201
|
Moreno E, Lenuzzi M, Rödelsperger C, Prabh N, Witte H, Roeseler W, Riebesell M, Sommer RJ. DAF‐19/RFX controls ciliogenesis and influences oxygen‐induced social behaviors in
Pristionchus pacificus. Evol Dev 2018; 20:233-243. [DOI: 10.1111/ede.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eduardo Moreno
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Maša Lenuzzi
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Neel Prabh
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Hanh Witte
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Waltraud Roeseler
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Metta Riebesell
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Ralf J. Sommer
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| |
Collapse
|
202
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
203
|
Funabashi T, Katoh Y, Okazaki M, Sugawa M, Nakayama K. Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis. J Cell Biol 2018; 217:2867-2876. [PMID: 29903877 PMCID: PMC6080941 DOI: 10.1083/jcb.201801039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) is crucial for the assembly and maintenance of cilia and is mediated by IFT particles containing IFT-A and IFT-B complexes. IFT-B powered by heterotrimeric kinesin-II and IFT-A powered by the dynein-2 complex are responsible for anterograde and retrograde protein trafficking, respectively. However, little is known about the molecular basis of the trafficking of these IFT particles regulated by kinesin and dynein motors. Using the visible immunoprecipitation assay, we identified in this study a three-to-four protein interaction involving the kinesin-II trimer KIF3A-KIF3B-KAP3 and the IFT-B-connecting tetramer IFT38-IFT52-IFT57-IFT88; among the kinesin-II subunits, KIF3B contributed mainly to IFT-B binding. Furthermore, we showed that the ciliogenesis defect of KIF3B-knockout cells can be rescued by the exogenous expression of wild-type KIF3B but not by that of its mutant compromised with respect to IFT-B binding. Thus, interaction of heterotrimeric kinesin-II with the IFT-B-connecting tetramer is crucial for ciliogenesis via the powering of IFT particles to move in the anterograde direction.
Collapse
Affiliation(s)
- Teruki Funabashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Misato Okazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Maho Sugawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
204
|
Chlamydomonas Basal Bodies as Flagella Organizing Centers. Cells 2018; 7:cells7070079. [PMID: 30018231 PMCID: PMC6070942 DOI: 10.3390/cells7070079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
During ciliogenesis, centrioles convert to membrane-docked basal bodies, which initiate the formation of cilia/flagella and template the nine doublet microtubules of the flagellar axoneme. The discovery that many human diseases and developmental disorders result from defects in flagella has fueled a strong interest in the analysis of flagellar assembly. Here, we will review the structure, function, and development of basal bodies in the unicellular green alga Chlamydomonas reinhardtii, a widely used model for the analysis of basal bodies and flagella. Intraflagellar transport (IFT), a flagella-specific protein shuttle critical for ciliogenesis, was first described in C. reinhardtii. A focus of this review will be on the role of the basal bodies in organizing the IFT machinery.
Collapse
|
205
|
Hamada Y, Tsurumi Y, Nozaki S, Katoh Y, Nakayama K. Interaction of WDR60 intermediate chain with TCTEX1D2 light chain of the dynein-2 complex is crucial for ciliary protein trafficking. Mol Biol Cell 2018; 29:1628-1639. [PMID: 29742051 PMCID: PMC6080652 DOI: 10.1091/mbc.e18-03-0173] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/20/2022] Open
Abstract
The dynein-2 complex mediates trafficking of ciliary proteins by powering the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Although 11 subunits are known to constitute the dynein-2 complex, with several light-chain subunits shared by the dynein-1 complex, the overall architecture of the dynein-2 complex has not been fully clarified. Utilizing the visible immunoprecipitation assay, we demonstrated the interaction modes among the dynein-2 subunits, including previously undefined interactions, such as that between WDR60 and the TCTEX1D2-DYNLT1/DYNLT3 dimer. The dynein-2 complex can be divided into three subcomplexes, namely DYNC2H1-DYNC2LI1, WDR34-DYNLL1/DYNLL2-DYNLRB1/DYNLRB2, and WDR60-TCTEX1D2-DYNLT1/DYNLT3. We established cell lines lacking WDR60 or TCTEX1D2, both of which are dynein-2-specific subunits encoded by ciliopathy-causing genes, and found that both WDR60-knockout (KO) and TCTEX1D2-KO cells show defects in retrograde ciliary protein trafficking, with WDR60-KO cells demonstrating more severe defects probably due to failed assembly of the dynein-2 complex. The exogenous expression of a WDR60 mutant lacking TCTEX1D2 binding partially restored retrograde trafficking to a level comparable to that of TCTEX1D2-KO cells. Thus, our results demonstrated that WDR60 plays a major role and TCTEX1D2 plays an auxiliary role in the dynein-2 complex to mediate retrograde ciliary protein trafficking.
Collapse
Affiliation(s)
- Yuki Hamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Tsurumi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Nozaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
206
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
207
|
Intraflagellar transport 46 (IFT46) is essential for trafficking IFT proteins between cilia and cytoplasm in Paramecium. Sci Rep 2018; 8:9259. [PMID: 29915351 PMCID: PMC6006156 DOI: 10.1038/s41598-018-27050-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/09/2018] [Indexed: 11/08/2022] Open
Abstract
Intraflagellar transport (IFT) is a bi-directional process by which particles are carried within the cilia or flagella. This process is essential for ciliary growth and functional maintenance. The IFT complex B (IFTB) is linked to a kinesin motor for anterograde transport towards the ciliary tip. The IFT complex A (IFTA) is connected to a dynein motor for retrograde transport towards the ciliary basis. This study focuses on IFT46, an IFTB member that participates in this process. In Paramecium, a GFP-labelled IFT46 protein was found in basal bodies and in some cilia, mostly those undergoing biogenesis. RNA interference against IFT46 in Paramecium triggered severe defects in ciliary growth and architecture, including a decreased cilia number and shortened cilia length. This result differed from that obtained from the cells that were depleted of IFT80, another IFTB protein. Moreover, IFT57-GFP fusion protein abnormally accumulated in the cortex and cytoplasm in IFT46-depleted cells compared with the control. Furthermore, transcriptomic analysis showed that IFT46 depletion induced the abnormal expression of several genes that encodeding kinesin and dynein chains. These findings together indicate that IFT46 plays important roles in trafficking IFT proteins between the cytoplasm and cilia of Paramecium.
Collapse
|
208
|
Liu H, Li W, Zhang Y, Zhang Z, Shang X, Zhang L, Zhang S, Li Y, Somoza AV, Delpi B, Gerton GL, Foster JA, Hess RA, Pazour GJ, Zhang Z. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation. Biol Reprod 2018; 96:993-1006. [PMID: 28430876 DOI: 10.1093/biolre/iox029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/13/2017] [Indexed: 12/25/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. However, IFT25, a component of the IFT complex, is not required for the formation of cilia in somatic tissues. In mice, the gene is highly expressed in the testis, and its expression is upregulated during the final phase when sperm flagella are formed. To investigate the role of IFT25 in sperm flagella formation, the gene was specifically disrupted in male germ cells. All homozygous knockout mice survived to adulthood and did not show any gross abnormalities. However, all homozygous knockout males were completely infertile. Sperm numbers were reduced and these sperm were completely immotile. Multiple morphological abnormalities were observed in sperm, including round heads, short and bent tails, with some tails showing branched flagella and others with frequent abnormal thicknesses, as well as swollen tips of the tail. Transmission electron microscopy revealed that flagellar accessory structures, including the fibrous sheath and outer dense fibers, were disorganized, and most sperm had also lost the "9+2" microtubule structure. In the testis, IFT25 forms a complex with other IFT proteins. In Ift25 knockout testes, IFT27, an IFT25 binding partner, was missing, and IFT20 and IFT81 levels were also reduced. Our findings suggest that IFT25, although not necessary for the formation of cilia in somatic cells, is indispensable for sperm flagellum formation and male fertility in mice.
Collapse
Affiliation(s)
- Hong Liu
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yong Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Dermatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengang Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Ling Zhang
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shiyang Zhang
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yanwei Li
- Department of Computer Science, Wellesley College, Wellesley, Massachusetts, USA
| | - Andres V Somoza
- Department of Humanities and Sciences, Honor College, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brandon Delpi
- Department of Biology, Randolph-Macon College, Ashland, Virginia, USA
| | - George L Gerton
- Center for Research on Reproduction and Women's Health Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James A Foster
- Department of Biology, Randolph-Macon College, Ashland, Virginia, USA
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zhibing Zhang
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
209
|
Yi P, Xie C, Ou G. The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility inCaenorhabditis elegansneuronal cilia. Traffic 2018; 19:522-535. [PMID: 29655266 DOI: 10.1111/tra.12572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science; Tsinghua University; Beijing China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science; Tsinghua University; Beijing China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science; Tsinghua University; Beijing China
| |
Collapse
|
210
|
Mohamed MAA, Stepp WL, Ökten Z. Reconstitution reveals motor activation for intraflagellar transport. Nature 2018; 557:387-391. [PMID: 29743676 PMCID: PMC5967604 DOI: 10.1038/s41586-018-0105-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
The human body represents a striking example of ciliary diversification. Extending from the surface of most cells, cilia accomplish an astonishingly diverse set of tasks. Predictably, mutations in ciliary genes cause a wide range of human diseases such as male infertility or blindness. In C. elegans sensory cilia, this functional diversity appears to be traceable to the differential regulation of the kinesin-2-powered intraflagellar transport (IFT) machinery. Here, we reconstituted the first functional, multi-component IFT complex that is deployed in the sensory cilia of C. elegans. Our bottom-up approach revealed the molecular basis of specific motor recruitment to the IFT trains. We identified the key component that incorporates homodimeric kinesin-2 into its physiologically relevant context which in turn allosterically activates the motor for efficient transport. These results lay the groundwork for a molecular delineation of IFT regulation that eluded understanding since its ground-breaking discovery more than two decades ago.
Collapse
Affiliation(s)
| | - Willi L Stepp
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching, Germany. .,Munich Center for Integrated Protein Science, Munich, Germany.
| |
Collapse
|
211
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
212
|
Takei R, Katoh Y, Nakayama K. Robust interaction of IFT70 with IFT52-IFT88 in the IFT-B complex is required for ciliogenesis. Biol Open 2018; 7:bio.033241. [PMID: 29654116 PMCID: PMC5992529 DOI: 10.1242/bio.033241] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the intraflagellar transport (IFT) machinery, the IFT-B and IFT-A complexes mediate anterograde and retrograde ciliary protein trafficking, respectively. Among the 16 subunits of the IFT-B complex, several subunits are essential for ciliogenesis, whereas others, which are associated peripherally with the complex, are dispensable for ciliogenesis but play a role in protein trafficking. IFT22-knockout (KO) cells established in this study demonstrated no defects in ciliogenesis or ciliary protein trafficking. In stark contrast, IFT70A and IFT70B double-knockout cells did not form cilia, even though IFT70 is associated peripherally with the IFT-B complex via the IFT52–IFT88 dimer, and other IFT-B subunits assembled at the ciliary base in the absence of IFT70. Exogenous expression of either IFT70A or IFT70B restored the ciliogenesis defect of IFT70-KO cells, indicating their redundant roles. IFT70 has 15 consecutive tetratricopeptide repeats (TPRs) followed by a short helix (α36). Deletion of the first TPR or α36 of IFT70A greatly reduced its ability to interact with the IFT52–IFT88 dimer. Exogenous expression of any of the IFT70A deletion mutants in IFT70-KO cells could not restore ciliogenesis. These results show that IFT70 plays an essential role in ciliogenesis, although it is dispensable for assembly of the residual IFT-B subunits. Summary: IFT70 is a subunit of the IFT-B complex involved in anterograde trafficking of ciliary proteins, including tubulins. IFT70-knockout cells failed to form cilia, indicating its essential role in tubulin trafficking.
Collapse
Affiliation(s)
- Ryota Takei
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
213
|
Hunter EL, Lechtreck K, Fu G, Hwang J, Lin H, Gokhale A, Alford LM, Lewis B, Yamamoto R, Kamiya R, Yang F, Nicastro D, Dutcher SK, Wirschell M, Sale WS. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol Biol Cell 2018; 29:886-896. [PMID: 29467251 PMCID: PMC5896928 DOI: 10.1091/mbc.e17-12-0729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
We determined how the ciliary motor I1 dynein is transported. A specialized adapter, IDA3, facilitates I1 dynein attachment to the ciliary transporter called intraflagellar transport (IFT). Loading of IDA3 and I1 dynein on IFT is regulated by ciliary length.
Collapse
Affiliation(s)
- Emily L. Hunter
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Lea M. Alford
- Department of Biology, Oglethorpe University, Atlanta, GA 30319
| | - Brian Lewis
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Chuo University, Tokyo 112-8551, Japan
| | - Fan Yang
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Maureen Wirschell
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | | |
Collapse
|
214
|
Shimada H, Lu Q, Insinna-Kettenhofen C, Nagashima K, English MA, Semler EM, Mahgerefteh J, Cideciyan AV, Li T, Brooks BP, Gunay-Aygun M, Jacobson SG, Cogliati T, Westlake CJ, Swaroop A. In Vitro Modeling Using Ciliopathy-Patient-Derived Cells Reveals Distinct Cilia Dysfunctions Caused by CEP290 Mutations. Cell Rep 2018; 20:384-396. [PMID: 28700940 DOI: 10.1016/j.celrep.2017.06.045] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/03/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Mutations in CEP290, a transition zone protein in primary cilia, cause diverse ciliopathies, including Leber congenital amaurosis (LCA) and Joubert-syndrome and related disorders (JSRD). We examined cilia biogenesis and function in cells derived from CEP290-LCA and CEP290-JSRD patients. CEP290 protein was reduced in LCA fibroblasts with no detectable impact on cilia; however, optic cups derived from induced pluripotent stem cells (iPSCs) of CEP290-LCA patients displayed less developed photoreceptor cilia. Lack of CEP290 in JSRD fibroblasts resulted in abnormal cilia and decreased ciliogenesis. We observed selectively reduced localization of ADCY3 and ARL13B. Notably, Hedgehog signaling was augmented in CEP290-JSRD because of enhanced ciliary transport of Smoothened and GPR161. These results demonstrate a direct correlation between the extent of ciliogenesis defects in fibroblasts and photoreceptors with phenotypic severity in JSRD and LCA, respectively, and strengthen the role of CEP290 as a selective ciliary gatekeeper for transport of signaling molecules in and out of the cilium.
Collapse
Affiliation(s)
- Hiroko Shimada
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | | | - Kunio Nagashima
- Electron Microscope Laboratory, Leidos Biomedical Research, Inc., National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Milton A English
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth M Semler
- Laboratory of Cell and Developmental Signaling, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Jacklyn Mahgerefteh
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiansen Li
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian P Brooks
- Pediatric, Developmental, and Genetic Eye Disease Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meral Gunay-Aygun
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pediatrics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, National Cancer Institute - Frederick, Frederick, MD 21702, USA.
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
215
|
BBS1 is involved in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex. PLoS One 2018; 13:e0195005. [PMID: 29590217 PMCID: PMC5874067 DOI: 10.1371/journal.pone.0195005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/14/2018] [Indexed: 01/20/2023] Open
Abstract
Protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery composed of large protein complexes. The BBSome consists of eight BBS proteins encoded by causative genes of Bardet-Biedl syndrome (BBS), and has been implicated in the trafficking of ciliary membrane proteins, including G protein-coupled receptors (GPCRs), by connecting the IFT machinery to cargo GPCRs. Membrane recruitment of the BBSome to promote cargo trafficking has been proposed to be regulated by the Arf-like small GTPase ARL6/BBS3, through its interaction with the BBS1 subunit of the BBSome. We here investigated how the BBSome core subcomplex composed of BBS1, BBS2, BBS7, and BBS9 assembles and interacts with ARL6, and found that the ARL6-BBS1 interaction is reinforced by BBS9. BBS1-knockout (KO) cells showed defects in the ciliary entry of other BBSome subunits and ARL6, and in ciliary retrograde trafficking and the export of the GPCRs, Smoothened and GPR161. The trafficking defect of these GPCRs was rescued by the exogenous expression of wild-type BBS1, but not by its mutant lacking BBS9-binding ability. Our data thus indicate that the intact BBSome is required for retrograde trafficking of GPCRs out of cilia.
Collapse
|
216
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
217
|
Vetter M, Boegholm N, Christensen A, Bhogaraju S, Andersen MB, Lorentzen A, Lorentzen E. Crystal structure of tetrameric human Rabin8 GEF domain. Proteins 2018; 86:405-413. [DOI: 10.1002/prot.25455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/24/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Melanie Vetter
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried D-82152 Germany
| | - Niels Boegholm
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C DK-8000 Denmark
| | - Anni Christensen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C DK-8000 Denmark
| | - Sagar Bhogaraju
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried D-82152 Germany
| | - Marie B. Andersen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C DK-8000 Denmark
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C DK-8000 Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C DK-8000 Denmark
| |
Collapse
|
218
|
Wang P, Zhao D, Lachman HM, Zheng D. Enriched expression of genes associated with autism spectrum disorders in human inhibitory neurons. Transl Psychiatry 2018; 8:13. [PMID: 29317598 PMCID: PMC5802446 DOI: 10.1038/s41398-017-0058-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/13/2017] [Accepted: 10/09/2017] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is highly heritable but genetically heterogeneous. The affected neural circuits and cell types remain unclear and may vary at different developmental stages. By analyzing multiple sets of human single cell transcriptome profiles, we found that ASD candidates showed relatively enriched gene expression in neurons, especially in inhibitory neurons. ASD candidates were also more likely to be the hubs of the co-expression gene module that is highly expressed in inhibitory neurons, a feature not detected for excitatory neurons. In addition, we found that upregulated genes in multiple ASD cortex samples were enriched with genes highly expressed in inhibitory neurons, suggesting a potential increase of inhibitory neurons and an imbalance in the ratio between excitatory and inhibitory neurons in ASD brains. Furthermore, the downstream targets of several ASD candidates, such as CHD8, EHMT1 and SATB2, also displayed enriched expression in inhibitory neurons. Taken together, our analyses of single cell transcriptomic data suggest that inhibitory neurons may be a major neuron subtype affected by the disruption of ASD gene networks, providing single cell functional evidence to support the excitatory/inhibitory (E/I) imbalance hypothesis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
219
|
Zhang Y, Liu H, Li W, Zhang Z, Zhang S, Teves ME, Stevens C, Foster JA, Campbell GE, Windle JJ, Hess RA, Pazour GJ, Zhang Z. Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton (Hoboken) 2018; 75:70-84. [PMID: 29236364 DOI: 10.1002/cm.21427] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/11/2022]
Abstract
Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. However, little is known about its role in sperm flagella formation and male fertility. IFT140 is a component of IFT-A complex. In mouse, it is highly expressed in the testis. Ift140 gene was inactivated specifically in mouse spermatocytes/spermatids. The mutant mice did not show any gross abnormalities, but all were infertile and associated with significantly reduced sperm number and motility. Multiple sperm morphological abnormalities were discovered, including amorphous heads, short/bent flagella and swollen tail tips, as well as vesicles along the flagella due to spermiogenesis defects. The epididymides contained round bodies of cytoplasm derived from the sloughing of the cytoplasmic lobes and residual bodies. Knockout of Ift140 did not significantly affect testicular expression levels of selective IFT components but localization of IFT27 and IFT88, two components of IFT-B complex, was changed. Our findings demonstrate that IFT140 is a key regulator for male fertility and normal spermiogenesis in mice. It not only plays a role in sperm flagella assembling, but is also involved in critical assembly of proteins that interface between the germ cell plasma and the Sertoli cell.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Hong Liu
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298.,School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, Hubei
| | - Wei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Zhengang Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298.,Department of Gastroenterology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Shiyang Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298.,School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, Hubei
| | - Maria E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Courtney Stevens
- Department of Biology, Randolph-Macon College, Ashland, Virginia 23005
| | - James A Foster
- Department of Biology, Randolph-Macon College, Ashland, Virginia 23005
| | - Gregory E Campbell
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln, Urbana, Illinois 61802-6199
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298.,School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, Hubei
| |
Collapse
|
220
|
Moreno E, Sommer RJ. A cilia-mediated environmental input induces solitary behaviour in Caenorhabditis elegans and Pristionchus pacificus nematodes. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nematodes respond to a multitude of environmental cues. For example, the social behaviours clumping and bordering were described as a mechanism of hyperoxia avoidance in Caenorhabditis elegans and Pristionchus pacificus. A recent study in P. pacificus revealed a novel regulatory pathway that inhibits social behaviour in a response to an as yet unknown environmental cue. This environmental signal is recognised by ciliated neurons, as mutants defective in intraflagellar transport (IFT) proteins display social behaviours. The IFT machinery represents a large protein complex and many mutants in genes encoding IFT proteins are available in C. elegans. However, social phenotypes in C. elegans IFT mutants have never been reported. Here, we examined 15 previously isolated C. elegans IFT mutants and found that most of them showed strong social behaviour. These findings indicate conservation in the inhibitory mechanism of social behaviour between P. pacificus and C. elegans.
Collapse
Affiliation(s)
- Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
221
|
Youn YH, Han YG. Primary Cilia in Brain Development and Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:11-22. [PMID: 29030052 PMCID: PMC5745523 DOI: 10.1016/j.ajpath.2017.08.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
Abstract
The primary cilium, a sensory appendage that is present in most mammalian cells, plays critical roles in signaling pathways and cell cycle progression. Mutations that affect the structure or function of primary cilia result in ciliopathies, a group of developmental and degenerative diseases that affect almost all organs and tissues. Our understanding of the constituents, development, and function of primary cilia has advanced considerably in recent years, revealing pathogenic mechanisms that potentially underlie ciliopathies. In the brain, the primary cilia are crucial for early patterning, neurogenesis, neuronal maturation and survival, and tumorigenesis, mostly through regulating cell cycle progression, Hedgehog signaling, and WNT signaling. We review these advances in our knowledge of primary cilia, focusing on brain development, and discuss the mechanisms that may underlie brain abnormalities in ciliopathies.
Collapse
Affiliation(s)
- Yong Ha Youn
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Young-Goo Han
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
222
|
Nakayama K, Katoh Y. Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. J Biochem 2017; 163:155-164. [DOI: 10.1093/jb/mvx087] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
223
|
Moreno E, Sieriebriennikov B, Witte H, Rödelsperger C, Lightfoot JW, Sommer RJ. Regulation of hyperoxia-induced social behaviour in Pristionchus pacificus nematodes requires a novel cilia-mediated environmental input. Sci Rep 2017; 7:17550. [PMID: 29242625 PMCID: PMC5730589 DOI: 10.1038/s41598-017-18019-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023] Open
Abstract
Social behaviours are frequently utilised for defence and stress avoidance in nature. Both Caenorhabditis elegans and Pristionchus pacificus nematodes display social behaviours including clumping and bordering, to avoid hyperoxic stress conditions. Additionally, both species show natural variation in social behaviours with “social” and “solitary” strains. While the single solitary C. elegans N2 strain has evolved under laboratory domestication due to a gain-of-function mutation in the neuropeptide receptor gene npr-1, P. pacificus solitary strains are commonplace and likely ancestral. P. pacificus therefore provides an opportunity to further our understanding of the mechanisms regulating these complex behaviours and how they evolved within an ecologically relevant system. Using CRISPR/Cas9 engineering, we show that Ppa-npr-1 has minimal influence on social behaviours, indicating independent evolutionary pathways compared to C. elegans. Furthermore, solitary P. pacificus strains show an unexpected locomotive response to hyperoxic conditions, suggesting a novel regulatory mechanism counteracting social behaviours. By utilising both forward and reverse genetic approaches we identified 10 genes of the intraflagellar transport machinery in ciliated neurons that are essential for this inhibition. Therefore, a novel cilia-mediated environmental input adds an additional level of complexity to the regulation of hyperoxia-induced social behaviours in P. pacificus, a mechanism unknown in C. elegans.
Collapse
Affiliation(s)
- Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - James W Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
224
|
Schmid FM, Schou KB, Vilhelm MJ, Holm MS, Breslin L, Farinelli P, Larsen LA, Andersen JS, Pedersen LB, Christensen ST. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. J Cell Biol 2017; 217:151-161. [PMID: 29237719 PMCID: PMC5748969 DOI: 10.1083/jcb.201611050] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022] Open
Abstract
PDGFRα signals from cilia to control development and tumorigenesis. Schmid et al. now show that intraflagellar transport protein 20 (IFT20) interacts with and stabilizes the E3 ubiquitin ligases c-Cbl and Cbl-b to promote feedback inhibition of PDGFRα signaling at the primary cilium. Primary cilia have pivotal roles as organizers of many different signaling pathways, including platelet-derived growth factor receptor α (PDGFRα) signaling, which, when aberrantly regulated, is associated with developmental disorders, tumorigenesis, and cancer. PDGFRα is up-regulated during ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor is subsequently ubiquitinated and internalized. In contrast, in IFT20-depleted cells, PDGFRα localizes aberrantly to the plasma membrane and is overactivated after ligand stimulation because of destabilization and degradation of c-Cbl and Cbl-b.
Collapse
Affiliation(s)
- Fabian Marc Schmid
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Bødtker Schou
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Juel Vilhelm
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Schrøder Holm
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Loretta Breslin
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lotte Bang Pedersen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
225
|
Takahara M, Katoh Y, Nakamura K, Hirano T, Sugawa M, Tsurumi Y, Nakayama K. Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis. Hum Mol Genet 2017; 27:516-528. [DOI: 10.1093/hmg/ddx421] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022] Open
|
226
|
Taulet N, Vitre B, Anguille C, Douanier A, Rocancourt M, Taschner M, Lorentzen E, Echard A, Delaval B. IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning. Nat Commun 2017; 8:1928. [PMID: 29203870 PMCID: PMC5715026 DOI: 10.1038/s41467-017-01479-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning. Cytokinesis relies on central spindle organization and provides a spatial landmark for lumen formation. Here, the authors show that intraflagellar transport proteins are required for the localization of the cytokinetic regulator Aurora B and subsequent cleavage furrow ingression and lumen positioning.
Collapse
Affiliation(s)
- Nicolas Taulet
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Benjamin Vitre
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Christelle Anguille
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Audrey Douanier
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Murielle Rocancourt
- Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Arnaud Echard
- Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France
| | - Benedicte Delaval
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
227
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
228
|
Guen VJ, Edvardson S, Fraenkel ND, Fattal-Valevski A, Jalas C, Anteby I, Shaag A, Dor T, Gillis D, Kerem E, Lees JA, Colas P, Elpeleg O. A homozygous deleterious CDK10 mutation in a patient with agenesis of corpus callosum, retinopathy, and deafness. Am J Med Genet A 2017; 176:92-98. [PMID: 29130579 DOI: 10.1002/ajmg.a.38506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/11/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
The primary cilium is a key organelle in numerous physiological and developmental processes. Genetic defects in the formation of this non-motile structure, in its maintenance and function, underlie a wide array of ciliopathies in human, including craniofacial, brain and heart malformations, and retinal and hearing defects. We used exome sequencing to study the molecular basis of disease in an 11-year-old female patient who suffered from growth retardation, global developmental delay with absent speech acquisition, agenesis of corpus callosum and paucity of white matter, sensorineural deafness, retinitis pigmentosa, vertebral anomalies, patent ductus arteriosus, and facial dysmorphism reminiscent of STAR syndrome, a suspected ciliopathy. A homozygous variant, c.870_871del, was identified in the CDK10 gene, predicted to cause a frameshift, p.Trp291Alafs*18, in the cyclin-dependent kinase 10 protein. CDK10 mRNAs were detected in patient cells and do not seem to undergo non-sense mediated decay. CDK10 is the binding partner of Cyclin M (CycM) and CDK10/CycM protein kinase regulates ciliogenesis and primary cilium elongation. Notably, CycM gene is mutated in patients with STAR syndrome. Following incubation, the patient cells appeared less elongated and more densely populated than the control cells suggesting that the CDK10 mutation affects the cytoskeleton. Upon starvation and staining with acetylated-tubulin, γ-tubulin, and Arl13b, the patient cells exhibited fewer and shorter cilia than control cells. These findings underscore the importance of CDK10 for the regulation of ciliogenesis. CDK10 defect is likely associated with a new form of ciliopathy phenotype; additional patients may further validate this association.
Collapse
Affiliation(s)
- Vincent J Guen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel.,Pediatric Neurology Unit, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitay D Fraenkel
- Department of Respiratory Rehabilitation, Alyn Hospital, Jerusalem, Israel
| | - Aviva Fattal-Valevski
- Pediatric Neurology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaim Jalas
- Bonei Olam, Center for Rare Jewish Genetic Disorders, Brooklyn, New York
| | - Irene Anteby
- Department of Ophthalmology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talia Dor
- Pediatric Neurology Unit, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Gillis
- Department of Pediatrics, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eitan Kerem
- Department of Pediatrics, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique and Université Pierre et Marie Curie, Roscoff, France
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
229
|
Bernabé-Rubio M, Alonso MA. Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci 2017; 74:4077-4095. [PMID: 28624967 PMCID: PMC11107551 DOI: 10.1007/s00018-017-2570-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
230
|
Hanke-Gogokhia C, Wu Z, Sharif A, Yazigi H, Frederick JM, Baehr W. The guanine nucleotide exchange factor Arf-like protein 13b is essential for assembly of the mouse photoreceptor transition zone and outer segment. J Biol Chem 2017; 292:21442-21456. [PMID: 29089384 DOI: 10.1074/jbc.ra117.000141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/24/2017] [Indexed: 01/17/2023] Open
Abstract
Arf-like protein 13b (ARL13b) is a small GTPase that functions as a guanosine nucleotide exchange factor (GEF) for ARL3-GDP. ARL13b is located exclusively in photoreceptor outer segments (OS) presumably anchored to discs by palmitoylation, whereas ARL3 is an inner segment cytoplasmic protein. Hypomorphic mutations affecting the ARL13b G-domain inactivate GEF activity and lead to Joubert syndrome (JS) in humans. However, the molecular mechanisms in ARL13b mutation-induced Joubert syndrome, particularly the function of primary cilia, are still incompletely understood. Because Arl13b germline knockouts in mouse are lethal, we generated retina-specific deletions of ARL13b in which ARL3-GTP formation is impaired. In mouse retArl13b-/- central retina at postnatal day 6 (P6) and older, outer segments were absent, thereby preventing trafficking of outer segment proteins to their destination. Ultrastructure of postnatal day 10 (P10) central retArl13b-/- photoreceptors revealed docking of basal bodies to cell membranes, but mature transition zones and disc structures were absent. Deletion of ARL13b in adult mice via tamoxifen-induced Cre/loxP recombination indicated that axonemes gradually shorten and outer segments progressively degenerate. IFT88, essential for anterograde intraflagellar transport (IFT), was significantly reduced at tamArl13b-/- basal bodies, suggesting impairment of intraflagellar transport. AAV2/8 vector-mediated ARL13b expression in the retArl13b-/- retina rescued ciliogenesis.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Zhijian Wu
- NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ali Sharif
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Hussein Yazigi
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Jeanne M Frederick
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132, .,Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah 84132, and.,Department of Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
231
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
232
|
Hartwig C, Monis WJ, Chen X, Dickman DK, Pazour GJ, Faundez V. Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes. Dev Neurobiol 2017; 78:311-330. [PMID: 28986965 DOI: 10.1002/dneu.22542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome-primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 311-330, 2018.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| | - William J Monis
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Xun Chen
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Dion K Dickman
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| |
Collapse
|
233
|
Zhu X, Liang Y, Gao F, Pan J. IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis. Cell Mol Life Sci 2017; 74:3425-3437. [PMID: 28417161 PMCID: PMC11107664 DOI: 10.1007/s00018-017-2525-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics. The N-terminal calponin homology (CH) domain of IFT54 interacts with tubulins/MTs and has been proposed to transport tubulin during ciliogenesis, whereas the C-terminal coiled-coil (CC) domain binds IFT20. However, the precise function of these domains in vivo is not well understood. We showed that in Chlamydomonas, loss of IFT54 completely blocks ciliogenesis but does not affect spindle formation and proper cell cycle progression, even though IFT54 interacts with mitotic MTs. Interestingly, IFT54 lacking the CH domain allows proper flagellar assembly. The CH domain is required for the association of IFT54 with the axoneme but not with mitotic MTs, and also regulates the flagellar import of IFT54 but not IFT81 and IFT46. The C-terminal CC domain is essential for IFT54 to bind IFT20, and for its recruitment to the basal body and incorporation into IFT complexes. Complete loss of IFT54 or the CC domain destabilizes IFT20. ift54 mutant cells expressing the CC domain alone rescue the stability of IFT20 and form stunted flagella with accumulation of both IFT-A component IFT43 and IFT-B component IFT46, indicating that IFT54 also functions in IFT turn-around at the flagellar tip.
Collapse
Affiliation(s)
- Xin Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yinwen Liang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Feng Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| |
Collapse
|
234
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
235
|
Hou Y, Witman GB. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol Biol Cell 2017; 28:2420-2433. [PMID: 28701346 PMCID: PMC5576905 DOI: 10.1091/mbc.e17-03-0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023] Open
Abstract
A transposon event, resulting in partial suppression of a Chlamydomonas IFT46 null mutant, allowed the function of the N-terminus of IFT46 in flagellar assembly to be explored. The IFT46 N-terminus is not required for IFT complex assembly but is required for transport of outer arm dynein and its adaptor, ODA16, into the flagellum. Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
236
|
Lehti MS, Zhang FP, Kotaja N, Sironen A. SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation. Development 2017; 144:2683-2693. [PMID: 28619825 DOI: 10.1242/dev.152108] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/11/2017] [Indexed: 11/20/2022]
Abstract
Sperm differentiation requires specific protein transport for correct sperm tail formation and head shaping. A transient microtubular structure, the manchette, appears around the differentiating spermatid head and serves as a platform for protein transport to the growing tail. Sperm flagellar 2 (SPEF2) is known to be essential for sperm tail development. In this study we investigated the function of SPEF2 during spermatogenesis using a male germ cell-specific Spef2 knockout mouse model. In addition to defects in sperm tail development, we observed a duplication of the basal body and failure in manchette migration resulting in an abnormal head shape. We identified cytoplasmic dynein 1 and GOLGA3 as novel interaction partners for SPEF2. SPEF2 and dynein 1 colocalize in the manchette and the inhibition of dynein 1 disrupts the localization of SPEF2 to the manchette. Furthermore, the transport of a known SPEF2-binding protein, IFT20, from the Golgi complex to the manchette was delayed in the absence of SPEF2. These data indicate a possible novel role of SPEF2 as a linker protein for dynein 1-mediated cargo transport along microtubules.
Collapse
Affiliation(s)
- Mari S Lehti
- Natural Resources Institute Finland (Luke), Green Technology, FI-31600 Jokioinen, Finland.,Department of Physiology, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Fu-Ping Zhang
- Department of Physiology, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland.,Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland
| | - Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Anu Sironen
- Natural Resources Institute Finland (Luke), Green Technology, FI-31600 Jokioinen, Finland
| |
Collapse
|
237
|
Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK. The CEP19-RABL2 GTPase Complex Binds IFT-B to Initiate Intraflagellar Transport at the Ciliary Base. Dev Cell 2017. [PMID: 28625565 DOI: 10.1016/j.devcel.2017.05.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Highly conserved intraflagellar transport (IFT) protein complexes direct both the assembly of primary cilia and the trafficking of signaling molecules. IFT complexes initially accumulate at the base of the cilium and periodically enter the cilium, suggesting an as-yet-unidentified mechanism that triggers ciliary entry of IFT complexes. Using affinity-purification and mass spectrometry of interactors of the centrosomal and ciliopathy protein, CEP19, we identify CEP350, FOP, and the RABL2B GTPase as proteins organizing the first known mechanism directing ciliary entry of IFT complexes. We discover that CEP19 is recruited to the ciliary base by the centriolar CEP350/FOP complex and then specifically captures GTP-bound RABL2B, which is activated via its intrinsic nucleotide exchange. Activated RABL2B then captures and releases its single effector, the intraflagellar transport B holocomplex, from the large pool of pre-docked IFT-B complexes, and thus initiates ciliary entry of IFT.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keene Louis Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie Ann Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward Douglas Plowey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter Kent Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
238
|
Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, Ma Y, Wallingford JB, Marcotte EM. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol Syst Biol 2017; 13:932. [PMID: 28596423 PMCID: PMC5488662 DOI: 10.15252/msb.20167490] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular protein complexes carry out many of the essential functions of cells, and many genetic diseases arise from disrupting the functions of such complexes. Currently, there is great interest in defining the complete set of human protein complexes, but recent published maps lack comprehensive coverage. Here, through the synthesis of over 9,000 published mass spectrometry experiments, we present hu.MAP, the most comprehensive and accurate human protein complex map to date, containing > 4,600 total complexes, > 7,700 proteins, and > 56,000 unique interactions, including thousands of confident protein interactions not identified by the original publications. hu.MAP accurately recapitulates known complexes withheld from the learning procedure, which was optimized with the aid of a new quantitative metric (k‐cliques) for comparing sets of sets. The vast majority of complexes in our map are significantly enriched with literature annotations, and the map overall shows improved coverage of many disease‐associated proteins, as we describe in detail for ciliopathies. Using hu.MAP, we predicted and experimentally validated candidate ciliopathy disease genes in vivo in a model vertebrate, discovering CCDC138, WDR90, and KIAA1328 to be new cilia basal body/centriolar satellite proteins, and identifying ANKRD55 as a novel member of the intraflagellar transport machinery. By offering significant improvements to the accuracy and coverage of human protein complexes, hu.MAP (http://proteincomplexes.org) serves as a valuable resource for better understanding the core cellular functions of human proteins and helping to determine mechanistic foundations of human disease.
Collapse
Affiliation(s)
- Kevin Drew
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Chanjae Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ryan L Huizar
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Fan Tu
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Blake Borgeson
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Claire D McWhite
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yun Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.,The Otolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University Sun Yat-sen University, Guangzhou, China
| | - John B Wallingford
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA .,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
239
|
Wang L, Gu L, Meng D, Wu Q, Deng H, Pan J. Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly. J Proteome Res 2017; 16:2410-2418. [DOI: 10.1021/acs.jproteome.6b01048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Limei Wang
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lixiao Gu
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Meng
- Tianjin
Key Laboratory of Food and Biotechnology, School of Biotechnology
and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Qiong Wu
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory
for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, China
| |
Collapse
|
240
|
Shi L, Koll F, Arnaiz O, Cohen J. The Ciliary Protein IFT57 in the Macronucleus of Paramecium. J Eukaryot Microbiol 2017; 65:12-27. [DOI: 10.1111/jeu.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Lei Shi
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
- Department of Biochemical and Molecular Biology; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang 453003 China
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Jean Cohen
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| |
Collapse
|
241
|
McClure-Begley TD, Klymkowsky MW. Nuclear roles for cilia-associated proteins. Cilia 2017; 6:8. [PMID: 28560031 PMCID: PMC5445336 DOI: 10.1186/s13630-017-0052-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.
Collapse
Affiliation(s)
- Tristan D McClure-Begley
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Michael W Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
242
|
Kumar D, Strenkert D, Patel-King RS, Leonard MT, Merchant SS, Mains RE, King SM, Eipper BA. A bioactive peptide amidating enzyme is required for ciliogenesis. eLife 2017; 6. [PMID: 28513435 PMCID: PMC5461114 DOI: 10.7554/elife.25728] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
The pathways controlling cilium biogenesis in different cell types have not been fully elucidated. We recently identified peptidylglycine α-amidating monooxygenase (PAM), an enzyme required for generating amidated bioactive signaling peptides, in Chlamydomonas and mammalian cilia. Here, we show that PAM is required for the normal assembly of motile and primary cilia in Chlamydomonas, planaria and mice. Chlamydomonas PAM knockdown lines failed to assemble cilia beyond the transition zone, had abnormal Golgi architecture and altered levels of cilia assembly components. Decreased PAM gene expression reduced motile ciliary density on the ventral surface of planaria and resulted in the appearance of cytosolic axonemes lacking a ciliary membrane. The architecture of primary cilia on neuroepithelial cells in Pam-/- mouse embryos was also aberrant. Our data suggest that PAM activity and alterations in post-Golgi trafficking contribute to the observed ciliogenesis defects and provide an unanticipated, highly conserved link between PAM, amidation and ciliary assembly.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States
| | - Ramila S Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States
| | - Michael T Leonard
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States.,Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States.,Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
243
|
Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 2017; 241:294-309. [PMID: 27859258 DOI: 10.1002/path.4843] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction that form an important and rapidly expanding disease category. Ciliopathies are complex conditions to diagnose, being multisystem disorders characterized by extensive genetic heterogeneity and clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, and clinical management, in addition to posing an on-going task to develop the most appropriate family counselling. The impact of next-generation sequencing and high-throughput technologies in the last decade has significantly improved our understanding of the biological basis of ciliopathy disorders, enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms and genetic aetiologies. Here, we review the diverse functions of cilia in human health and disease and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a more functional categorization. This approach arises from our improved understanding of this unique organelle, revealed through new genetic and cell biological insights into the discrete functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport, motility). Mutations affecting these distinct ciliary protein modules can confer different genetic diseases and new clinical classifications are possible to define, according to the nature and extent of organ involvement. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Enza Maria Valente
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 00143, Rome, Italy
| |
Collapse
|
244
|
Yi P, Li WJ, Dong MQ, Ou G. Dynein-Driven Retrograde Intraflagellar Transport Is Triphasic in C. elegans Sensory Cilia. Curr Biol 2017; 27:1448-1461.e7. [PMID: 28479320 DOI: 10.1016/j.cub.2017.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cytoplasmic dynein-2 powers retrograde intraflagellar transport that is essential for cilium formation and maintenance. Inactivation of dynein-2 by mutations in DYNC2H1 causes skeletal dysplasias, and it remains unclear how the dynein-2 heavy chain moves in cilia. Here, using the genome-editing technique to produce fluorescent dynein-2 heavy chain in Caenorhabditis elegans, we show by high-resolution live microscopy that dynein-2 moves in a surprising way along distinct ciliary domains. Dynein-2 shows triphasic movement in the retrograde direction: dynein-2 accelerates in the ciliary distal region and then moves at maximum velocity and finally decelerates adjacent to the base, which may represent a physical obstacle due to transition zone barriers. By knocking the conserved ciliopathy-related mutations into the C. elegans dynein-2 heavy chain, we find that these mutations reduce its transport speed and frequency. Disruption of the dynein-2 tail domain, light intermediate chain, or intraflagellar transport (IFT)-B complex abolishes dynein-2's ciliary localization, revealing their important roles in ciliary entry of dynein-2. Furthermore, our affinity purification and genetic analyses show that IFT-A subunits IFT-139 and IFT-43 function redundantly to promote dynein-2 motility. These results reveal the molecular regulation of dynein-2 movement in sensory cilia.
Collapse
Affiliation(s)
- Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wen-Jun Li
- National Institute of Biological Science, 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Science, 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
245
|
Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell 2017; 28:1652-1666. [PMID: 28428259 PMCID: PMC5469608 DOI: 10.1091/mbc.e17-01-0017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022] Open
Abstract
RABL2 interacts with the intraflagellar transport-B (IFT-B) complex and CEP19 in a mutually exclusive manner. A point mutation of RABL2 found in sperm motility–defective mice abolishes its binding to IFT-B but not to CEP19. A RABL2-defective Chlamydomonas strain exhibits a nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary assembly. Proteins localized to the basal body and the centrosome play crucial roles in ciliary assembly and function. Although RABL2 and CEP19 are conserved in ciliated organisms and have been implicated in ciliary/flagellar functions, their roles are poorly understood. Here we show that RABL2 interacts with CEP19 and is recruited to the mother centriole and basal body in a CEP19-dependent manner and that CEP19 is recruited to the centriole probably via its binding to the centrosomal protein FGFR1OP. Disruption of the RABL2 gene in Chlamydomonas reinhardtii results in the nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary/flagellar assembly. We also show that RABL2 interacts, in its GTP-bound state, with the intraflagellar transport (IFT)-B complex via the IFT74–IFT81 heterodimer and that the interaction is disrupted by a mutation found in male infertile mice (Mot mice) with a sperm flagella motility defect. Intriguingly, RABL2 binds to CEP19 and the IFT74–IFT81 heterodimer in a mutually exclusive manner. Furthermore, exogenous expression of the GDP-locked or Mot-type RABL2 mutant in human cells results in mild defects in ciliary assembly. These results indicate that RABL2 localized to the basal body plays crucial roles in ciliary/flagellar assembly via its interaction with the IFT-B complex.
Collapse
Affiliation(s)
- Yuya Nishijima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Hagiya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomohiro Kubo
- University of Yamanashi Graduate School of Medical Science, Chuo 409-3898, Japan
| | - Ryota Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
246
|
Jensen VL, Leroux MR. Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Curr Opin Cell Biol 2017; 47:83-91. [PMID: 28432921 DOI: 10.1016/j.ceb.2017.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
Abstract
Primary cilia are microtubule-based organelles found on most mammalian cell surfaces. They possess a soluble matrix and membrane contiguous with the cell body cytosol and plasma membrane, and yet, have distinct compositions that can be modulated to enable dynamic signal transduction. Here, we discuss how specialized ciliary compartments are established using a coordinated network of gating, trafficking and targeting activities. Cilium homeostasis is maintained by a size-selective molecular mesh that limits soluble protein entry, and by a membrane diffusion barrier localized at the transition zone. Bidirectional protein shuttling between the cell body and cilium uses IntraFlagellar Transport (IFT), and prenylated ciliary protein delivery is achieved through Lipidated protein IntraFlagellar Targeting (LIFT). Elucidating how these gates and transport systems function will help reveal the roles that cilia play in ciliary signaling and the growing spectrum of disorders termed ciliopathies.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
247
|
Toropova K, Mladenov M, Roberts AJ. Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat Struct Mol Biol 2017; 24:461-468. [PMID: 28394326 PMCID: PMC5420313 DOI: 10.1038/nsmb.3391] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
Cilia are multifunctional organelles that are constructed using intraflagellar transport (IFT) of cargo to and from their tip. It is widely held that the retrograde IFT motor, dynein-2, must be controlled in order to reach the ciliary tip and then unleashed to power the return journey. However, the mechanism is unknown. Here, we systematically define the mechanochemistry of human dynein-2 motors as monomers, dimers, and multimotor assemblies with kinesin-II. Combining these data with insights from single-particle EM, we discover that dynein-2 dimers are intrinsically autoinhibited. Inhibition is mediated by trapping dynein-2's mechanical 'linker' and 'stalk' domains within a novel motor-motor interface. We find that linker-mediated inhibition enables efficient transport of dynein-2 by kinesin-II in vitro. These results suggest a conserved mechanism for autoregulation among dimeric dyneins, which is exploited as a switch for dynein-2's recycling activity during IFT.
Collapse
|
248
|
Silva M, Morsci N, Nguyen KCQ, Rizvi A, Rongo C, Hall DH, Barr MM. Cell-Specific α-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology. Curr Biol 2017; 27:968-980. [PMID: 28318980 PMCID: PMC5688951 DOI: 10.1016/j.cub.2017.02.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 11/22/2022]
Abstract
Cilia are found on most non-dividing cells in the human body and, when faulty, cause a wide range of pathologies called ciliopathies. Ciliary specialization in form and function is observed throughout the animal kingdom, yet mechanisms generating ciliary diversity are poorly understood. The "tubulin code"-a combination of tubulin isotypes and tubulin post-translational modifications-can generate microtubule diversity. Using C. elegans, we show that α-tubulin isotype TBA-6 sculpts 18 A- and B-tubule singlets from nine ciliary A-B doublet microtubules in cephalic male (CEM) neurons. In CEM cilia, tba-6 regulates velocities and cargoes of intraflagellar transport (IFT) kinesin-2 motors kinesin-II and OSM-3/KIF17 without affecting kinesin-3 KLP-6 motility. In addition to their unique ultrastructure and accessory kinesin-3 motor, CEM cilia are specialized to produce extracellular vesicles. tba-6 also influences several aspects of extracellular vesicle biology, including cargo sorting, release, and bioactivity. We conclude that this cell-specific α-tubulin isotype dictates the hallmarks of CEM cilia specialization. These findings provide insight into mechanisms generating ciliary diversity and lay a foundation for further understanding the tubulin code.
Collapse
Affiliation(s)
- Malan Silva
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute for Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Morsci
- Waksman Institute for Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C Q Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anza Rizvi
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Christopher Rongo
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute for Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute for Microbiology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
249
|
Lechtreck KF, Van De Weghe JC, Harris JA, Liu P. Protein transport in growing and steady-state cilia. Traffic 2017; 18:277-286. [PMID: 28248449 DOI: 10.1111/tra.12474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Cilia and eukaryotic flagella are threadlike cell extensions with motile and sensory functions. Their assembly requires intraflagellar transport (IFT), a bidirectional motor-driven transport of protein carriers along the axonemal microtubules. IFT moves ample amounts of structural proteins including tubulin into growing cilia likely explaining its critical role for assembly. IFT continues in non-growing cilia contributing to a variety of processes ranging from axonemal maintenance and the export of non-ciliary proteins to cell locomotion and ciliary signaling. Here, we discuss recent data on cues regulating the type, amount and timing of cargo transported by IFT. A regulation of IFT-cargo interactions is critical to establish, maintain and adjust ciliary length, protein composition and function.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | | | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
250
|
Lv B, Wan L, Taschner M, Cheng X, Lorentzen E, Huang K. Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella. J Cell Sci 2017; 130:1662-1674. [PMID: 28302912 DOI: 10.1242/jcs.200758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cilia are microtubule-based organelles and perform motile, sensing and signaling functions. The assembly and maintenance of cilia depend on intraflagellar transport (IFT). Besides ciliary localization, most IFT proteins accumulate at basal bodies. However, little is known about the molecular mechanism of basal body targeting of IFT proteins. We first identified the possible basal body-targeting sequence in IFT46 by expressing IFT46 truncation constructs in an ift46-1 mutant. The C-terminal sequence between residues 246-321, termed BBTS3, was sufficient to target YFP to basal bodies in the ift46-1 strain. Interestingly, BBTS3 is also responsible for the ciliary targeting of IFT46. BBTS3::YFP moves bidirectionally in flagella and interacts with other IFT complex B (IFT-B) proteins. Using IFT and motor mutants, we show that the basal body localization of IFT46 depends on IFT52, but not on IFT81, IFT88, IFT122, FLA10 or DHC1b. IFT52 interacts with IFT46 through residues L285 and L286 of IFT46 and recruits it to basal bodies. Ectopic expression of the C-terminal domain of IFT52 in the nucleus resulted in accumulation of IFT46 in nuclei. These data suggest that IFT52 and IFT46 can preassemble as a complex in the cytoplasm, which is then targeted to basal bodies.
Collapse
Affiliation(s)
- Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Wan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|