201
|
Yates GD, Wasik SM, Edwards GA. Femoral component failure in canine cemented total hip replacement: a report of two cases. Aust Vet J 2010; 88:225-30. [DOI: 10.1111/j.1751-0813.2010.00574.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
202
|
Solomon E, Li H, Duhachek Muggy S, Syta E, Zolkiewska A. The role of SnoN in transforming growth factor beta1-induced expression of metalloprotease-disintegrin ADAM12. J Biol Chem 2010; 285:21969-77. [PMID: 20457602 DOI: 10.1074/jbc.m110.133314] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several pathological conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of the central nervous system or the muscoskeletal system. We show that transforming growth factor beta1 (TGFbeta1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in mouse and human mammary epithelial cells. Induction of ADAM12 is detected within 2 h of treatment with TGFbeta1, is Smad2/Smad3-dependent, and is a result of derepression of the Adam12 gene. SnoN, a negative regulator of the TGFbeta signaling pathway, is a master regulator of ADAM12 expression in response to TGFbeta1 stimulation. Overexpression of SnoN in NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFbeta1 treatment. Down-regulation of SnoN expression by short hairpin RNA enhances TGFbeta1-induced expression of ADAM12. In a panel of TGFbeta1-responsive cancer cell lines with high expression of SnoN, induction of ADAM12 by TGFbeta1 is significantly impaired, suggesting that the endogenous SnoN plays a role in regulating ADAM12 expression in response to TGFbeta1. Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the studies on the role of ADAM12 in tumor progression and in the development of other pathologies.
Collapse
Affiliation(s)
- Emilia Solomon
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
203
|
Lähdeoja T, Pajarinen J, Kouri VP, Sillat T, Salo J, Konttinen YT. Toll-like receptors and aseptic loosening of hip endoprosthesis-a potential to respond against danger signals? J Orthop Res 2010; 28:184-90. [PMID: 19725103 DOI: 10.1002/jor.20979] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial remnants and subclinical biofilms residing on prosthesis surfaces have been speculated to play a role in hip implant loosening by opsonizing otherwise relatively inert wear particles. The innate immune system recognizes these microbial pathogen-associated molecular patterns (PAMPs) using Toll-like receptors (TLRs). Our objective was to evaluate the possible presence of TLRs in aseptic synovial membrane-like interface tissue. Bacterial culture-negative, aseptic (n = 4) periprosthetic synovial membrane-like tissue was compared to osteoarthritis synovial membrane (n = 5) for the presence of cells positive for all known human functional TLRs, stained using specific antibodies by immunohistochemistry, and evaluated using morphometry. In comparison to osteoarthtritic synovium, the number of TLR-positive cells was found to be increased in the aseptic setting, reflecting the considerable macrophage infiltration to the tissues investigated. Thus aseptic periprosthetic tissue seems to be very reactive to PAMPs. It has been recently recognized that TLR do not only respond to traditional PAMPs, but also to endogenous alarmings or danger signals released from necrotic and activated cells. Alarming-TLR interaction in the periprosthetic tissue might be a novel mechanism of aseptic loosening of endoprosthesis.
Collapse
Affiliation(s)
- Tuomas Lähdeoja
- Institute of Clinical Medicine, Department of Medicine, Biomedicum Helsinki, Helsinki University Central Hospital, Helsinki FIN-00029 HUS, Finland
| | | | | | | | | | | |
Collapse
|
204
|
Pajarinen J, Cenni E, Savarino L, Gomez-Barrena E, Tamaki Y, Takagi M, Salo J, Konttinen YT. Profile of toll-like receptor-positive cells in septic and aseptic loosening of total hip arthroplasty implants. J Biomed Mater Res A 2010; 94:84-92. [DOI: 10.1002/jbm.a.32674] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
205
|
Fregly BJ, Marquez-Barrientos C, Banks SA, DesJardins JD. Increased Conformity Offers Diminishing Returns for Reducing Total Knee Replacement Wear. J Biomech Eng 2010; 132:021007. [DOI: 10.1115/1.4000868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wear remains a significant problem limiting the lifespan of total knee replacements (TKRs). Though increased conformity between TKR components has the potential to decrease wear, the optimal amount and planes of conformity have not been investigated. Furthermore, differing conformities in the medial and lateral compartments may provide designers the opportunity to address both wear and kinematic design goals simultaneously. This study used a computational model of a Stanmore knee simulator machine and a previously validated wear model to investigate this issue for simulated gait. TKR geometries with different amounts and planes of conformity on the medial and lateral sides were created and tested in two phases. The first phase utilized a wide range of sagittal and coronal conformity combinations to blanket a physically realistic design space. The second phase performed a focused investigation of the conformity conditions from the first phase to which predicted wear volume was sensitive. For the first phase, sagittal but not coronal conformity was found to have a significant effect on predicted wear volume. For the second phase, increased sagittal conformity was found to decrease predicted wear volume in a nonlinear fashion, with reductions gradually diminishing as conformity increased. These results suggest that TKR geometric design efforts aimed at minimizing wear should focus on sagittal rather than coronal conformity and that at least moderate sagittal conformity is desirable in both compartments.
Collapse
Affiliation(s)
- Benjamin J. Fregly
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131; and Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32611-2727
| | | | - Scott A. Banks
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131; and Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32611-2727
| | - John D. DesJardins
- Department of Bioengineering, Clemson University, Clemson, SC 29634-0905
| |
Collapse
|
206
|
Yun HH, Jajodia NK, Myung JS, Oh JK, Park SW, Shon WY. Use of slide presentation software as a tool to measure hip arthroplasty wear. J Arthroplasty 2009; 24:1210-5. [PMID: 19896061 DOI: 10.1016/j.arth.2009.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/06/2009] [Indexed: 02/01/2023] Open
Abstract
The authors propose a manual measurement method for wear in total hip arthroplasty (PowerPoint method) based on the well-known Microsoft PowerPoint software (Microsoft Corporation, Redmond, Wash). In addition, the accuracy and reproducibility of the devised method were quantified and compared with two methods previously described by Livermore and Dorr, and accuracies were determined at different degrees of wear. The 57 hips recruited were allocated to: class 1 (retrieval series), class 2 (clinical series), and class 3 (a repeat film analysis series). The PowerPoint method was found to have good reproducibility and to better detect wear differences between classes. The devised method can be easily used for recording wear at follow-up visits and could be used as a supplementary method when computerized methods cannot be employed.
Collapse
Affiliation(s)
- Ho Hyun Yun
- Department of Orthopaedic Surgery, Korea University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
207
|
Abstract
BACKGROUND Biologic-reactivity to implant-debris is the primary determinant of long-term clinical performance. The following reviews: 1) the physical aspects of spinal-implant debris and 2) the local and systemic biologic responses to implant debris. METHODS Methods included are: 1) gravimetric wear analysis; 2) SEM and LALLS; 3) metal-ion analysis; 4) ELISA, toxicity testing, patch testing; and 5) metal-lymphocyte transformation testing (metal-LTT). RESULTS Wear and corrosion of spine-implants produce particles and ions. Particles (0.01-1000 μm) are generally submicron ( <1 µm). Wear rates of metal-on-polymer and metal-on-metal disc arthroplasties are approximately 2-20 and 1 mm(3)/yr, respectively. Metal-on-metal total disc replacement components have significant increases in circulating metal (less than 10-fold that of controls at 4 ppb-Co and 3 ppb-Cr or ng/mL). Debris reactivity is local and systemic. Local inflammation is caused primarily by ingestion of debris by local macrophages, which produce pro-inflammatory cytokines TNFα, IL-1β, IL-6, and PGE2. Systemic responses associated with implant-debris have been limited to hypersensitivity reactions. Elevated amounts of in the liver, spleen, etc of patients with failed TJA have not been associated with remote toxicological or carcinogenic pathology to date. Implant debris are differentially bioreactive. Greater numbers are pro-inflammatory; the smaller-sized debris are more bioreactive by virtue of their greater numbers (dose) for a given amount of implant mass loss (one 100-μm-diameter particle is equivalent in mass to 1 million 1-μm-diameter particles). Elongated particles are pro-inflammatory (ie, aspect ratio of greater than 3). Metal particles are more proinflammatory than polymers, ceteris paribus. CONCLUSION Spinal arthroplasty designs have been in use for more than 20 years internationally; therefore, concerns about neuropathology, toxicity, and carcinogenicity are mitigated. Debris-induced inflammation still depends on the individual and the type of debris. The consequence of debris-induced inflammation is continued; vigilance by physicians is recommended monitoring of spinal implants using physical exams and testing of metal content and bioreactivity, as is planning for the likelihood of revision in younger individuals.
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
208
|
Intravenous injections of soluble drag-reducing polymers reduce foreign body reaction to implants. ASAIO J 2009; 55:503-8. [PMID: 19625951 DOI: 10.1097/mat.0b013e3181b1840f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We tested whether soluble viscoelastic drag-reducing polymers (DRPs), which modify blood flow in the macro- and microcirculation, affect host response to implanted biomaterials and control biodegradation and tissue ingrowth processes. Porous poly(L-lactate) (PLLA) implants, which are naturally hydrolyzed by foreign body giant cells, were used to evaluate differences in host response. Intravenous DRPs, high-molecular weight poly(ethylene oxide) (PEO) or poly(mannose) (PMNN), were given biweekly at 0.3-0.4 nM in saline (equivalent volumes of saline in controls) to rats with subcutaneous PLLA implants. After 7 weeks, there was no difference in weight gain or behavior between control and DRP-injected groups. Implanted PLLA scaffolds in controls were almost totally degraded and replaced by giant cell granulomas. On the contrary, PEO- or PMNN-treated animals retained a significant part of the implanted scaffold (p < 0.0001 vs. controls). The foreign body reaction was markedly decreased, and there was an increase in well-oriented collagen deposition within the implanted scaffold area in the animals treated with DRPs. The DRP-mediated effects observed in this study potentially reflect alteration in inflammatory events in response to implanted bioengineered materials, and, thus, warrant further investigation.
Collapse
|
209
|
Besse JL, Brito N, Lienhart C. Clinical evaluation and radiographic assessment of bone lysis of the AES total ankle replacement. Foot Ankle Int 2009; 30:964-75. [PMID: 19796590 DOI: 10.3113/fai.2009.0964] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AES mobile-bearing total ankle replacement is evolved from the Buechel Pappas model. We report medium-term results of a prospective study with AES. MATERIALS AND METHODS All patients who underwent AES TAR for ankle arthritis, by a single surgeon, from 2003 to 2006 were included, excluding neurologic disease, talar osteonecrosis and malalignment more than 20 degrees. All were reviewed at 6 months, 1 year, and at yearly intervals thereafter. X-rays were analyzed by three observers, using a 10-zone protocol. Fifty consecutive AES implants in 47 patients (mean age, 56 years; range, 21 to 79 year) were included, with at least 2 years' followup (mean 40 months). Preoperative diagnosis was mainly post-traumatic (50%) and osteoarthritis secondary to instability (36%). Associated procedures were performed in 38%. RESULTS Eighty-two percent had good functional results. The mean AOFAS score rose from 36.9 +/- 1.7 preoperatively to 85.4 +/- 12, dorsiflexion from 3 degrees to 7.3 degrees, and plantarflexion from 30.8 degrees to 37.8 degrees. Two ankles underwent secondary arthrodesis for talar subsidence and mechanical dislocation. Ninety-eight percent of implants were well positioned at 90 degrees +/-4. Mean prosthesis ROM on X-ray was 22.1 degrees. There were tibia/implant interface cysts (greater than 5 mm) in 62% of cases, and talar/implant interface cysts in 43%. CONCLUSION Although functional outcomes were comparable to the other mobile TAR in the literature, bone lysis with the AES prosthesis was more frequent with risk of subsidence. We therefore stopped implantation of this prosthesis and recommend preventive grafting for severe lysis.
Collapse
Affiliation(s)
- Jean-Luc Besse
- Université de Lyon., Univ. Lyon 1 F-69622, Villeurbanne, France.
| | | | | |
Collapse
|
210
|
Zhang T, Yu H, Gong W, Zhang L, Jia T, Wooley PH, Yang SY. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials 2009; 30:6102-8. [PMID: 19665222 PMCID: PMC2756144 DOI: 10.1016/j.biomaterials.2009.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
Abstract
Using an in vivo adeno-associated virus (AAV)-mediated gene transfer technique, this study evaluated the therapeutic effects of an osteoprotegerin (OPG) transgene against orthopaedic wear debris-induced osteolysis in a long-term murine model. A titanium pin was surgically implanted into proximal tibia of Balb/c mice to mimic a weight-bearing knee arthroplasty, followed by an intra-articular challenge with Ti particles to provoke periprosthetic inflammation and osteolysis. rAAV-hOPG or AAV-LacZ vectors were injected into the prosthetic joint at 3 weeks post-op. The tissues were harvested at 2, 4, 12 and 24 weeks after transduction for histological and molecular analyses. Successful transgene expression at the local site was confirmed by real-time PCR and ELISA. Inflammatory pseudo-membranes were ubiquitously present at the interface between the Ti implant and the surrounding bone in both LacZ and virus-free control groups, while soft tissue was only observed sporadically at the bone-implant interface in the OPG group. A significant reduction in TRAP+ osteoclast numbers was observed in the OPG treatment group. MicroCT assessment indicated a marked reversal in the loss of peri-implant bone mineral density (BMD) in the OPG-transduced group, when compared with the LacZ and virus-free controls. Further, OPG gene modification appeared to reduce local bone collagen loss by a mean of 40%. Real-time PCR examination confirmed that in vivo OPG gene transfer dramatically influenced the periprosthetic tissue gene expression profiles by diminishing the mRNA expression of TNF, IL-1, CPK and RANKL. There were no transgene-associated toxic effects apparent during the experiment, and the PCR detection of transgenes in remote organs such as lungs, kidneys, liver, and muscle of contralateral limb were consistently negative. Overall, rAAV-mediated OPG gene transfer effectively reversed Ti-particle-induced bone resorption in this experimental model. The therapeutic effects may be due to the blockage of local osteoclastogenesis and possibly the down-regulation of RANKL expression.
Collapse
Affiliation(s)
- Tao Zhang
- Orthopaedic Research Institute, Via Christi Regional Medical Center, Wichita, KS
- Shandong University Medical School Affiliated Jinan Central Hospital, Jinan, China
| | - Haiying Yu
- Orthopaedic Research Institute, Via Christi Regional Medical Center, Wichita, KS
| | - Weiming Gong
- Shandong University Medical School Affiliated Jinan Central Hospital, Jinan, China
| | - Laibo Zhang
- Orthopaedic Research Institute, Via Christi Regional Medical Center, Wichita, KS
- Shandong University Medical School Affiliated Jinan Central Hospital, Jinan, China
| | - Tanghong Jia
- Shandong University Medical School Affiliated Jinan Central Hospital, Jinan, China
| | - Paul H. Wooley
- Orthopaedic Research Institute, Via Christi Regional Medical Center, Wichita, KS
| | - Shang-You Yang
- Orthopaedic Research Institute, Via Christi Regional Medical Center, Wichita, KS
| |
Collapse
|
211
|
Kanaji A, Caicedo MS, Virdi AS, Sumner DR, Hallab NJ, Sena K. Co-Cr-Mo alloy particles induce tumor necrosis factor alpha production in MLO-Y4 osteocytes: a role for osteocytes in particle-induced inflammation. Bone 2009; 45:528-33. [PMID: 19497395 PMCID: PMC2725206 DOI: 10.1016/j.bone.2009.05.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 01/12/2023]
Abstract
Wear debris-induced osteolysis is purportedly the limiting problem affecting the long term results of joint arthroplasty. Pathogenic effects of wear debris in peri-implant cells such as macrophages, osteoblasts and osteoclasts have been well studied. In contrast, the effects of wear debris on osteocytes, which make up over 90% of all bone cells, remain unknown. We hypothesized that metal implant debris can induce the pro-inflammatory response in osteocytes. This study demonstrated the effects of cobalt-chromium-molybdenum alloy (Co-Cr-Mo) particles on a well-characterized MLO-Y4 osteocyte cell line. Co-Cr-Mo alloy particle treatment significantly (p<0.05) up-regulated tumor necrosis factor alpha (TNFalpha) gene expression after 3 and 6 h and TNFalpha protein production after 24 h, but down-regulated interleukin-6 (IL-6) gene expression after 6 h. Co-Cr-Mo alloy particle treatment also induced osteocyte apoptosis after 24 h. This apoptotic effect was partially (40%) dependent on TNFalpha. Therefore, our results suggest that osteocytes play a role in particle-induced inflammation and bone resorption following total joint arthroplasty by inducing pro-inflammatory cytokines and inducing osteocyte apoptosis.
Collapse
Affiliation(s)
- Arihiko Kanaji
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marco S. Caicedo
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amarjit S. Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - D. Rick Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nadim J. Hallab
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kotaro Sena
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
212
|
Koivu H, Kohonen I, Sipola E, Alanen K, Vahlberg T, Tiusanen H. Severe periprosthetic osteolytic lesions after the Ankle Evolutive System total ankle replacement. ACTA ACUST UNITED AC 2009; 91:907-14. [DOI: 10.1302/0301-620x.91b7.22434] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Between 2002 and 2008, 130 consecutive ankles were replaced with an hydroxyapatite (HA) and titanium-HA-coated Ankle Evolutive System total ankle prosthesis. Plain radiographs were analysed by two independent observers. Osteolytic lesions were classified by their size and location, with cavities > 10 mm in diameter considered to be ‘marked’. CT scanning was undertaken in all patients with marked osteolysis seen on the plain radiographs. Osteolytic lesions were seen on the plain films in 48 (37%) and marked lesions in 27 (21%) ankles. The risk for osteolysis was found to be 3.1 (95% confidence interval 1.6 to 5.9) times higher with implants with Ti-HA porous coating. Care should be taken with ankle arthroplasty until more is known about the reasons for these severe osteolyses.
Collapse
Affiliation(s)
- H. Koivu
- Department of Orthopaedics and Traumatology, Turku University Hospital, Surgical Hospital, Luolavuorentie 2, 20720 Turku, Finland
| | - I. Kohonen
- The Medical Imaging Centre of Southwest Finland
| | - E. Sipola
- Department of Internal Medicine, Rheumaorthopaedic Unit, Turku University Hospital, Paimio Hospital, Alvar Aallon tie 275, 21540, Preitila, Finland
| | - K. Alanen
- Department of Pathology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - T. Vahlberg
- Department of Biostatistics, University of Turku, Lemminkaisenkatu 1, 20014, Turun Yliopisto, Turku, Finland
| | - H. Tiusanen
- Department of Internal Medicine, Rheumaorthopaedic Unit, Turku University Hospital, Paimio Hospital, Alvar Aallon tie 275, 21540, Preitila, Finland
| |
Collapse
|
213
|
Abstract
The problem of friction couples remains unresolved to this day. Improvements in femoral and acetabulum implant anchorage over the last 20 years have significantly extended total hip replacement (THR) implant lifespan; the formation of wear debris, however, leads to resorption and osteolysis, considerably shortening implant lifespan in active patients. Alumina-alumina friction couples provide an excellent friction coefficient, with wear particles that do not cause any osteolysis. There is, however, a problem of acetabulum anchorage of solid alumina, and the risk of fracture persists with ceramic implants despite improvements in their mechanical properties. Metal-metal couples also display very good tribological behavior, but at the cost of the formation of Co and Cr ions impacting surrounding bone tissue and accumulating in remote organs. The behavior of such "hard-hard" couples greatly depends on implant component positioning and on the consequences of repeated neck-insert contact. Very highly crosslinked polyethylene (PE) shows very significant improvement in terms of wear at five years' follow-up compared to conventional PE, but the behavior of this new concept will need to be monitored in the clinical situation if the disappointments experienced with previous hylamer-type improved PE are to be avoided. All these friction couples need to be validated by prospective clinical studies conducted over more than five years, to provide orthopedic surgeons with an eclectic choice of friction couples adapted to the patient's activity.
Collapse
Affiliation(s)
- N Passuti
- Orthopedic and Traumatic Surgery Department, pôle osteoarticulaire, Nantes Teaching Hospital, Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093 Nantes cedex, France.
| | | | | |
Collapse
|
214
|
In vitro testing of femoral impaction grafting with porous titanium particles: a pilot study. Clin Orthop Relat Res 2009; 467:1538-45. [PMID: 19139968 PMCID: PMC2674165 DOI: 10.1007/s11999-008-0688-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 12/15/2008] [Indexed: 01/31/2023]
Abstract
The disadvantages of allografts to restore femoral bone defects during revision hip surgery have led to the search for alternative materials. We investigated the feasibility of using porous titanium particles and posed the following questions: (1) Is it possible to create a high-quality femoral graft of porous titanium particles in terms of graft thickness, cement thickness, and cement penetration? (2) Does this titanium particle graft layer provide initial stability when a femoral cemented stem is implanted in it? (3) What sizes of particles are released from the porous titanium particles during impaction and subsequent cyclic loading of the reconstruction? We simulated cemented revision reconstructions with titanium particles in seven composite femurs loaded for 300,000 cycles and measured stem subsidence. Particle release from the titanium particle grafts was analyzed during impaction and loading. Impacted titanium particles formed a highly interlocked graft layer. We observed limited cement penetration into the titanium particle graft. A total mean subsidence of 1.04 mm was observed after 300,000 cycles. Most particles released during impaction were in the phagocytable range (< 10 microm). There was no detectable particle release during loading. Based on the data, we believe titanium particles are a promising alternative for allografts. However, animal testing is warranted to investigate the biologic effect of small-particle release.
Collapse
|
215
|
Cheng T, Zhang GY, Guo CJ, Zhang X. Effects of NF-kappaB inhibitor on titanium particulate-induced inflammation in a murine model. J Surg Res 2009; 162:225-30. [PMID: 19628224 DOI: 10.1016/j.jss.2009.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/12/2009] [Accepted: 03/18/2009] [Indexed: 10/25/2022]
Abstract
BACKGROUND Activation of nuclear factor kappa B (NF-kappaB) signaling in response to implant particulates may be critical in the pathogenesis of implant loosening after joint arthroplasty. The purpose of this study was to investigate the inhibitory effects of pyrrolidine dithiocarbamate (PDTC) in a murine model of inflammation induced by titanium (Ti) particulates. MATERIALS AND METHODS Ti particulates were introduced into established air pouches on C57BL/6J mice. Mice were injected intraperitoneally with either high-dose PDTC (100 mg/kg) or low-dose PDTC (50 mg/kg). Mice without drug treatment, as well as mice injected with saline alone were included. Each group consisted of sixteen mice. The membranes and lavage fluid were harvested 2 d or 7 d after injection of particulate suspension for histological and molecular analysis. RESULTS Histologic analysis showed that PDTC reduced inflammatory responses in air pouches, that is, thinner membrane and decreased cellular infiltration. In addition, PDTC reduced the release of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in the lavage fluid or supernatant of homogenates as evaluated by ELISA. CONCLUSION These results suggest that PDTC inhibits Ti particulate-induced inflammatory responses in the murine model; thus it represents a promising therapeutic candidate for the prevention and treatment of implant loosening.
Collapse
Affiliation(s)
- T'ao Cheng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | |
Collapse
|
216
|
Pajarinen J, Mackiewicz Z, Pöllänen R, Takagi M, Epstein NJ, Ma T, Goodman SB, Konttinen YT. Titanium particles modulate expression of Toll-like receptor proteins. J Biomed Mater Res A 2009; 92:1528-37. [DOI: 10.1002/jbm.a.32495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
217
|
Cheng T, Peng XC, Li FF, Zhang XL, Hu KZ, Zhu JF, Zeng BF. Transforming growth factor-β activated kinase 1 signaling pathways regulate TNF-α production by titanium alloy particles in RAW 264.7 cells. J Biomed Mater Res A 2009; 93:1493-9. [DOI: 10.1002/jbm.a.32618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
218
|
Peng X, Tao K, Cheng T, Zhu J, Zhang X. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA. Biochem Biophys Res Commun 2008; 377:532-537. [DOI: 10.1016/j.bbrc.2008.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|
219
|
Lombardi AV, Ellison BS, Berend KR. Polyethylene wear is influenced by manufacturing technique in modular TKA. Clin Orthop Relat Res 2008; 466:2798-805. [PMID: 18791779 PMCID: PMC2565045 DOI: 10.1007/s11999-008-0470-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 08/07/2008] [Indexed: 01/31/2023]
Abstract
Polyethylene insert backside surface wear is implicated in osteolysis and failure of total knee arthroplasty. Manufacturing and sterilization methods reduce articular-sided wear. We questioned whether manufacturing technique influences the severity of backside wear. We examined 39 explanted tibial bearings in a blinded fashion using visual, stereomicroscopic, and scanning electron microscopic techniques. We examined 26 direct compression molded components and 13 nondirect compression molded components and applied a new backside wear severity score. The score characterized the magnitude of the various modes of wear with severity ranging from 0 (no wear) to 27 (severe wear). Time in vivo, tibial baseplate material, and manufacturing technique were used as variables for comparison. Backside wear was related to polyethylene manufacturing process with direct compression molded implants having a wear score of 2.3 and nondirect compression molded a score of 5.7. Time in vivo influenced backside wear, although direct compression molded predicted decreased backside wear independent of time in vivo. The data suggest manufacturing technique influences backside wear in total knee arthroplasty polyethylene inserts.
Collapse
|
220
|
Pierannunzii L, Fischer F, d'Imporzano M. Retroacetabular osteolytic lesions behind well-fixed prosthetic cups: pilot study of bearings-retaining surgery. J Orthop Traumatol 2008; 9:225-31. [PMID: 19384491 PMCID: PMC2657328 DOI: 10.1007/s10195-008-0031-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/12/2008] [Indexed: 12/11/2022] Open
Abstract
Background Osteolytic lesions are common radiological findings behind acetabular prosthetic cups. If the cup is well-fixed, the management is quite controversial. Although implant exchange is the most reliable procedure, in most cases it could be considered overtreatment, with the potential for further morbidity and bone loss. Liner exchange associated with lesion debridement and grafting represents an alternative option that is less invasive. Here we present our experiences from a small pilot study of minimally invasive osteolysis treatment without bearings exchange in patients with no evidence of liner wear. Materials and methods Inclusion criteria: retroacetabular osteolytic lesions in ceramic-on-polyethylene or metal-on-polyethylene cementless total hip arthroplasties, affecting more than 50% of the bone–prosthesis interface on anteroposterior radiography. Exclusion criteria: head penetration into the liner, suspected loosening or infection. Six patients were selected, two asymptomatic and four symptomatic. Only the symptomatic patients accepted the proposed treatment (performed between June 2004 and March 2006). All of them received fluoroscopy-assisted lesion debridement through an iliac cortical window, morcellized bone allograft mixed with autologous platelet-rich plasma, joint exploration for culture and lavage through a small capsular window. Patients were followed up clinically and radiologically at six months, 12 months, and then yearly. Results Three patients out of four showed clinical and radiological improvement. One showed radiological improvement only, and recently underwent cup exchange for subsequent loosening. The visual analog scale (VAS) values for pain decreased on average, but not significantly. No major complications occurred. No recurrence was noted at 2.25–4 years’ follow-up. Conclusions Although the small series does not allow any absolute conclusions to be drawn, the reported results seem to justify further, wider studies. It is still unclear if osteolytic lesions associated with no wear of the poly liner would progress to implant failure if left untreated. Until the problem is better understood, this procedure might represent an interesting way to prevent potential loosening and severe bone loss in intact sockets.
Collapse
Affiliation(s)
- Luca Pierannunzii
- III Division of Orthopaedics and Trauma, Gaetano Pini Orthopaedic Institute, Piazza C. Ferrari, 1, 20122 Milan, Italy.
| | | | | |
Collapse
|
221
|
Locally administered lentivirus-mediated siRNA inhibits wear debris-induced inflammation in murine air pouch model. Biotechnol Lett 2008; 30:1923-9. [DOI: 10.1007/s10529-008-9788-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 02/03/2023]
|
222
|
Rogel MR, Qiu H, Ameer GA. The role of nanocomposites in bone regeneration. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b804692a] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
223
|
|