new markers that will improve our understanding of the taxonomy and systematic classification of Podocnemidae. TRIAL REGISTRATION ISRCTN ISRCTN73824458. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- R C R Noronha
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - L M R Barros
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - R E F Araújo
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - D F Marques
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil
| | - C Y Nagamachi
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - C Martins
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - J C Pieczarka
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| |
Collapse
|
229
|
General continuous-time Markov model of sequence evolution via insertions/deletions: local alignment probability computation. BMC Bioinformatics 2016; 17:397. [PMID: 27677569 PMCID: PMC5039815 DOI: 10.1186/s12859-016-1167-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Background Insertions and deletions (indels) account for more nucleotide differences between two related DNA sequences than substitutions do, and thus it is imperative to develop a method to reliably calculate the occurrence probabilities of sequence alignments via evolutionary processes on an entire sequence. Previously, we presented a perturbative formulation that facilitates the ab initio calculation of alignment probabilities under a continuous-time Markov model, which describes the stochastic evolution of an entire sequence via indels with quite general rate parameters. And we demonstrated that, under some conditions, the ab initio probability of an alignment can be factorized into the product of an overall factor and contributions from regions (or local alignments) delimited by gapless columns. Results Here, using our formulation, we attempt to approximately calculate the probabilities of local alignments under space-homogeneous cases. First, for each of all types of local pairwise alignments (PWAs) and some typical types of local multiple sequence alignments (MSAs), we numerically computed the total contribution from all parsimonious indel histories and that from all next-parsimonious histories, and compared them. Second, for some common types of local PWAs, we derived two integral equation systems that can be numerically solved to give practically exact solutions. We compared the total parsimonious contribution with the practically exact solution for each such local PWA. Third, we developed an algorithm that calculates the first-approximate MSA probability by multiplying total parsimonious contributions from all local MSAs. Then we compared the first-approximate probability of each local MSA with its absolute frequency in the MSAs created via a genuine sequence evolution simulator, Dawg. In all these analyses, the total parsimonious contributions approximated the multiplication factors fairly well, as long as gap sizes and branch lengths are at most moderate. Examination of the accuracy of another indel probabilistic model in the light of our formulation indicated some modifications necessary for the model’s accuracy improvement. Conclusions At least under moderate conditions, the approximate methods can quite accurately calculate ab initio alignment probabilities under biologically more realistic models than before. Thus, our formulation will provide other indel probabilistic models with a sound reference point. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1167-6) contains supplementary material, which is available to authorized users.
Collapse
|
230
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
231
|
Scarpato M, Angelini C, Cocca E, Pallotta MM, Morescalchi MA, Capriglione T. Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish? Chromosome Res 2016; 23:533-44. [PMID: 26363800 DOI: 10.1007/s10577-015-9484-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
Collapse
Affiliation(s)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", CNR, via P. Castellino, 80131, Napoli, Italy
| | - Ennio Cocca
- IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
| | - Maria M Pallotta
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Maria A Morescalchi
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy.
| |
Collapse
|
232
|
Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 2016; 23:545-60. [PMID: 26429387 DOI: 10.1007/s10577-015-9490-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jennifer L Anderson
- INRA, Fish Physiology and Genomics (UR1037), Campus de Beaulieu, Rennes, France.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Manfred Schartl
- Department Physiological Chemistry, Biozentrum, University of Wuerzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
233
|
Gallus S, Lammers F, Nilsson MA. When Genomics Is Not Enough: Experimental Evidence for a Decrease in LINE-1 Activity During the Evolution of Australian Marsupials. Genome Biol Evol 2016; 8:2406-12. [PMID: 27389686 PMCID: PMC5010896 DOI: 10.1093/gbe/evw159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads.
Collapse
Affiliation(s)
- Susanne Gallus
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Senckenberg Anlage 25, Frankfurt, Germany Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Johann Wolfgang Goethe University Frankfurt Am Main, Max-von-Laue Straβe 9, 60438 Frankfurt am Main, Germany
| | - Fritjof Lammers
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Senckenberg Anlage 25, Frankfurt, Germany Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Johann Wolfgang Goethe University Frankfurt Am Main, Max-von-Laue Straβe 9, 60438 Frankfurt am Main, Germany
| | - Maria Anna Nilsson
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Senckenberg Anlage 25, Frankfurt, Germany
| |
Collapse
|
234
|
Naville M, Volff JN. Endogenous Retroviruses in Fish Genomes: From Relics of Past Infections to Evolutionary Innovations? Front Microbiol 2016; 7:1197. [PMID: 27555838 PMCID: PMC4977317 DOI: 10.3389/fmicb.2016.01197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022] Open
Abstract
The increasing availability of fish genome sequences has allowed to gain new insights into the diversity and host distribution of retroviruses in fish and other vertebrates. This distribution can be assessed through the identification and analysis of endogenous retroviruses, which are proviral remnants of past infections integrated in genomes. Retroviral sequences are probably important for evolution through their ability to induce rearrangements and to contribute regulatory and coding sequences; they may also protect their host against new infections. We argue that the current mass of genome sequences will soon strongly improve our understanding of retrovirus diversity and evolution in aquatic animals, with the identification of new/re-emerging elements and host resistance genes that restrict their infectivity.
Collapse
Affiliation(s)
- Magali Naville
- Génomique Évolutive des Poissons, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon 1 Lyon, France
| | - Jean-Nicolas Volff
- Génomique Évolutive des Poissons, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon 1 Lyon, France
| |
Collapse
|
235
|
Nätt D, Thorsell A. Stress-induced transposon reactivation: a mediator or an estimator of allostatic load? ENVIRONMENTAL EPIGENETICS 2016; 2:dvw015. [PMID: 29492295 PMCID: PMC5804529 DOI: 10.1093/eep/dvw015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 07/27/2016] [Indexed: 05/04/2023]
Abstract
Transposons are playing an important role in the evolution of eukaryotic genomes. These endogenous virus-like elements often amplify within their host genomes in a species specific manner. Today we have limited understanding when and how these amplification events happens. What we do know is that cells have evolved multiple line of defenses to keep these potentially invasive elements under control, often involving epigenetic mechanisms such as DNA-methylation and histone modifications. Emerging evidence shows a strong link between transposon activity and human aging and diseases, as well as a role for transposons in normal brain development. Controlling transposon activity may therefore uphold the fine balance between health and disease. In this article we investigate this balance, and sets it in relation to allostatic load, which conceptualize the link between stress and the "wear and tear" of the organism that leads to aging and disease. We hypothesize that stress-induced retrotransposon reactivation in humans may be used to estimate allostatic load, and may be a possible mechanism in which transposons amplify within species genomes.
Collapse
Affiliation(s)
- Daniel Nätt
- Department of Clinical and Experimental Medicine (IKE), Linkoping University, Center for Social and Affective Neuroscience (CSAN), Linkoping, Sweden
- *Correspondence address. Tel:
+46-10-103 06 71
; E-mail:
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine (IKE), Linkoping University, Center for Social and Affective Neuroscience (CSAN), Linkoping, Sweden
| |
Collapse
|
236
|
Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization. Genetics 2016; 203:1669-78. [PMID: 27343236 PMCID: PMC4981269 DOI: 10.1534/genetics.116.189118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.
Collapse
|
237
|
Zhang C, Hoshida Y, Sadler KC. Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence. Front Genet 2016; 7:110. [PMID: 27379160 PMCID: PMC4911366 DOI: 10.3389/fgene.2016.00110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/31/2016] [Indexed: 12/12/2022] Open
Abstract
The DNA methylation landscape is dynamically patterned during development and distinct methylation patterns distinguish healthy from diseased cells. However, whether tissue-specific methylation patterns are conserved across species is not known. We used comparative methylome analysis of base-resolution DNA methylation profiles from the liver and brain of mouse and zebrafish generated by reduced representation bisulfite sequencing to identify the conserved and divergent aspects of the methylome in these commonly used vertebrate model organisms. On average, 24% of CpGs are methylated in mouse livers and the pattern of methylation was highly concordant among four male mice from two different strains. The same level of methylation (24.2%) was identified in mouse brain. In striking contrast, zebrafish had 63 and 70% of CpG methylation in the liver and brain, respectively. This is attributed, in part, to the higher percentage of the zebrafish genome occupied by transposable elements (52% vs. 45% in mice). Thus, the species identity was more significant in determining methylome patterning than was the similarity in organ function. Conserved features of the methylome across tissues and species was the exclusion of methylation from promoters and from CpG islands near transcription start sites, and the clustering of methylated CpGs in gene bodies and intragenic regions. These data suggest that DNA methylation reflects species-specific genome structure, and supports the notion that DNA methylation in non-promoter regions may contribute to genome evolution.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
| | - Yujin Hoshida
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
| | - Kirsten C. Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Program in Biology, New York University Abu DhabiAbu Dhabi, UAE
| |
Collapse
|
238
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
239
|
Kneitz S, Mishra RR, Chalopin D, Postlethwait J, Warren WC, Walter RB, Schartl M. Germ cell and tumor associated piRNAs in the medaka and Xiphophorus melanoma models. BMC Genomics 2016; 17:357. [PMID: 27183847 PMCID: PMC4869193 DOI: 10.1186/s12864-016-2697-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. Results To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. Conclusions Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2697-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Rasmi R Mishra
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - John Postlethwait
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR, 97403, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Blvd., St Louis, MO, 63108, USA
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Josef Schneider Straße 6, D-97074, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
240
|
Lowdon RF, Jang HS, Wang T. Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet 2016; 32:269-283. [PMID: 27080453 PMCID: PMC4842087 DOI: 10.1016/j.tig.2016.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single-cell eukaryotes to human, comparative analyses are still relatively few and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. We review here the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site (TFBS) turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution.
Collapse
Affiliation(s)
- Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
241
|
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, Berlin AM, Campbell MS, Barrell D, Martin KJ, Mulley JF, Ravi V, Lee AP, Nakamura T, Chalopin D, Fan S, Wcisel D, Cañestro C, Sydes J, Beaudry FEG, Sun Y, Hertel J, Beam MJ, Fasold M, Ishiyama M, Johnson J, Kehr S, Lara M, Letaw JH, Litman GW, Litman RT, Mikami M, Ota T, Saha NR, Williams L, Stadler PF, Wang H, Taylor JS, Fontenot Q, Ferrara A, Searle SMJ, Aken B, Yandell M, Schneider I, Yoder JA, Volff JN, Meyer A, Amemiya CT, Venkatesh B, Holland PWH, Guiguen Y, Bobe J, Shubin NH, Di Palma F, Alföldi J, Lindblad-Toh K, Postlethwait JH. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 2016; 48:427-37. [PMID: 26950095 PMCID: PMC4817229 DOI: 10.1038/ng.3526] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Andrew R Gehrke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Jeremy Pasquier
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Julian Catchen
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Aaron M Berlin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael S Campbell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Daniel Barrell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, UK
| | - John F Mulley
- School of Biological Sciences, Bangor University, Bangor, UK
| | - Vydianathan Ravi
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alison P Lee
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tetsuya Nakamura
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Shaohua Fan
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dustin Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Felix E G Beaudry
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yi Sun
- Center for Circadian Clocks, Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Michael J Beam
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Mario Fasold
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Mikio Ishiyama
- Department of Dental Hygiene, Nippon Dental University College at Niigata, Niigata, Japan
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steffi Kehr
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Marcia Lara
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - John H Letaw
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Ronda T Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Masato Mikami
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Hayama, Japan
| | - Nil Ratan Saha
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Louise Williams
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Quenton Fontenot
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Brazil
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Chris T Amemiya
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Yann Guiguen
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Julien Bobe
- Institut National de la Recherche Agronomique (INRA), UR1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Campus de Beaulieu, Rennes, France
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | | | - Jessica Alföldi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
242
|
Cass AA, Bahn JH, Lee JH, Greer C, Lin X, Kim Y, Hsiao YHE, Xiao X. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets. Nucleic Acids Res 2016; 44:3253-63. [PMID: 26975654 PMCID: PMC4838385 DOI: 10.1093/nar/gkw164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/02/2016] [Indexed: 11/14/2022] Open
Abstract
In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation.
Collapse
Affiliation(s)
- Ashley A Cass
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher Greer
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Xianzhi Lin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA UCLA Broad Stem Cell Research Center, Los Angeles, CA, USA
| | - Yun-Hua Esther Hsiao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
243
|
Koonin EV. The meaning of biological information. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0065. [PMID: 26857678 PMCID: PMC4760125 DOI: 10.1098/rsta.2015.0065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 06/05/2023]
Abstract
Biological information encoded in genomes is fundamentally different from and effectively orthogonal to Shannon entropy. The biologically relevant concept of information has to do with 'meaning', i.e. encoding various biological functions with various degree of evolutionary conservation. Apart from direct experimentation, the meaning, or biological information content, can be extracted and quantified from alignments of homologous nucleotide or amino acid sequences but generally not from a single sequence, using appropriately modified information theoretical formulae. For short, information encoded in genomes is defined vertically but not horizontally. Informally but substantially, biological information density seems to be equivalent to 'meaning' of genomic sequences that spans the entire range from sharply defined, universal meaning to effective meaninglessness. Large fractions of genomes, up to 90% in some plants, belong within the domain of fuzzy meaning. The sequences with fuzzy meaning can be recruited for various functions, with the meaning subsequently fixed, and also could perform generic functional roles that do not require sequence conservation. Biological meaning is continuously transferred between the genomes of selfish elements and hosts in the process of their coevolution. Thus, in order to adequately describe genome function and evolution, the concepts of information theory have to be adapted to incorporate the notion of meaning that is central to biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
244
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
245
|
Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P, Galiana D, Volff JN. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 2016; 22:312-323. [PMID: 26899828 DOI: 10.1016/j.cmi.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/24/2022]
Abstract
Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage.
Collapse
Affiliation(s)
- M Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - I A Warren
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - Z Haftek-Terreau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France; Department of Genetics, University of Georgia, Athens, GA, USA
| | - F Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - P Levin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - J-N Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France.
| |
Collapse
|
246
|
Gao B, Shen D, Xue S, Chen C, Cui H, Song C. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA 2016; 7:4. [PMID: 26862351 PMCID: PMC4746887 DOI: 10.1186/s13100-016-0059-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Teleosts are unique among vertebrates, with a wide range of haploid genome sizes in very close lineages, varying from less than 400 mega base pairs (Mb) for pufferfish to over 3000 Mb for salmon. The cause of the difference in genome size remains largely unexplained. Results In this study, we reveal that the differential success of transposable elements (TEs) correlates with the variation of genome size across four representative teleost species (zebrafish, medaka, stickleback, and tetraodon). The larger genomes represent a higher diversity within each clade (superfamily) and family and a greater abundance of TEs compared with the smaller genomes; zebrafish, representing the largest genome, shows the highest diversity and abundance of TEs in its genome, followed by medaka and stickleback; while the tetraodon, representing the most compact genome, displays the lowest diversity and density of TEs in its genome. Both of Class I (retrotransposons) and Class II TEs (DNA transposons) contribute to the difference of TE accumulation of teleost genomes, however, Class II TEs are the major component of the larger teleost genomes analyzed and the most important contributors to genome size variation across teleost lineages. The hAT and Tc1/Mariner superfamilies are the major DNA transposons of all four investigated teleosts. Divergence distribution revealed contrasting proliferation dynamics both between clades of retrotransposons and between species. The TEs within the larger genomes of the zebrafish and medaka represent relatively stronger activity with an extended time period during the evolution history, in contrast with the very young activity in the smaller stickleback genome, or the very low level of activity in the tetraodon genome. Conclusion Overall, our data shows that teleosts represent contrasting profiles of mobilomes with a differential density, diversity and activity of TEs. The differences in TE accumulation, dominated by DNA transposons, explain the main size variations of genomes across the investigated teleost species, and the species differences in both diversity and activity of TEs contributed to the variations of TE accumulations across the four teleost species. TEs play major roles in teleost genome evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Dan Shen
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Songlei Xue
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Cai Chen
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Hengmi Cui
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Chengyi Song
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| |
Collapse
|
247
|
Nilsson MA. The devil is in the details: Transposable element analysis of the Tasmanian devil genome. Mob Genet Elements 2015; 6:e1119926. [PMID: 27066301 DOI: 10.1080/2159256x.2015.1119926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.
Collapse
Affiliation(s)
- Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung , Frankfurt am Main, Germany
| |
Collapse
|
248
|
Daniel SN, Penitente M, Silva DMZA, Hashimoto DT, Ferreira DC, Foresti F, Porto-Foresti F. Organization and Chromosomal Distribution of Histone Genes and Transposable Rex Elements in the Genome of Astyanax bockmanni (Teleostei, Characiformes). Cytogenet Genome Res 2015; 146:311-8. [PMID: 26618348 DOI: 10.1159/000441613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
An important feature of eukaryotic organisms is the number of different repetitive DNA sequences in their genome, a feature not observed in prokaryotes. These sequences are considered to be important components for understanding evolutionary mechanisms and the karyotypic differentiation processes. Thus, we aimed to physically map the histone genes and transposable elements of the Rex family in 6 fish populations of Astyanax bockmanni. FISH results using a histone H1 gene probe showed fluorescent clusters in 2 chromosome pairs in all 6 samples analyzed. In contrast, FISH with a histone H3 probe showed conspicuous blocks in 4 chromosomes in 5 of the 6 populations analyzed. The sixth population revealed 7 chromosomes marked with this probe. Probes for the transposable elements Rex1 and Rex6 showed small sites dispersed on most chromosomes of the 6 populations, and the Rex3 element is located in a big block concentrated in only 1 acrocentric chromosome of 2 populations. As for the other populations, a Rex3 probe showed large blocks in more than 1 chromosome. Fish from Alambari and Campo Novo Stream have Rex3 elements dispersed along most of the chromosomes. Additionally, the conspicuous signals of Rex1, Rex3, and Rex6 were identified in the acrocentric B microchromosome of A. bockmanni found only in individuals of the Alambari River. Thus, we believe that different mechanisms drive the spread of repetitive sequences among the populations analyzed, which appear to be organized differently in the genome of A. bockmanni. The presence of transposable elements in the B chromosome also suggests that these sequences could play a role in the origin and maintenance of the supernumerary element in the genome of this species.
Collapse
Affiliation(s)
- Sandro N Daniel
- Departamento de Cix00EA;ncias Biolx00F3;gicas, Faculdade de Cix00EA;ncias, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
249
|
Haig D. Going retro: Transposable elements, embryonic stem cells, and the mammalian placenta (retrospective on DOI 10.1002/bies.201300059). Bioessays 2015; 37:1154. [PMID: 26333045 DOI: 10.1002/bies.201500114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
250
|
Brunet TDP, Doolittle WF. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements. Genome Biol Evol 2015; 7:2445-57. [PMID: 26253318 PMCID: PMC4558868 DOI: 10.1093/gbe/evv152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of several issues at play in the renewed debate over “junk DNA” is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to “speed evolution” or as an “evolutionary repository” could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness—or are instead junk— is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class.
Collapse
Affiliation(s)
- Tyler D P Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|