201
|
Hou Y, Bickhart DM, Hvinden ML, Li C, Song J, Boichard DA, Fritz S, Eggen A, DeNise S, Wiggans GR, Sonstegard TS, Van Tassell CP, Liu GE. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array. BMC Genomics 2012; 13:376. [PMID: 22866901 PMCID: PMC3583728 DOI: 10.1186/1471-2164-13-376] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 07/25/2012] [Indexed: 11/13/2022] Open
Abstract
Background Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases. Results In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assembly's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. Conclusion We present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous results, and examined the impacts of genome assemblies on CNV calling.
Collapse
Affiliation(s)
- Yali Hou
- Bovine Functional Genomics Laboratory, ANRI, USDA-ARS, BARC-East, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ, Jeddeloh JA, Stupar RM. Structural variants in the soybean genome localize to clusters of biotic stress-response genes. PLANT PHYSIOLOGY 2012; 159:1295-308. [PMID: 22696021 PMCID: PMC3425179 DOI: 10.1104/pp.112.194605] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/12/2012] [Indexed: 05/19/2023]
Abstract
Genome-wide structural and gene content variations are hypothesized to drive important phenotypic variation within a species. Structural and gene content variations were assessed among four soybean (Glycine max) genotypes using array hybridization and targeted resequencing. Many chromosomes exhibited relatively low rates of structural variation (SV) among genotypes. However, several regions exhibited both copy number and presence-absence variation, the most prominent found on chromosomes 3, 6, 7, 16, and 18. Interestingly, the regions most enriched for SV were specifically localized to gene-rich regions that harbor clustered multigene families. The most abundant classes of gene families associated with these regions were the nucleotide-binding and receptor-like protein classes, both of which are important for plant biotic defense. The colocalization of SV with plant defense response signal transduction pathways provides insight into the mechanisms of soybean resistance gene evolution and may inform the development of new approaches to resistance gene cloning.
Collapse
Affiliation(s)
- Leah K. McHale
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 (L.K.M.)
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (W.J.H., P.B.B., J.E.A., R.M.S.)
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455 (W.W.X.)
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, Maryland 20705 (D.L.H.); and
- Roche NimbleGen, Research and Development, Madison, Wisconsin 53719 (D.J.G., J.A.J.)
| | | | - Wayne W. Xu
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 (L.K.M.)
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (W.J.H., P.B.B., J.E.A., R.M.S.)
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455 (W.W.X.)
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, Maryland 20705 (D.L.H.); and
- Roche NimbleGen, Research and Development, Madison, Wisconsin 53719 (D.J.G., J.A.J.)
| | | | - Justin E. Anderson
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 (L.K.M.)
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (W.J.H., P.B.B., J.E.A., R.M.S.)
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455 (W.W.X.)
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, Maryland 20705 (D.L.H.); and
- Roche NimbleGen, Research and Development, Madison, Wisconsin 53719 (D.J.G., J.A.J.)
| | | | - Daniel J. Gerhardt
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 (L.K.M.)
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (W.J.H., P.B.B., J.E.A., R.M.S.)
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455 (W.W.X.)
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, Maryland 20705 (D.L.H.); and
- Roche NimbleGen, Research and Development, Madison, Wisconsin 53719 (D.J.G., J.A.J.)
| | - Jeffrey A. Jeddeloh
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 (L.K.M.)
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 (W.J.H., P.B.B., J.E.A., R.M.S.)
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455 (W.W.X.)
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, Maryland 20705 (D.L.H.); and
- Roche NimbleGen, Research and Development, Madison, Wisconsin 53719 (D.J.G., J.A.J.)
| | | |
Collapse
|
203
|
Kasahara M, Yoshida S. Immunogenetics of the NKG2D ligand gene family. Immunogenetics 2012; 64:855-67. [PMID: 22843249 DOI: 10.1007/s00251-012-0638-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/18/2012] [Indexed: 12/31/2022]
Abstract
NKG2D ligands (NKG2DLs) are a group of major histocompatibility complex (MHC) class I-like molecules, the expression of which is induced by cellular stresses such as infection, tumorigenesis, heat shock, tissue damage, and DNA damage. They act as a molecular danger signal alerting the immune system for infected or neoplastic cells. Mammals have two families of NKG2DL genes: the MHC-encoded MIC gene family and the ULBP gene family encoded outside the MHC region in most mammals. Rodents such as mice and rats lack the MIC family of ligands. Interestingly, some mammals have NKG2DL-like molecules named MILL that are phylogenetically related to MIC, but do not function as NKG2DLs. In this paper, we review our current knowledge of the MIC, ULBP, and MILL gene families in representative mammalian species and discuss the origin and evolution of the NKG2DL gene family.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan.
| | | |
Collapse
|
204
|
Liu GE, Bickhart DM. Copy number variation in the cattle genome. Funct Integr Genomics 2012; 12:609-24. [DOI: 10.1007/s10142-012-0289-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/13/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
|
205
|
Wang J, Jiang J, Fu W, Jiang L, Ding X, Liu JF, Zhang Q. A genome-wide detection of copy number variations using SNP genotyping arrays in swine. BMC Genomics 2012; 13:273. [PMID: 22726314 PMCID: PMC3464621 DOI: 10.1186/1471-2164-13-273] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022] Open
Abstract
Background Copy Number Variations (CNVs) have been shown important in both normal phenotypic variability and disease susceptibility, and are increasingly accepted as another important source of genetic variation complementary to single nucleotide polymorphism (SNP). Comprehensive identification and cataloging of pig CNVs would be of benefit to the functional analyses of genome variation. Results In this study, we performed a genome-wide CNV detection based on the Porcine SNP60 genotyping data of 474 pigs from three pure breed populations (Yorkshire, Landrace and Songliao Black) and one Duroc × Erhualian crossbred population. A total of 382 CNV regions (CNVRs) across genome were identified, which cover 95.76Mb of the pig genome and correspond to 4.23% of the autosomal genome sequence. The length of these CNVRs ranged from 5.03 to 2,702.7kb with an average of 250.7kb, and the frequencies of them varied from 0.42 to 20.87%. These CNVRs contains 1468 annotated genes, which possess a great variety of molecular functions, making them a promising resource for exploring the genetic basis of phenotypic variation within and among breeds. To confirmation of these findings, 18 CNVRs representing different predicted status and frequencies were chosen for validation via quantitative real time PCR (qPCR). Accordingly, 12 (66.67%) of them was successfully confirmed. Conclusions Our results demonstrated that currently available Porcine SNP60 BeadChip can be used to capture CNVs efficiently. Our study firstly provides a comprehensive map of copy number variation in the pig genome, which would be of help for understanding the pig genome and provide preliminary foundation for investigating the association between various phenotypes and CNVs.
Collapse
Affiliation(s)
- Jiying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
206
|
Hamilton CK, Verduzco-Gómez AR, Favetta LA, Blondin P, King WA. Testis-specific protein Y-encoded copy number is correlated to its expression and the field fertility of Canadian Holstein bulls. Sex Dev 2012; 6:231-9. [PMID: 22688524 DOI: 10.1159/000338938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Testis-specific protein Y-encoded (TSPY) is present in varying copy number in both human (20-76 copies) and cattle (37-200 copies), and some studies have linked this variation to semen quality in men. The purpose of this study was to determine if TSPY copy number is associated with fertility in bulls by using adjusted non-return rates, a commonly used measure of field fertility in Canada. In addition, we investigated the associations between TSPY copy number and its expression as well as specific semen parameters, such as average sperm concentration, sperm count, ejaculate volume, and motility. In 2 independent trials, TSPY copy number was shown to be positively correlated to adjusted non-return rates (trial #1: Spearman r = 0.34, p < 0.05; trial #2: Spearman r = 0.77, p < 0.01). Furthermore, TSPY copy number was inversely correlated to TSPY mRNA expression in the testis (Pearson r = -0.71, p < 0.0001). There were no correlations of TSPY copy number or expression with the semen parameters measured. Therefore, TSPY copy number might represent a potential marker of bull fertility, but its mechanism does not appear to be directly related to the semen characteristics analyzed as part of this study.
Collapse
Affiliation(s)
- C K Hamilton
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada
| | | | | | | | | |
Collapse
|
207
|
Khan MA, Korban SS. Association mapping in forest trees and fruit crops. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4045-60. [PMID: 22511806 DOI: 10.1093/jxb/ers105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes advantage of both LD and historical recombination present within the gene pool of an organism, thus utilizing a broader reference population. In plants, AM has been used in model species with available genomic resources. Pursuing AM in tree species requires both genotyping and phenotyping of large populations with unique architectures. Recently, genome sequences and genomic resources for forest and fruit crops have become available. Due to abundance of single nucleotide polymorphisms (SNPs) within a genome, along with availability of high-throughput resequencing methods, SNPs can be effectively used for genotyping trees. In addition to DNA polymorphisms, copy number variations (CNVs) in the form of deletions, duplications, and insertions also play major roles in control of expression of phenotypic traits. Thus, CNVs could provide yet another valuable resource, beyond those of microsatellite and SNP variations, for pursuing genomic studies. As genome-wide SNP data are generated from high-throughput sequencing efforts, these could be readily reanalysed to identify CNVs, and subsequently used for AM studies. However, forest and fruit crops possess unique architectural and biological features that ought to be taken into consideration when collecting genotyping and phenotyping data, as these will also dictate which AM strategies should be pursued. These unique features as well as their impact on undertaking AM studies are outlined and discussed.
Collapse
Affiliation(s)
- M Awais Khan
- Department of Natural Resources & Environmental Sciences, University of Illinois, Urbana, IL 61801 USA.
| | | |
Collapse
|
208
|
Taormina PL, Trask JAS, Smith DG, Kanthaswamy S. Variation in CCL3L1 copy number in rhesus macaques (Macaca mulatta). Comp Med 2012; 62:218-24. [PMID: 22776055 PMCID: PMC3364972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 06/01/2023]
Abstract
We used real-time quantitative PCR (qPCR) methodology to examine copy number variation (CNV) of the CCL3L1 gene among pure Indian-origin, pure Chinese-origin, and hybrid Indian-Chinese rhesus macaques (Macaca mulatta). CNV among purebred macaques fell within expected ranges, with Indian macaques having lower copy numbers than those of Chinese macaques. Compared with the purebred macaques, Indian-Chinese hybrid rhesus macaques showed much greater variance in copy number and an intermediate average copy number. Copy numbers of CCL3L1 in rhesus macaque trios (sire, dam, and offspring) were consistent with Mendelian inheritance.
Collapse
Affiliation(s)
| | | | - David G Smith
- Forensic Science Graduate Program
- Molecular Anthropology Laboratory
- California National Primate Research Center
| | - Sreetharan Kanthaswamy
- Forensic Science Graduate Program
- Molecular Anthropology Laboratory
- California National Primate Research Center
- Department of Environmental Toxicology, University of California, Davis, California
| |
Collapse
|
209
|
Albrecht E, Komolka K, Kuzinski J, Maak S. Agouti revisited: transcript quantification of the ASIP gene in bovine tissues related to protein expression and localization. PLoS One 2012; 7:e35282. [PMID: 22530003 PMCID: PMC3328439 DOI: 10.1371/journal.pone.0035282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/14/2012] [Indexed: 02/07/2023] Open
Abstract
Beside its role in melanogenesis, the agouti signaling protein (ASIP) has been related to obesity. The potentially crucial role in adipocyte development makes it a tempting candidate for economic relevant, fat related traits in farm animals. The objective of our study was to characterize the mRNA expression of different ASIP transcripts and of putative targets in different bovine tissues, as well as to study consequences on protein abundance and localization. ASIP mRNA abundance was determined by RT-qPCR in adipose and further tissues of cattle representing different breeds and crosses. ASIP mRNA was up-regulated more than 9-fold in intramuscular fat of Japanese Black cattle compared to Holstein (p<0.001). Further analyses revealed that a transposon-derived transcript was solely responsible for the increased ASIP mRNA abundance. This transcript was observed in single individuals of different breeds indicating a wide spread occurrence of this insertion at the ASIP locus in cattle. The protein was detected in different adipose tissues, skin, lung and liver, but not in skeletal muscle by Western blot with a bovine-specific ASIP antibody. However, the protein abundance was not related to the observed ASIP mRNA over-expression. Immuno-histochemical analyses revealed a putative nuclear localization of ASIP additionally to the expected cytosolic signal in different cell types. The expression of melanocortin receptors (MCR) 1 to 5 as potential targets for ASIP was analyzed by RT-PCR in subcutaneous fat. Only MC1R and MC4R were detected indicating a similar receptor expression like in human adipose tissue. Our results provide evidence for a widespread expression of ASIP in bovine tissues at mRNA and, for the first time, at protein level. ASIP protein is detectable in adipocytes as well as in further cells of adipose tissue. We generated a basis for a more detailed investigation of ASIP function in peripheral tissues of various mammalian species.
Collapse
Affiliation(s)
- Elke Albrecht
- Research Unit Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | |
Collapse
|
210
|
Clop A, Vidal O, Amills M. Copy number variation in the genomes of domestic animals. Anim Genet 2012; 43:503-17. [PMID: 22497594 DOI: 10.1111/j.1365-2052.2012.02317.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 12/28/2022]
Abstract
Copy number variation (CNV) might be one of the main contributors to phenotypic diversity and evolutionary adaptation in animals and plants, employing a wide variety of mechanisms, such as gene dosage and transcript structure alterations, to modulate organismal plasticity. In the past 4 years, considerable advances have been made in the characterization of the genomic architecture of CNV in domestic species. First, low-resolution CNV maps were produced for cattle, goat, sheep, pig, dog, chicken, duck and turkey, showing that these structural polymorphisms comprise a significant part of these genomes. Furthermore, CNVs have been associated with several pigmentation (white coat in horse, pig and sheep) and morphological (late feathering and pea comb in chicken) traits, as well as with susceptibility to a wide array of diseases and developmental disorders, for example osteopetrosis, anhidrotic ectodermal dysplasia, copper toxicosis, intersexuality, cone degeneration, periodic fever and dermoid sinus, among others. In the future, development of high-resolution tools for CNV detection and typing combined with the implementation of databases integrating CNV, QTL and gene expression data will be essential to identify and measure the impact of this source of structural variation on the many phenotypes that are relevant to animal breeders and veterinary practitioners.
Collapse
Affiliation(s)
- A Clop
- Department of Medical and Molecular Genetics, King's College London, Great Maze Pond, SE1 9RT, London, UK
| | | | | |
Collapse
|
211
|
Doan R, Cohen N, Harrington J, Veazey K, Veazy K, Juras R, Cothran G, McCue ME, Skow L, Dindot SV. Identification of copy number variants in horses. Genome Res 2012; 22:899-907. [PMID: 22383489 PMCID: PMC3337435 DOI: 10.1101/gr.128991.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.
Collapse
Affiliation(s)
- Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF, Garcia JF, Van Tassell CP, Sonstegard TS, Eichler EE, Liu GE. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 2012; 22:778-90. [PMID: 22300768 DOI: 10.1101/gr.133967.111] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising ~55.6-Mbp sequence--476 of which (~38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (~52%, χ(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.
Collapse
Affiliation(s)
- Derek M Bickhart
- USDA-ARS, ANRI, Bovine Functional Genomics Laboratory, Beltsville, Maryland 20705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Durkin K, Coppieters W, Drögemüller C, Ahariz N, Cambisano N, Druet T, Fasquelle C, Haile A, Horin P, Huang L, Kamatani Y, Karim L, Lathrop M, Moser S, Oldenbroek K, Rieder S, Sartelet A, Sölkner J, Stålhammar H, Zelenika D, Zhang Z, Leeb T, Georges M, Charlier C. Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature 2012; 482:81-4. [PMID: 22297974 DOI: 10.1038/nature10757] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 12/05/2011] [Indexed: 11/09/2022]
Abstract
Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as 'lineback' or 'witrik' (which means white back), as colour-sided animals typically display a white band along their spine. Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle breeds around the globe, including in Belgian blue and brown Swiss. Here we report that colour sidedness is determined by a first allele on chromosome 29 (Cs(29)), which results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to chromosome 29, and a second allele on chromosome 6 (Cs(6)), derived from the first by repatriation of fused 575-kilobase chromosome 6 and 29 sequences to the KIT locus. We provide evidence that both translocation events involved circular intermediates. This is the first example, to our knowledge, of a phenotype determined by homologous yet non-syntenic alleles that result from a novel copy-number-variant-generating mechanism.
Collapse
Affiliation(s)
- Keith Durkin
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, 4000-Liège (Sart Tilman), Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Wang Y, Gu X, Feng C, Song C, Hu X, Li N. A genome-wide survey of copy number variation regions in various chicken breeds by array comparative genomic hybridization method. Anim Genet 2012; 43:282-9. [PMID: 22486499 DOI: 10.1111/j.1365-2052.2011.02308.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2011] [Indexed: 12/11/2022]
Abstract
The discovery of copy number variation (CNV) in the genome has provided new insight into genomic polymorphism. Studies with chickens have identified a number of large CNV segments using a 385k comparative genomic hybridization (CGH) chip (mean length >140 kb). We present a detailed CNV map for local Chinese chicken breeds and commercial chicken lines using an Agilent 400k array CGH platform with custom-designed probes. We identified a total of 130 copy number variation regions (CNVRs; mean length = 25.70 kb). Of these, 104 (80.0%) were novel segments reported for the first time in chickens. Among the 104 novel CNVRs, 56 (53.8%) of the segments were non-coding sequences, 65 (62.5%) showed the gain of DNA and 40 (38.5%) showed the loss of DNA (one locus showed both loss and gain). Overlapping with the formal selective sweep data and the quantitative trait loci data, we identified four loci that might be considered to be high-confidence selective segments that arose during the domestication of chickens. Compared with the CNVRs reported previously, genes for the positive regulation of phospholipase A2 activity were discovered to be significantly over-represented in the novel CNVRs reported here by gene ontology analysis. Availability of our results should facilitate further research in the study of the genetic variability in chicken breeds.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
215
|
Abstract
Structural variation, whether it is caused by copy number variants or present in a balanced form, such as reciprocal translocations and inversions, can have a profound and dramatic effect on the expression of genes mapping within and close to the rearrangement, as well as affecting others genome wide. These effects can be caused by altering the copy number of one or more genes or regulatory elements (dosage effect) or from physical disruption of links between regulatory elements and their associated gene or genes, resulting in perturbation of expression. Similarly, large-scale structural variants can result in genome-wide expression changes by altering the positions that chromosomes occupy within the nucleus, potentially disrupting not only local cis interactions, but also trans interactions that occur throughout the genome. Structural variation is, therefore, a significant factor in the study of gene expression and is discussed here in more detail.
Collapse
Affiliation(s)
- Louise Harewood
- The Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
216
|
Quinlan AR, Hall IM. Characterizing complex structural variation in germline and somatic genomes. Trends Genet 2011; 28:43-53. [PMID: 22094265 DOI: 10.1016/j.tig.2011.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 10/15/2022]
Abstract
Genome structural variation (SV) is a major source of genetic diversity in mammals and a hallmark of cancer. Although SV is typically defined by its canonical forms (duplication, deletion, insertion, inversion and translocation), recent breakpoint mapping studies have revealed a surprising number of 'complex' variants that evade simple classification. Complex SVs are defined by clustered breakpoints that arose through a single mutation but cannot be explained by one simple end-joining or recombination event. Some complex variants exhibit profoundly complicated rearrangements between distinct loci from multiple chromosomes, whereas others involve more subtle alterations at a single locus. These diverse and unpredictable features present a challenge for SV mapping experiments. Here, we review current knowledge of complex SV in mammals, and outline techniques for identifying and characterizing complex variants using next-generation DNA sequencing.
Collapse
Affiliation(s)
- Aaron R Quinlan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
217
|
Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X, Moore SS. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics 2011; 12:559. [PMID: 22085807 PMCID: PMC3229636 DOI: 10.1186/1471-2164-12-559] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/15/2011] [Indexed: 01/27/2023] Open
Abstract
Background One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle. Results The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs), 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel) between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs). Ten randomly selected CNVs, five genic and five non-genic, were successfully validated using quantitative real-time PCR. The CNVs are enriched for immune system genes and include genes that may contribute to lactation capacity. The majority of the CNVs (69%) were detected as regions with higher abundance in the Holstein bull. Conclusions Substantial genetic differences exist between the Black Angus and Holstein animals sequenced in this work and the Hereford reference sequence, and some of this variation is predicted to affect evolutionarily conserved amino acids or gene copy number. The deeply annotated SNPs and CNVs identified in this resequencing study can serve as useful genetic tools, and as candidates in searches for phenotype-altering DNA differences.
Collapse
Affiliation(s)
- Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | | | | | | | | | | |
Collapse
|
218
|
Zhan B, Fadista J, Thomsen B, Hedegaard J, Panitz F, Bendixen C. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics 2011; 12:557. [PMID: 22082336 PMCID: PMC3248099 DOI: 10.1186/1471-2164-12-557] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants.
Collapse
Affiliation(s)
- Bujie Zhan
- Group of Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | | | | | | | | | | |
Collapse
|
219
|
Samarakoon U, Gonzales JM, Patel JJ, Tan A, Checkley L, Ferdig MT. The landscape of inherited and de novo copy number variants in a Plasmodium falciparum genetic cross. BMC Genomics 2011; 12:457. [PMID: 21936954 PMCID: PMC3191341 DOI: 10.1186/1471-2164-12-457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. RESULTS We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. CONCLUSIONS CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.
Collapse
Affiliation(s)
- Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
220
|
Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct Integr Genomics 2011; 12:81-92. [PMID: 21928070 DOI: 10.1007/s10142-011-0252-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a large-scale analysis of CNVs using SNP genotyping data from 472 animals of the same population. We detected 811 candidate CNV regions, which represent 141.8 Mb (~4.7%) of the genome. To investigate the functional impacts of CNVs, we created 2 groups of 100 individual animals with extremely low or high estimated breeding values of eggs per gram of feces and referred to these groups as parasite resistant (PR) or parasite susceptible (PS), respectively. We identified 297 (~51 Mb) and 282 (~48 Mb) CNV regions from PR and PS groups, respectively. Approximately 60% of the CNV regions were specific to the PS group or PR group of animals. Selected PR- or PS-specific CNVs were further experimentally validated by quantitative PCR. A total of 297 PR CNV regions overlapped with 437 Ensembl genes enriched in immunity and defense, like WC1 gene which uniquely expresses on gamma/delta T cells in cattle. Network analyses indicated that the PR-specific genes were predominantly involved in gastrointestinal disease, immunological disease, inflammatory response, cell-to-cell signaling and interaction, lymphoid tissue development, and cell death. By contrast, the 282 PS CNV regions contained 473 Ensembl genes which are overrepresented in environmental interactions. Network analyses indicated that the PS-specific genes were particularly enriched for inflammatory response, immune cell trafficking, metabolic disease, cell cycle, and cellular organization and movement.
Collapse
|
221
|
Nicholas TJ, Baker C, Eichler EE, Akey JM. A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. BMC Genomics 2011; 12:414. [PMID: 21846351 PMCID: PMC3166287 DOI: 10.1186/1471-2164-12-414] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 08/16/2011] [Indexed: 01/22/2023] Open
Abstract
Background Structural variation contributes to the rich genetic and phenotypic diversity of the modern domestic dog, Canis lupus familiaris, although compared to other organisms, catalogs of canine copy number variants (CNVs) are poorly defined. To this end, we developed a customized high-density tiling array across the canine genome and used it to discover CNVs in nine genetically diverse dogs and a gray wolf. Results In total, we identified 403 CNVs that overlap 401 genes, which are enriched for defense/immunity, oxidoreductase, protease, receptor, signaling molecule and transporter genes. Furthermore, we performed detailed comparisons between CNVs located within versus outside of segmental duplications (SDs) and find that CNVs in SDs are enriched for gene content and complexity. Finally, we compiled all known dog CNV regions and genotyped them with a custom aCGH chip in 61 dogs from 12 diverse breeds. These data allowed us to perform the first population genetics analysis of canine structural variation and identify CNVs that potentially contribute to breed specific traits. Conclusions Our comprehensive analysis of canine CNVs will be an important resource in genetically dissecting canine phenotypic and behavioral variation.
Collapse
Affiliation(s)
- Thomas J Nicholas
- Department of Genome Sciences, University of Washington, 1705 NE Pacific, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
222
|
Analysis of copy number variants in the cattle genome. Gene 2011; 482:73-7. [DOI: 10.1016/j.gene.2011.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/18/2011] [Accepted: 04/25/2011] [Indexed: 11/22/2022]
|
223
|
Clowney EJ, Magklara A, Colquitt BM, Pathak N, Lane RP, Lomvardas S. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation. Genome Res 2011; 21:1249-59. [PMID: 21705439 PMCID: PMC3149492 DOI: 10.1101/gr.120162.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/16/2011] [Indexed: 11/25/2022]
Abstract
The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of "genomic contrast" in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell.
Collapse
Affiliation(s)
- E. Josephine Clowney
- Program in Biomedical Sciences, University of California, San Francisco, San Francisco, California 94158, USA
| | - Angeliki Magklara
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94158, USA
| | - Bradley M. Colquitt
- Program in Neurosciences, University of California, San Francisco, San Francisco, California 94158, USA
| | - Nidhi Pathak
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06457, USA
| | - Robert P. Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06457, USA
| | - Stavros Lomvardas
- Program in Biomedical Sciences, University of California, San Francisco, San Francisco, California 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94158, USA
- Program in Neurosciences, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
224
|
Yu P, Wang C, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Tang S, Wei X. Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics 2011; 12:372. [PMID: 21771342 PMCID: PMC3156786 DOI: 10.1186/1471-2164-12-372] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/20/2011] [Indexed: 01/02/2023] Open
Abstract
Background Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice. Results To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 718,256 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars 'Nipponbare' (from O. sativa ssp. japonica) and 'Guang-lu-ai 4' (from O. sativa ssp. indica). The CNVs identified vary in size from 1.1 kb to 180.7 kb, and encompass approximately 7.6 Mb of the rice genome. The largest regions showing copy gain and loss are of 37.4 kb on chromosome 4, and 180.7 kb on chromosome 8. In addition, 85 DNA segments were identified, including some genic sequences. Contracted genes greatly outnumbered duplicated ones. Many of the contracted genes corresponded to either the same genes or genes involved in the same biological processes; this was also the case for genes involved in disease and defense. Conclusion We detected CNVs in rice by array-based comparative genomic hybridization. These CNVs contain known genes. Further discussion of CNVs is important, as they are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.
Collapse
Affiliation(s)
- Ping Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Fine Mapping of a QTL for Fertility on BTA7 and Its Association With a CNV in the Israeli Holsteins. G3-GENES GENOMES GENETICS 2011; 1:65-74. [PMID: 22384319 PMCID: PMC3276122 DOI: 10.1534/g3.111.000299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/16/2011] [Indexed: 12/15/2022]
Abstract
A quantitative trait locus (QTL) affecting female fertility, scored as the inverse of the number of inseminations to conception, on Bos taurus chromosome 7 was detected by a daughter design analysis of the Israeli Holstein population (P < 0.0003). Sires of five of the 10 families analyzed were heterozygous for the QTL. The 95% confidence interval of the QTL spans 27 cM from the centromere. Seven hundred and four SNP markers on the Illumina BovineSNP50 BeadChip within the QTL confidence interval were tested for concordance. A single SNP, NGS-58779, was heterozygous for all the five QTL heterozygous patriarchs, and homozygous for the remaining five QTL homozygous sires. A significant effect on fertility was associated with this marker in the sample of 900 sires genotyped (P < 10−6). Haplotype phase was the same for four of the five segregating sires. Thus concordance was obtained in nine of the ten families. We identified a common haplotype region associated with the rare and economically favorable allele of the SNP, spanning 270 kbp on BTA7 upstream to 4.72 Mbp. Eleven genes found in the common haplotype region should be considered as positional candidates for the identification of the causative quantitative trait nucleotide. Copy number variation was found in one of these genes, KIAA1683. Four gene variants were identified, but only the number of copies of a specific variant (V1) was significantly associated with breeding values of sires for fertility.
Collapse
|
226
|
Liu GE, Hou Y, Robl JM, Kuroiwa Y, Wang Z. Assessment of genome integrity with array CGH in cattle transgenic cell lines produced by homologous recombination and somatic cell cloning. Genome Integr 2011; 2:6. [PMID: 21605421 PMCID: PMC3123262 DOI: 10.1186/2041-9414-2-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022] Open
Abstract
Background Transgenic cattle carrying multiple genomic modifications have been produced by serial rounds of somatic cell chromatin transfer (cloning) of sequentially genetically targeted somatic cells. However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that multiple rounds of cloning compromise the genome integrity or/and introduce epigenetic errors in the resulting cell lines, rendering a decline in cloning. To test these possibilities, we performed 9 high density array Comparative Genomic Hybridization (CGH) experiments to test the genome integrity in 3 independent bovine transgenic cell lineages generated from genetic modification and cloning. Our plan included the control hybridizations (self to self) of the 3 founder cell lines and 6 comparative hybridizations between these founders and their derived cell lines with either high or low cloning efficiencies. Results We detected similar amounts of differences between the control hybridizations (8, 13 and 39 differences) and the comparative analyses of both "high" and "low" cell lines (ranging from 7 to 57 with a mean of ~20). Almost 75% of the large differences (>10 kb) and about 45% of all differences shared the same type (loss or gain) and were located in nearby genomic regions across hybridizations. Therefore, it is likely that they were not true differences but caused by systematic factors associated with local genomic features (e.g. GC contents). Conclusions Our findings reveal that large copy number variations are less likely to arise during genetic targeting and serial rounds of cloning, fortifying the notion that epigenetic errors introduced from serial cloning may be responsible for the cloning efficiency decline.
Collapse
|
227
|
Yang X, Li J, Lee Y, Lussier YA. GO-Module: functional synthesis and improved interpretation of Gene Ontology patterns. ACTA ACUST UNITED AC 2011; 27:1444-6. [PMID: 21421553 DOI: 10.1093/bioinformatics/btr142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED GO-Module is a web-accessible synthesis and visualization tool developed for end-user biologists to greatly simplify the interpretation of prioritized Gene Ontology (GO) terms. GO-Module radically reduces the complexity of raw GO results into compact biomodules in two distinct ways, by (i) constructing biomodules from significant GO terms based on hierarchical knowledge, and (ii) refining the GO terms in each biomodule to contain only true positive results. Altogether, the features (biomodules) of GO-Module outputs are better organized and on average four times smaller than the input GO terms list (P = 0.0005, n = 16). AVAILABILITY http://lussierlab.org/GO-Module.
Collapse
Affiliation(s)
- Xinan Yang
- Department of Medicine, Section of Genetic Medicine and Center for Biomedical Informatics, the University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
228
|
Genomic characteristics of cattle copy number variations. BMC Genomics 2011; 12:127. [PMID: 21345189 PMCID: PMC3053260 DOI: 10.1186/1471-2164-12-127] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/23/2011] [Indexed: 12/11/2022] Open
Abstract
Background Copy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits. Results We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the genome. Selected CNVs were further experimentally validated and we found that copy number "gain" CNVs were predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%) overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other studies. These results highlight the differences and commonalities between technical platforms. Conclusions We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help identify genes undergoing artificial selection in domesticated animals.
Collapse
|
229
|
Liu GE, Brown T, Hebert DA, Cardone MF, Hou Y, Choudhary RK, Shaffer J, Amazu C, Connor EE, Ventura M, Gasbarre LC. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mamm Genome 2011; 22:111-121. [PMID: 21125402 DOI: 10.1007/s00335-010-9308-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/11/2010] [Indexed: 01/10/2023]
Abstract
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We report an initial analysis of copy number variations (CNVs) in cattle selected for resistance or susceptibility to intestinal nematodes. We performed three array comparative genomic hybridization (CGH) experiments to compare Angus cattle with extreme phenotypes for fecal egg count and serum pepsinogen level. We identified 20 CNVs in total, of which 12 were within known chromosomes harboring or adjacent to gains or losses. About 85% of the CNV identified (17/20) overlapped with cattle CNV regions that were reported recently. Selected CNVs were further validated by independent methods using quantitative PCR (qPCR) and FISH. Pathway analyses indicated that annotated cattle genes within these variable regions are particularly enriched for immune function affecting receptor activities, signal transduction, and transcription. Analysis of transcription factor binding sites (TFBS) within the promoter regions of differentially expressed genes suggested that common transcription factors are probably involved in parasite resistance. These results provide valuable hypotheses for the future study of cattle CNVs underlying economically important health and production traits.
Collapse
Affiliation(s)
- George E Liu
- Bovine Functional Genomics Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Flisikowski K, Venhoranta H, Nowacka-Woszuk J, McKay SD, Flyckt A, Taponen J, Schnabel R, Schwarzenbacher H, Szczerbal I, Lohi H, Fries R, Taylor JF, Switonski M, Andersson M. A novel mutation in the maternally imprinted PEG3 domain results in a loss of MIMT1 expression and causes abortions and stillbirths in cattle (Bos taurus). PLoS One 2010; 5:e15116. [PMID: 21152099 PMCID: PMC2994898 DOI: 10.1371/journal.pone.0015116] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/21/2010] [Indexed: 12/27/2022] Open
Abstract
Congenital malformations resulting in late abortions and stillbirths affect the economic wellbeing of producers and the welfare of cattle in breeding programs. An extremely high incidence of stillbirths of “half-sized” calves of normal karyotype and uninflated lungs was diagnosed in the progeny of the Finnish Ayrshire (Bos taurus) bull - YN51. No other visible anatomical abnormalities were apparent in the stillborn calves. We herein describe the positional identification of a 110 kb microdeletion in the maternally imprinted PEG3 domain that results in a loss of paternal MIMT1 expression and causes late term abortion and stillbirth in cattle. Using the BovineSNP50 BeadChip we performed a genome-wide half-sib linkage analysis that identified a 13.3 Mb associated region on BTA18 containing the maternally imprinted PEG3 domain. Within this cluster we found a 110 kb microdeletion that removes a part of the non-protein coding MER1 repeat containing imprinted transcript 1 gene (MIMT1). To confirm the elimination of gene expression in calves inheriting this deletion, we examined the mRNA levels of the three maternally imprinted genes within the PEG3 domain, in brain and cotyledon tissue collected from eight fetuses sired by the proband. None of the fetuses that inherited the microdeletion expressed MIMT1 in either tissue. The mutation, when inherited from the sire, is semi-lethal for his progeny with an observed mortality rate of 85%. The survival of 15% is presumably due to the incomplete silencing of maternally inherited MIMT1 alleles. We designed a PCR-based assay to confirm the existence of the microdeletion in the MIMT1 region that can be used to assist cattle breeders in preventing the stillbirths.
Collapse
|
231
|
Seroussi E, Glick G, Shirak A, Yakobson E, Weller JI, Ezra E, Zeron Y. Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC Genomics 2010; 11:673. [PMID: 21114805 PMCID: PMC3091787 DOI: 10.1186/1471-2164-11-673] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/29/2010] [Indexed: 12/18/2022] Open
Abstract
Background Copy number variation (CNV) has been recently identified in human and other mammalian genomes, and there is a growing awareness of CNV's potential as a major source for heritable variation in complex traits. Genomic selection is a newly developed tool based on the estimation of breeding values for quantitative traits through the use of genome-wide genotyping of SNPs. Over 30,000 Holstein bulls have been genotyped with the Illumina BovineSNP50 BeadChip, which includes 54,001 SNPs (~SNP/50,000 bp), some of which fall within CNV regions. Results We used the BeadChip data obtained for 912 Israeli bulls to investigate the effects of CNV on SNP calls. For each of the SNPs, we estimated the frequencies of occurrence of loss of heterozygosity (LOH) and of gain, based either on deviation from the expected Hardy-Weinberg equilibrium (HWE) or on signal intensity (SI) using the PennCNV "detect" option. Correlations between LOH/CNV frequencies predicted by the two methods were low (up to r = 0.08). Nevertheless, 418 locations displayed significantly high frequencies by both methods. Efficiency of designating large genomic clusters of olfactory receptors as CNVs was 29%. Frequency values for copy loss were distinguishable in non-autosomal regions, indicating misplacement of a region in the current BTA7 map. Analysis of BTA18 placed major quantitative trait loci affecting net merit in the US Holstein population in regions rich in segmental duplications and CNVs. Enrichment of transporters in CNV loci suggested their potential effect on milk-production traits. Conclusions Expansion of HWE and PennCNV analyses allowed estimating LOH/CNV frequencies, and combining the two methods yielded more sensitive detection of inherited CNVs and better estimation of their possible effects on cattle genetics. Although this approach was more effective than methodologies previously applied in cattle, it has severe limitations. Thus the number of CNVs reported here for the Holstein breed may represent as little as one-tenth of inherited common structural variation.
Collapse
Affiliation(s)
- Eyal Seroussi
- Institute of Animal Sciences, ARO, The Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | |
Collapse
|
232
|
A first comparative map of copy number variations in the sheep genome. Genomics 2010; 97:158-65. [PMID: 21111040 DOI: 10.1016/j.ygeno.2010.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 12/16/2022]
Abstract
We carried out a cross species cattle-sheep array comparative genome hybridization experiment to identify copy number variations (CNVs) in the sheep genome analysing ewes of Italian dairy or dual-purpose breeds (Bagnolese, Comisana, Laticauda, Massese, Sarda, and Valle del Belice) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. We identified 135 CNV regions (CNVRs; 24 reported in more than one animal) covering ~10.5 Mb of the virtual sheep genome referred to the bovine genome (0.398%) with a mean and a median equal to 77.6 and 55.9 kb, respectively. A comparative analysis between the identified sheep CNVRs and those reported in cattle and goat genomes indicated that overlaps between sheep and both other species CNVRs are highly significant (P<0.0001), suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Many sheep CNVRs include genes with important biological functions. Further studies are needed to evaluate their functional relevance.
Collapse
|
233
|
Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall'Olio S, Colombo M, Casadio R, Russo V, Portolano B. An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genomics 2010; 11:639. [PMID: 21083884 PMCID: PMC3011854 DOI: 10.1186/1471-2164-11-639] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. RESULTS We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P < 0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals. CONCLUSIONS We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats.
Collapse
Affiliation(s)
- Luca Fontanesi
- DIPROVAL, Sezione di Allevamenti Zootecnici, University of Bologna, Via F.lli Rosselli 107, 42123 Reggio Emilia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Differences between individuals in the copy-number of whole genes have been found in every multicellular species examined thus far. Such differences result in unique complements of protein-coding genes in all individuals, and have been shown to underlie adaptive phenotypic differences. Here, we review the evidence for copy-number variants (CNVs), focusing on the methods used to detect them and the molecular mechanisms responsible for generating this type of variation. Although there are multiple technical and computational challenges inherent to these experimental methods, next-generation sequencing technologies are making such experiments accessible in any system with a sequenced genome. We further discuss the connection between copy-number variation within species and copy-number divergence between species, showing that these values are exactly what one would expect from similar comparisons of nucleotide polymorphism and divergence. We conclude by reviewing the growing body of evidence for natural selection on copy-number variants. While it appears that most genic CNVs--especially deletions-are quickly eliminated by selection, there are now multiple studies demonstrating a strong link between copy-number differences at specific genes and phenotypic differences in adaptive traits. We argue that a complete understanding of the molecular basis for adaptive natural selection necessarily includes the study of copy-number variation.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|