201
|
Gindin Y, Valenzuela MS, Aladjem MI, Meltzer PS, Bilke S. A chromatin structure-based model accurately predicts DNA replication timing in human cells. Mol Syst Biol 2014; 10:722. [PMID: 24682507 PMCID: PMC4017678 DOI: 10.1002/msb.134859] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metazoan genome is replicated in precise cell lineage‐specific temporal order. However, the mechanism controlling this orchestrated process is poorly understood as no molecular mechanisms have been identified that actively regulate the firing sequence of genome replication. Here, we develop a mechanistic model of genome replication capable of predicting, with accuracy rivaling experimental repeats, observed empirical replication timing program in humans. In our model, replication is initiated in an uncoordinated (time‐stochastic) manner at well‐defined sites. The model contains, in addition to the choice of the genomic landmark that localizes initiation, only a single adjustable parameter of direct biological relevance: the number of replication forks. We find that DNase‐hypersensitive sites are optimal and independent determinants of DNA replication initiation. We demonstrate that the DNA replication timing program in human cells is a robust emergent phenomenon that, by its very nature, does not require a regulatory mechanism determining a proper replication initiation firing sequence.
Collapse
Affiliation(s)
- Yevgeniy Gindin
- Genetics Branch Center for Cancer Research, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
202
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
203
|
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet 2014; 10:e1004169. [PMID: 24603708 PMCID: PMC3945215 DOI: 10.1371/journal.pgen.1004169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.
Collapse
|
204
|
Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, Riou JF, Prioleau MN. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014; 33:732-46. [PMID: 24521668 DOI: 10.1002/embj.201387506] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation.
Collapse
Affiliation(s)
- Anne-Laure Valton
- Institut Jacques Monod, CNRS UMR7592 Université Paris Diderot Equipe Labellisée Ligue contre le cancer, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
205
|
A spontaneous Cdt1 mutation in 129 mouse strains reveals a regulatory domain restraining replication licensing. Nat Commun 2013; 4:2065. [PMID: 23817338 DOI: 10.1038/ncomms3065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/29/2013] [Indexed: 12/25/2022] Open
Abstract
Cdt1 is required for loading the replicative DNA helicase MCM2/7, a process known as DNA replication licensing. Here we show that 129 mouse strains express a Cdt1 mutated allele with enhanced licensing activity. The mutation, named Δ(6)PEST, involves a six-amino acid deletion within a previously uncharacterized PEST-like domain. Cdt1 Δ(6)PEST and more extensive deletions exhibit increased re-replication and transformation activities that are independent of the Geminin and E3 ligase pathways. This PEST domain negatively regulates cell cycle-dependent chromatin recruitment of Cdt1 in G2/M phases of the cell cycle. Mass spectrometry analysis indicates that Cdt1 is phosphorylated at sites within the deleted PEST domain during mitosis. This study reveals a conserved new regulatory Cdt1 domain crucial for proper DNA licensing activity and suggests a mechanism by which the presence of Cdt1 in G2/M phases does not lead to premature origin licensing. These results also question the usage of 129 mouse strains for knockout analyses.
Collapse
|
206
|
Noble LM, Andrianopoulos A. Fungal genes in context: genome architecture reflects regulatory complexity and function. Genome Biol Evol 2013; 5:1336-52. [PMID: 23699226 PMCID: PMC3730340 DOI: 10.1093/gbe/evt077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
207
|
Sherstyuk VV, Shevchenko AI, Zakian SM. Epigenetic landscape for initiation of DNA replication. Chromosoma 2013; 123:183-99. [PMID: 24337246 DOI: 10.1007/s00412-013-0448-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
The key genetic process of DNA replication is initiated at specific sites referred to as replication origins. In eukaryotes, origins of DNA replication are not specified by a defined nucleotide sequence. Recent studies have shown that the structural context and topology of DNA sequence, chromatin features, and its transcriptional activity play an important role in origin choice. During differentiation and development, significant changes in chromatin organization and transcription occur, influencing origin activity and choice. In the last few years, a number of different genome-wide studies have broadened the understanding of replication origin regulation. In this review, we discuss the epigenetic factors and mechanisms that modulate origin choice and firing.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Russian Academy of Sciences, Siberian Branch, Institute of Cytology and Genetics, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
208
|
Masai H. A personal reflection on the replicon theory: from R1 plasmid to replication timing regulation in human cells. J Mol Biol 2013; 425:4663-72. [PMID: 23579064 DOI: 10.1016/j.jmb.2013.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
Fifty years after the Replicon Theory was originally presented, detailed mechanistic insight into prokaryotic replicons has been obtained and rapid progress is being made to elucidate the more complex regulatory mechanisms of replicon regulation in eukaryotic cells. Here, I present my personal perspectives on how studies of model replicons have contributed to our understanding of the basic mechanisms of DNA replication as well as the evolution of replication regulation in human cells. I will also discuss how replication regulation contributes to the stable maintenance of the genome and how disruption of replication regulation leads to human diseases.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
209
|
Tarsounas M, Tijsterman M. Genomes and G-quadruplexes: for better or for worse. J Mol Biol 2013; 425:4782-9. [PMID: 24076189 DOI: 10.1016/j.jmb.2013.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 02/01/2023]
Abstract
Genomic integrity is crucial for correct chromosome segregation and physiological rates of cell proliferation. Mutations, deletions and translocations, hallmarks of human tumors, drive the aberrant proliferation and metastatic behavior of cancer cells. These chromosomal rearrangements often occur at genomic sites susceptible to breakage during DNA replication, including regions with G-quadruplex (G4)-forming potential. G4s are stable secondary structures that guanine-rich single-stranded DNA can readily adopt in vitro. However, their formation in eukaryotic cells has remained elusive and thus a subject of debate ever since they were first described. Recent work has more convincingly implicated G4s in a variety of biological processes including telomere maintenance, gene expression, epigenetic regulation and DNA replication. However, the downside of employing thermodynamically very stable alternative DNA structures as regulatory entities lies in their potential to also interfere with normal DNA metabolic processes, such as transcription and replication, which require readability of each base to faithfully transmit genetic information. Indeed, it has become clear that G4 structures can pose prominent barriers to replication fork progression and that they are also intrinsically recombinogenic. Here, we discuss mechanisms that cells evolved to counteract these detrimental effects, thereby ensuring the faithful inheritance of G4-containing genomes.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Telomere and Genome Stability Group, The Cancer Research UK/Medical Research Council, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
210
|
Tiengwe C, Marques CA, McCulloch R. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process. Trends Parasitol 2013; 30:27-36. [PMID: 24287149 DOI: 10.1016/j.pt.2013.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Nuclear DNA replication is, arguably, the central cellular process in eukaryotes, because it drives propagation of life and intersects with many other genome reactions. Perhaps surprisingly, our understanding of nuclear DNA replication in kinetoplastids was limited until a clutch of studies emerged recently, revealing new insight into both the machinery and genome-wide coordination of the reaction. Here, we discuss how these studies suggest that the earliest acting components of the kinetoplastid nuclear DNA replication machinery - the factors that demarcate sites of the replication initiation, termed origins - are diverged from model eukaryotes. In addition, we discuss how origin usage and replication dynamics relate to the highly unusual organisation of transcription in the genome of Trypanosoma brucei.
Collapse
Affiliation(s)
- Calvin Tiengwe
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK; The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, USA
| | - Catarina A Marques
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
211
|
Mesner LD, Valsakumar V, Cieślik M, Pickin R, Hamlin JL, Bekiranov S. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 2013; 23:1774-88. [PMID: 23861383 PMCID: PMC3814878 DOI: 10.1101/gr.155218.113] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
Abstract
We have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity. Origin "density" falls from early- to mid-S-phase, but rises again in late S-phase to levels only 17% lower than in early S-phase. Unexpectedly, late origin density calculated on the 1-Mb scale increases as a function of increasing chromatin compaction. Furthermore, the median efficiency of origins in late-replicating, heterochromatic domains is only 25% lower than in early-replicating euchromatic loci. Thus, the activation of early- and late-firing origins must be regulated by quintessentially different mechanisms. The aggregate data can be unified into a model in which initiation site selection is driven almost entirely by epigenetic factors that fashion both the long-range and local chromatin environments, with underlying DNA sequence and local transcriptional activity playing only minor roles. Importantly, the comprehensive origin map we have prepared for GM06990 overlaps moderately well with origin maps recently reported for the genomes of four different human cell lines based on the distributions of small nascent strands.
Collapse
Affiliation(s)
| | | | - Marcin Cieślik
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Rebecca Pickin
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Joyce L. Hamlin
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
212
|
Li B, Su T, Ferrari R, Li JY, Kurdistani SK. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells. Epigenetics 2013; 9:257-67. [PMID: 24172870 DOI: 10.4161/epi.26870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Biological Chemistry; University of California; Los Angeles, CA USA
| | - Trent Su
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Division of Oral Biology and Medicine; School of Dentistry; University of California; Los Angeles, CA USA
| | - Roberto Ferrari
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Jing-Yu Li
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Molecular Biology Institute; University of California; Los Angeles, CA USA; Department of Pathology and Laboratory Medicine; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| |
Collapse
|
213
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
214
|
Specification of DNA replication origins and genomic base composition in fission yeasts. J Mol Biol 2013; 425:4706-13. [PMID: 24095860 DOI: 10.1016/j.jmb.2013.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/21/2022]
Abstract
In the "Replicon Theory", Jacob, Brenner and Cuzin proposed the existence of replicators and initiators as the two major actors in DNA replication. Over the years, many protein components of initiators have been shown to be conserved in different organisms during evolution. By contrast, replicator DNA sequences (often referred to as replication origins) have diverged beyond possible comparison between eukaryotic genomes. Replication origins in the fission yeast Schizosaccharomyces pombe are made up of A+T-rich sequences that do not share any consensus elements. The information encoded in these replicators is interpreted by the Orc4 subunit of the ORC (origin recognition complex), which is unique among eukaryotes in that it contains a large domain harboring nine AT-hook subdomains that target ORC to a great variety of A+T-rich sequences along the chromosomes. Recently, the genomes of other Schizosaccharomyces species have been sequenced and the regions encompassing their replication origins have been identified. DNA sequence analysis and comparison of the organization of their Orc4 proteins have revealed species-specific differences that contribute to our understanding of how the specification of replication origins has evolved during the phylogenetic divergence of fission yeasts.
Collapse
|
215
|
Abstract
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901
| | | |
Collapse
|
216
|
Hoshina S, Yura K, Teranishi H, Kiyasu N, Tominaga A, Kadoma H, Nakatsuka A, Kunichika T, Obuse C, Waga S. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013; 288:30161-30171. [PMID: 24003239 DOI: 10.1074/jbc.m113.492504] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (ORC), consisting of six subunits ORC1-6, is known to bind to replication origins and function in the initiation of DNA replication in eukaryotic cells. In contrast to the fact that Saccharomyces cerevisiae ORC recognizes the replication origin in a sequence-specific manner, metazoan ORC has not exhibited strict sequence-specificity for DNA binding. Here we report that human ORC binds preferentially to G-quadruplex (G4)-preferable G-rich RNA or single-stranded DNA (ssDNA). We mapped the G-rich RNA-binding domain in the ORC1 subunit, in a region adjacent to its ATPase domain. This domain itself has an ability to preferentially recognize G4-preferable sequences of ssDNA. Furthermore, we found, by structure modeling, that the G-rich RNA-binding domain is similar to the N-terminal portion of AdoMet_MTase domain of mammalian DNA methyltransferase 1. Therefore, in contrast with the binding to double-stranded DNA, human ORC has an apparent sequence preference with respect to its RNA/ssDNA binding. Interestingly, this specificity coincides with the common signature present in most of the human replication origins. We expect that our findings provide new insights into the regulations of function and chromatin binding of metazoan ORCs.
Collapse
Affiliation(s)
- Shoko Hoshina
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Kei Yura
- the Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Honami Teranishi
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Noriko Kiyasu
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Ayumi Tominaga
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Haruka Kadoma
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Ayaka Nakatsuka
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Tomoko Kunichika
- the Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Chikashi Obuse
- the Division of Molecular Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shou Waga
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan,.
| |
Collapse
|
217
|
Lombraña R, Almeida R, Revuelta I, Madeira S, Herranz G, Saiz N, Bastolla U, Gómez M. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J 2013; 32:2631-44. [PMID: 23995398 DOI: 10.1038/emboj.2013.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022] Open
Abstract
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high-resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island-associated origins always occur at positions of high-nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.
Collapse
Affiliation(s)
- Rodrigo Lombraña
- 1Functional Organization of the Genome Group, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 2013; 29:449-60. [DOI: 10.1016/j.tig.2013.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/27/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
|
219
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
220
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
221
|
GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 2013; 23:1590-600. [PMID: 23868195 PMCID: PMC3787257 DOI: 10.1101/gr.158436.113] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can distinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci are enriched in distinct chromosomal territories reflecting the intrinsic strength of their protection against DNA methylation. Interestingly, we show that strong CGI promoters are depleted from the X chromosome while weak CGIs are enriched, a property consistent with the acquisition of DNA methylation during dosage compensation. Furthermore, we identify a third class of CGI promoters based on its unique GC skew profile and show that this gene set is enriched for Polycomb group targets. Lastly, we show that nearly 2000 genes harbor GC skew at their 3′ ends and that these genes are preferentially located in gene-dense regions and tend to be closely arranged. Genomic profiling of R-loops accordingly showed that a large proportion of genes with terminal GC skew form R-loops at their 3′ ends, consistent with a role for these structures in permitting efficient transcription termination. Altogether, we show that GC skew and R-loop formation offer significant insights into the epigenetic regulation, genomic organization, and function of human genes.
Collapse
|
222
|
Sherstyuk VV, Shevchenko AI, Mazurok NA, Zakian SM. Replication origin activity in vole X chromosome inactivation center in different cell types. DOKL BIOCHEM BIOPHYS 2013; 450:164-6. [PMID: 23824461 DOI: 10.1134/s1607672913030125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Indexed: 12/22/2022]
Affiliation(s)
- V V Sherstyuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
223
|
Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 2013; 20:412-8. [PMID: 23552296 DOI: 10.1038/nsmb.2543] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/07/2013] [Indexed: 12/16/2022]
Abstract
To ensure accurate duplication of genetic material, the replication fork must overcome numerous natural obstacles on its way, including transcription complexes engaged along the same template. Here we review the various levels of interdependence between transcription and replication processes and how different types of encounters between RNA- and DNA-polymerase complexes may result in clashes of those machineries on the DNA template and thus increase genomic instability. In addition, we summarize strategies evolved in bacteria and eukaryotes to minimize the consequences of collisions, including R-loop formation and topological stresses.
Collapse
|
224
|
Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet 2013; 9:e1003542. [PMID: 23754963 PMCID: PMC3674996 DOI: 10.1371/journal.pgen.1003542] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/19/2013] [Indexed: 12/15/2022] Open
Abstract
Mammalian DNA replication starts at distinct chromosomal sites in a tissue-specific pattern coordinated with transcription, but previous studies have not yet identified a chromatin modification that correlates with the initiation of DNA replication at particular genomic locations. Here we report that a distinct fraction of replication initiation sites in the human genome are associated with a high frequency of dimethylation of histone H3 lysine K79 (H3K79Me2). H3K79Me2-containing chromatin exhibited the highest genome-wide enrichment for replication initiation events observed for any chromatin modification examined thus far (23.39% of H3K79Me2 peaks were detected in regions adjacent to replication initiation events). The association of H3K79Me2 with replication initiation sites was independent and not synergistic with other chromatin modifications. H3K79 dimethylation exhibited wider distribution on chromatin during S-phase, but only regions with H3K79 methylation in G1 and G2 were enriched in replication initiation events. H3K79 was dimethylated in a region containing a functional replicator (a DNA sequence capable of initiating DNA replication), but the methylation was not evident in a mutant replicator that could not initiate replication. Depletion of DOT1L, the sole enzyme responsible for H3K79 methylation, triggered limited genomic over-replication although most cells could continue to proliferate and replicate DNA in the absence of methylated H3K79. Thus, prevention of H3K79 methylation might affect regulatory processes that modulate the order and timing of DNA replication. These data are consistent with the hypothesis that dimethylated H3K79 associates with some replication origins and marks replicated chromatin during S-phase to prevent re-replication and preserve genomic stability.
Collapse
|
225
|
Julienne H, Zoufir A, Audit B, Arneodo A. Epigenetic regulation of the human genome: coherence between promoter activity and large-scale chromatin environment. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
226
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
227
|
Vorobyeva NE, Mazina MU, Golovnin AK, Kopytova DV, Gurskiy DY, Nabirochkina EN, Georgieva SG, Georgiev PG, Krasnov AN. Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome. Nucleic Acids Res 2013; 41:5717-30. [PMID: 23609538 PMCID: PMC3675495 DOI: 10.1093/nar/gkt297] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Department of Transcriptional Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Trapping DNA replication origins from the human genome. Genes (Basel) 2013; 4:198-225. [PMID: 24705160 PMCID: PMC3899975 DOI: 10.3390/genes4020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins’ structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5–3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.
Collapse
|
229
|
Pope BD, Gilbert DM. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J Mol Biol 2013; 425:4690-5. [PMID: 23603017 DOI: 10.1016/j.jmb.2013.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 01/12/2023]
Abstract
The "Replicon Theory" of Jacob, Brenner, and Cuzin has reliably served as the paradigm for regulating the sites where individual replicons initiate replication. Concurrent with the replicon model was Taylor's demonstration that plant and animal chromosomes replicate segmentally in a defined temporal sequence, via cytologically defined units too large to be accounted for by a single replicon. Instead, there seemed to be a program to choreograph when chromosome units replicate during S phase, executed by initiation at clusters of individual replicons within each segment. Here, we summarize recent molecular evidence for the existence of such units, now known as "replication domains", and discuss how the organization of large chromosomes into structural units has added additional layers of regulation to the original replicon model.
Collapse
Affiliation(s)
- Benjamin D Pope
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | | |
Collapse
|
230
|
Méchali M, Yoshida K, Coulombe P, Pasero P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev 2013; 23:124-31. [PMID: 23541525 DOI: 10.1016/j.gde.2013.02.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
In the genome of eukaryotic cells, DNA synthesis is initiated at multiple sites called origins of DNA replication. Origins must fire only once per cell cycle and how this is achieved is now well understood. However, little is known about the mechanisms that determine when and where replication initiates in a given cell. A large body of evidence indicates that origins are not equal in terms of efficiency and timing of activation. Origin usage also changes concomitantly with the different cell differentiation programs. As DNA replication occurs in the context of chromatin, initiation could be influenced by multiple parameters, such as nucleosome positioning, histone modifications, and three-dimensional (3D) organization of the nucleus. This view is supported by recent genome-wide studies showing that DNA replication profiles are shaped by genetic and epigenetic processes that act both at the local and global levels to regulate origin function in eukaryotic cells.
Collapse
Affiliation(s)
- Marcel Méchali
- Institute of Human Genetics, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
231
|
Abstract
Although distinct chromatin types have been long known to replicate at different timepoints of S phase, fine replication control has only recently become considered as an epigenetic phenomenon. It is now clear that in course of differentiation significant changes in genome replication timing occur, and these changes are intimately linked with the changes in transcriptional activity and nuclear architecture. Temporally coordinate replication is organized spatially into discrete units having specific chromosomal organization and function. Even though the functional aspects of such tight control of replication timing remain to be explored, one can confidently consider the replication program as yet another fundamental feature characteristic of the given differentiation state. The present review touches upon the molecular mechanisms of spatial and temporal control of replication timing, involving individual replication origins as well as large chromatin domains.
Collapse
|
232
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
233
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
234
|
Dellino GI, Cittaro D, Piccioni R, Luzi L, Banfi S, Segalla S, Cesaroni M, Mendoza-Maldonado R, Giacca M, Pelicci PG. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res 2012. [PMID: 23187890 PMCID: PMC3530669 DOI: 10.1101/gr.142331.112] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G1 and the probability of firing during S.
Collapse
Affiliation(s)
- Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Affiliation(s)
- Hoyun Lee
- Tumour Biology Group, Northeast Cancer Centre, Sudbury, Ontario Canada.
| | | |
Collapse
|
236
|
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2012; 18:17-31. [PMID: 23134523 PMCID: PMC3564400 DOI: 10.1111/gtc.12010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.
Collapse
|
237
|
|
238
|
Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Méchali M. New insights into replication origin characteristics in metazoans. Cell Cycle 2012; 11:658-67. [PMID: 22373526 DOI: 10.4161/cc.11.4.19097] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently reported the identification and characterization of DNA replication origins (Oris) in metazoan cell lines. Here, we describe additional bioinformatic analyses showing that the previously identified GC-rich sequence elements form origin G-rich repeated elements (OGREs) that are present in 67% to 90% of the DNA replication origins from Drosophila to human cells, respectively. Our analyses also show that initiation of DNA synthesis takes place precisely at 160 bp (Drosophila) and 280 bp (mouse) from the OGRE. We also found that in most CpG islands, an OGRE is positioned in opposite orientation on each of the two DNA strands and detected two sites of initiation of DNA synthesis upstream or downstream of each OGRE. Conversely, Oris not associated with CpG islands have a single initiation site. OGRE density along chromosomes correlated with previously published replication timing data. Ori sequences centered on the OGRE are also predicted to have high intrinsic nucleosome occupancy. Finally, OGREs predict G-quadruplex structures at Oris that might be structural elements controlling the choice or activation of replication origins.
Collapse
|
239
|
Arakawa K, Tomita M. Measures of compositional strand bias related to replication machinery and its applications. Curr Genomics 2012; 13:4-15. [PMID: 22942671 PMCID: PMC3269016 DOI: 10.2174/138920212799034749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/10/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
The compositional asymmetry of complementary bases in nucleotide sequences implies the existence of a mutational or selectional bias in the two strands of the DNA duplex, which is commonly shaped by strand-specific mechanisms in transcription or replication. Such strand bias in genomes, frequently visualized by GC skew graphs, is used for the computational prediction of transcription start sites and replication origins, as well as for comparative evolutionary genomics studies. The use of measures of compositional strand bias in order to quantify the degree of strand asymmetry is crucial, as it is the basis for determining the applicability of compositional analysis and comparing the strength of the mutational bias in different biological machineries in various species. Here, we review the measures of strand bias that have been proposed to date, including the ∆GC skew, the B1 index, the predictability score of linear discriminant analysis for gene orientation, the signal-to-noise ratio of the oligonucleotide bias, and the GC skew index. These measures have been predominantly designed for and applied to the analysis of replication-related mutational processes in prokaryotes, but we also give research examples in eukaryotes.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
| | | |
Collapse
|
240
|
Lin YL, Pasero P. Interference between DNA replication and transcription as a cause of genomic instability. Curr Genomics 2012; 13:65-73. [PMID: 22942676 PMCID: PMC3269018 DOI: 10.2174/138920212799034767] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022] Open
Abstract
Replication and transcription are key aspects of DNA metabolism that take place on the same template and potentially interfere with each other. Conflicts between these two activities include head-on or co-directional collisions between DNA and RNA polymerases, which can lead to the formation of DNA breaks and chromosome rearrangements. To avoid these deleterious consequences and prevent genomic instability, cells have evolved multiple mechanisms preventing replication forks from colliding with the transcription machinery. Yet, recent reports indicate that interference between replication and transcription is not limited to physical interactions between polymerases and that other cotranscriptional processes can interfere with DNA replication. These include DNA-RNA hybrids that assemble behind elongating RNA polymerases, impede fork progression and promote homologous recombination. Here, we discuss recent evidence indicating that R-loops represent a major source of genomic instability in all organisms, from bacteria to human, and are potentially implicated in cancer development.
Collapse
Affiliation(s)
- Yea-Lih Lin
- Institute of Human Genetics, CNRS-UPR1142, Montpellier, France
| | | |
Collapse
|
241
|
McConnell KH, Dixon M, Calvi BR. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development 2012; 139:3880-90. [PMID: 22951641 DOI: 10.1242/dev.083576] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs.
Collapse
|
242
|
Aparicio T, Megías D, Méndez J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma 2012; 121:499-507. [PMID: 22911457 DOI: 10.1007/s00412-012-0381-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
Abstract
In mammalian cells, DNA synthesis takes place at defined nuclear structures termed "replication foci" (RF) that follow the same order of activation in each cell cycle. Intriguingly, immunofluorescence studies have failed to visualize the DNA helicase minichromosome maintenance (MCM) at RF, raising doubts about its physical presence at the sites of DNA synthesis. We have revisited this paradox by pulse-labeling RF during the S phase and analyzing the localization of MCM at labeled DNA in the following cell cycle. Using high-throughput confocal microscopy, we provide direct evidence that MCM proteins concentrate in G1 at the chromosome structures bound to become RF in the S phase. Upon initiation of DNA synthesis, an active "MCM eviction" mechanism contributes to reduce the excess of DNA helicases at RF. Most MCM complexes are released from chromatin, except for a small but detectable fraction that remains at the forks during the S phase, as expected for a replicative helicase.
Collapse
Affiliation(s)
- Tomás Aparicio
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | | | | |
Collapse
|
243
|
Papior P, Arteaga-Salas JM, Günther T, Grundhoff A, Schepers A. Open chromatin structures regulate the efficiencies of pre-RC formation and replication initiation in Epstein-Barr virus. ACTA ACUST UNITED AC 2012; 198:509-28. [PMID: 22891264 PMCID: PMC3514025 DOI: 10.1083/jcb.201109105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies of EBV replication origins demonstrate an excess of pre-replication
complexes that are formed at flexible MNase-sensitive sites in the genome. Whether or not metazoan replication initiates at random or specific but flexible
sites is an unsolved question. The lack of sequence specificity in origin
recognition complex (ORC) DNA binding complicates genome-scale chromatin
immunoprecipitation (ChIP)-based studies. Epstein-Barr virus (EBV) persists as
chromatinized minichromosomes that are replicated by the host replication
machinery. We used EBV to investigate the link between zones of pre-replication
complex (pre-RC) assembly, replication initiation, and micrococcal nuclease
(MNase) sensitivity at different cell cycle stages in a genome-wide fashion. The
dyad symmetry element (DS) of EBV’s latent origin, a well-established and
very efficient pre-RC assembly region, served as an internal control. We
identified 64 pre-RC zones that correlate spatially with 57 short nascent strand
(SNS) zones. MNase experiments revealed that pre-RC and SNS zones were linked to
regions of increased MNase sensitivity, which is a marker of origin strength.
Interestingly, although spatially correlated, pre-RC and SNS zones were
characterized by different features. We propose that pre-RCs are formed at
flexible but distinct sites, from which only a few are activated per single
genome and cell cycle.
Collapse
Affiliation(s)
- Peer Papior
- DNA Replication and Epigenetics group, Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 München, Germany
| | | | | | | | | |
Collapse
|
244
|
Tiengwe C, Marcello L, Farr H, Dickens N, Kelly S, Swiderski M, Vaughan D, Gull K, Barry JD, Bell SD, McCulloch R. Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep 2012; 2:185-97. [PMID: 22840408 PMCID: PMC3607257 DOI: 10.1016/j.celrep.2012.06.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/30/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion.
Collapse
Affiliation(s)
- Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Meysman P, Marchal K, Engelen K. DNA structural properties in the classification of genomic transcription regulation elements. Bioinform Biol Insights 2012; 6:155-68. [PMID: 22837642 PMCID: PMC3399529 DOI: 10.4137/bbi.s9426] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been long known that DNA molecules encode information at various levels. The most basic level comprises the base sequence itself and is primarily important for the encoding of proteins and direct base recognition by DNA-binding proteins. A more elusive level consists of the local structural properties of the DNA molecule wherein the DNA sequence only plays an indirect supportive role. These properties are nevertheless an important factor in a large number of biomolecular processes and can be considered as informative signals for the presence of a variety of genomic features. Several recent studies have unequivocally shown the benefit of relying on such DNA properties for modeling and predicting genomic features as diverse as transcription start sites, transcription factor binding sites, or nucleosome occupancy. This review is meant to provide an overview of the key aspects of these DNA conformational and physicochemical properties. To illustrate their potential added value compared to relying solely on the nucleotide sequence in genomics studies, we discuss their application in research on transcription regulation mechanisms as representative cases.
Collapse
Affiliation(s)
- Pieter Meysman
- Department of Molecular and Microbial Systems, KULeuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | |
Collapse
|
246
|
Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012; 19:837-44. [PMID: 22751019 DOI: 10.1038/nsmb.2339] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/01/2012] [Indexed: 11/08/2022]
Abstract
DNA replication is highly regulated, ensuring faithful inheritance of genetic information through each cell cycle. In metazoans, this process is initiated at many thousands of DNA replication origins whose cell type-specific distribution and usage are poorly understood. We exhaustively mapped the genome-wide location of replication origins in human cells using deep sequencing of short nascent strands and identified ten times more origin positions than we expected; most of these positions were conserved in four different human cell lines. Furthermore, we identified a consensus G-quadruplex-forming DNA motif that can predict the position of DNA replication origins in human cells, accounting for their distribution, usage efficiency and timing. Finally, we discovered a cell type-specific reprogrammable signature of cell identity that was revealed by specific efficiencies of conserved origin positions and not by the selection of cell type-specific subsets of origins.
Collapse
|
247
|
Cayrou C, Grégoire D, Coulombe P, Danis E, Méchali M. Genome-scale identification of active DNA replication origins. Methods 2012; 57:158-64. [DOI: 10.1016/j.ymeth.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/15/2022] Open
|
248
|
Bianco JN, Poli J, Saksouk J, Bacal J, Silva MJ, Yoshida K, Lin YL, Tourrière H, Lengronne A, Pasero P. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 2012; 57:149-57. [PMID: 22579803 DOI: 10.1016/j.ymeth.2012.04.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/17/2022] Open
Abstract
DNA combing is a powerful method developed by Bensimon and colleagues to stretch DNA molecules on silanized glass coverslips. This technique provides a unique way to monitor the activation of replication origins and the progression of replication forks at the level of single DNA molecules, after incorporation of thymidine analogs, such as 5-bromo-2'-deoxyuridine (BrdU), 5-iodo-2'-deoxyuridine (IdU) and 5-chloro-2'-deoxyuridine (CldU) in newly-synthesized DNA. Unlike microarray-based approaches, this assay gives access to the variability of replication profiles in individual cells. It can also be used to monitor the effect of DNA lesions on fork progression, arrest and restart. In this review, we propose standard DNA combing methods to analyze DNA replication in budding yeast and in human cells. We also show that 5-ethynyl-2'-deoxyuridine (EdU) can be used as a good alternative to BrdU for DNA combing analysis, as unlike halogenated nucleotides, it can be detected without prior denaturation of DNA.
Collapse
Affiliation(s)
- Julien N Bianco
- Institute of Human Genetics, CNRS UPR 1142, Montpellier F-34396, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K, Kommajosyula N, Steinmann KE, Bochicchio J, Russ C, Regev A, Rando OJ, Nusbaum C, Niki H, Milos P, Weng Z, Rhind N. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 2012; 13:R27. [PMID: 22531001 PMCID: PMC3446301 DOI: 10.1186/gb-2012-13-4-r27] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 01/13/2023] Open
Abstract
Background DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood. Results We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions. Conclusions The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.
Collapse
Affiliation(s)
- Jia Xu
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Bechhoefer J, Rhind N. Replication timing and its emergence from stochastic processes. Trends Genet 2012; 28:374-81. [PMID: 22520729 DOI: 10.1016/j.tig.2012.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
Abstract
The temporal organization of DNA replication has puzzled cell biologists since before the mechanism of replication was understood. The realization that replication timing correlates with important features, such as transcription, chromatin structure and genome evolution, and is misregulated in cancer and aging has only deepened the fascination. Many ideas about replication timing have been proposed, but most have been short on mechanistic detail. However, recent work has begun to elucidate basic principles of replication timing. In particular, mathematical modeling of replication kinetics in several systems has shown that the reproducible replication timing patterns seen in population studies can be explained by stochastic origin firing at the single-cell level. This work suggests that replication timing need not be controlled by a hierarchical mechanism that imposes replication timing from a central regulator, but instead results from simple rules that affect individual origins.
Collapse
Affiliation(s)
- John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | | |
Collapse
|