201
|
Maggio A, Zhu JK, Hasegawa PM, Bressan RA. Osmogenetics: Aristotle to Arabidopsis. THE PLANT CELL 2006; 18:1542-57. [PMID: 16809814 PMCID: PMC1488915 DOI: 10.1105/tpc.105.040501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Albino Maggio
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Portici, Italy 80055
| | | | | | | |
Collapse
|
202
|
Nibau C, Wu HM, Cheung AY. RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants. TRENDS IN PLANT SCIENCE 2006; 11:309-15. [PMID: 16737841 DOI: 10.1016/j.tplants.2006.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/04/2006] [Accepted: 04/26/2006] [Indexed: 05/04/2023]
Abstract
RAC/ROP GTPases are a family of plant-specific signaling molecules solely representing the Ras and Rho family of Ras-related G proteins in plants. RAC/ROPs potentially interact with cell surface-associated signal perception apparatus for a broad range of extracellular stimuli, including hormones, pathogen elicitors and abiotic stress, and mediate diverse cellular pathways in response to these signals. They are also known to interact with multiple effectors, affecting cellular and biochemical systems that regulate actin dynamics, reactive oxygen species production, proteolysis, and gene expression. RAC/ROPs are, thus, ideally suited as integrators for multiple signals and as coordinators of diverse cellular pathways to control growth, differentiation, development and defense responses. Recent findings that suggest how RAC/ROP signaling activity is regulated and how functional specificity can be achieved are discussed here.
Collapse
Affiliation(s)
- Candida Nibau
- Plant Biology Graduate Program, University of Massachusetts, Lederle Graduate Research Tower, Department of Biochemistry and Molecular Biology, Amherst, MA 10003, USA
| | | | | |
Collapse
|
203
|
Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E. Integration of abscisic acid signalling into plant responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:314-25. [PMID: 16807823 DOI: 10.1055/s-2006-924120] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a major role as an endogenous messenger in the regulation of plant's water status. ABA is generated as a signal during a plant's life cycle to control seed germination and further developmental processes and in response to abiotic stress imposed by salt, cold, drought, and wounding. The action of ABA can target specifically guard cells for induction of stomatal closure but may also signal systemically for adjustment towards severe water shortage. At the molecular level, the responses are primarily mediated by regulation of ion channels and by changes in gene expression. In the last years, the molecular complexity of ABA signal transduction surfaced more and more. Many proteins and a plethora of "secondary" messengers that regulate or modulate ABA-responses have been identified by analysis of mutants including gene knock-out plants and by applying RNA interference technology together with protein interaction analysis. The complexity possibly reflects intensive cross-talk with other signal pathways and the role of ABA to be part of and to integrate several responses. Despite the missing unifying concept, it is becoming clear that ABA action enforces a sophisticated regulation at all levels.
Collapse
Affiliation(s)
- A Christmann
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
204
|
Affiliation(s)
- Ruth R Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
205
|
Dardick C, Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2006; 2:e2. [PMID: 16424920 PMCID: PMC1331981 DOI: 10.1371/journal.ppat.0020002] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 12/14/2005] [Indexed: 12/18/2022] Open
Abstract
Plants and animals mediate early steps of the innate immune response through pathogen recognition receptors (PRRs). PRRs commonly associate with or contain members of a monophyletic group of kinases called the interleukin-1 receptor-associated kinase (IRAK) family that include Drosophila Pelle, human IRAKs, rice XA21 and Arabidopsis FLS2. In mammals, PRRs can also associate with members of the receptor-interacting protein (RIP) kinase family, distant relatives to the IRAK family. Some IRAK and RIP family kinases fall into a small functional class of kinases termed non-RD, many of which do not autophosphorylate the activation loop. We surveyed the yeast, fly, worm, human, Arabidopsis, and rice kinomes (3,723 kinases) and found that despite the small number of non-RD kinases in these genomes (9%-29%), 12 of 15 kinases known or predicted to function in PRR signaling fall into the non-RD class. These data indicate that kinases associated with PRRs can largely be predicted by the lack of a single conserved residue and reveal new potential plant PRR subfamilies.
Collapse
Affiliation(s)
- Christopher Dardick
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (CD); (PR)
| | - Pamela Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * To whom correspondence should be addressed. E-mail: (CD); (PR)
| |
Collapse
|
206
|
Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. PLANT PHYSIOLOGY 2006; 140:127-39. [PMID: 16361522 PMCID: PMC1326037 DOI: 10.1104/pp.105.070318] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To identify new loci in abscisic acid (ABA) signaling, we screened a library of 35ScDNA Arabidopsis (Arabidopsis thaliana)-expressing lines for ABA-insensitive mutants in seed germination assays. One of the identified mutants germinated on 2.5 microm ABA, a concentration that completely inhibits wild-type seed germination. Backcrosses and F2 analyses indicated that the mutant exhibits a dominant phenotype and that the ABA insensitivity was linked to a single T-DNA insertion containing a 35ScDNA fusion. The inserted cDNA corresponds to a full-length cDNA of the AtPP2CA gene, encoding a protein phosphatase type 2C (PP2C). Northern-blot analyses demonstrated that the AtPP2CA transcript is indeed overexpressed in the mutant (named PP2CAox). Two independent homozygous T-DNA insertion lines, pp2ca-1 and pp2ca-2, were recovered from the Arabidopsis Biological Resource Center and shown to lack full-length AtPP2CA expression. A detailed characterization of PP2CAox and the T-DNA disruption mutants demonstrated that, whereas ectopic expression of a 35SAtPP2CA fusion caused ABA insensitivity in seed germination and ABA-induced stomatal closure responses, disruption mutants displayed the opposite phenotype, namely, strong ABA hypersensitivity. Thus our data demonstrate that the PP2CA protein phosphatase is a strong negative regulator of ABA signal transduction. Furthermore, it has been previously shown that the AtPP2CA transcript is down-regulated in the ABA-hypersensitive nuclear mRNA cap-binding protein mutant abh1. We show here that down-regulation of AtPP2CA in abh1 is not due to impaired RNA splicing of AtPP2CA pre-mRNA. Moreover, expression of a 35SAtPP2CA cDNA fusion in abh1 partially suppresses abh1 hypersensitivity, and the data further suggest that additional mechanisms contribute to ABA hypersensitivity of abh1.
Collapse
Affiliation(s)
- Josef M Kuhn
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, La Jolla, California 92093-0116, USA
| | | | | | | | | |
Collapse
|
207
|
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. THE PLANT CELL 2005; 17:3470-88. [PMID: 16284313 PMCID: PMC1315382 DOI: 10.1105/tpc.105.035659] [Citation(s) in RCA: 610] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1) (i.e., ABF2) is a basic domain/leucine zipper transcription factor that binds to the abscisic acid (ABA)-responsive element (ABRE) motif in the promoter region of ABA-inducible genes. Here, we show that expression of the intact AREB1 gene on its own is insufficient to lead to expression of downstream genes under normal growth conditions. To overcome the masked transactivation activity of AREB1, we created an activated form of AREB1 (AREB1DeltaQT). AREB1DeltaQT-overexpressing plants showed ABA hypersensitivity and enhanced drought tolerance, and eight genes with two or more ABRE motifs in the promoter regions in two groups were greatly upregulated: late embryogenesis abundant class genes and ABA- and drought stress-inducible regulatory genes. By contrast, an areb1 null mutant and a dominant loss-of-function mutant of AREB1 (AREB1:RD) with a repression domain exhibited ABA insensitivity. Furthermore, AREB1:RD plants displayed reduced survival under dehydration, and three of the eight greatly upregulated genes were downregulated, including genes for linker histone H1 and AAA ATPase, which govern gene expression and multiple cellular activities through protein folding, respectively. Thus, these data suggest that AREB1 regulates novel ABRE-dependent ABA signaling that enhances drought tolerance in vegetative tissues.
Collapse
Affiliation(s)
- Yasunari Fujita
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Miki Fujita
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Rie Satoh
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kyonoshin Maruyama
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Mohammad M. Parvez
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Motoaki Seki
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
- Plant Functional Genomics Group, RIKEN Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan
| | - Keiichiro Hiratsu
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, Tsukuba, Ibaraki 305-8562, Japan
| | - Masaru Ohme-Takagi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, Tsukuba, Ibaraki 305-8562, Japan
| | - Kazuo Shinozaki
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Plant Functional Genomics Group, RIKEN Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- To whom correspondence should be addressed. E-mail ; fax 81-29-838-6643
| |
Collapse
|
208
|
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. THE PLANT CELL 2005; 17:3155-75. [PMID: 16214899 PMCID: PMC1276035 DOI: 10.1105/tpc.105.035568] [Citation(s) in RCA: 487] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain approximately 24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
209
|
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. THE PLANT CELL 2005. [PMID: 16214899 DOI: 10.1105/tpc.105.035568.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain approximately 24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
210
|
Xin Z, Zhao Y, Zheng ZL. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:1350-65. [PMID: 16258012 PMCID: PMC1283771 DOI: 10.1104/pp.105.068064] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important growth and developmental processes and various stresses responses, but its signal transduction pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis (Arabidopsis thaliana), is a plasma membrane-associated protein specifically involved in negative regulation of ABA responses. To dissect the ROP10-mediated ABA signaling, we carried out transcriptome analysis using the Arabidopsis full-genome chip. Our analysis revealed a total of 262 and 125 genes that were, respectively, up- and down-regulated (> or =2-fold cutoff) by 1 mum ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not been identified in other studies. Consistent with the nonpleiotropic phenotypes of rop10-1, only three genes were altered in rop10-1 in the absence of ABA treatment. In response to 1 microm ABA, 341 and 127 genes were, respectively, activated and repressed in rop10-1. Interestingly, a particular subset of 21 genes that were not altered by 1 microm ABA in Ws but only activated in rop10-1 was identified. Reverse transcription-polymerase chain reaction analysis revealed the existence of three distinct categories of ABA dose-response patterns. One novel category is characterized by their ABA unresponsiveness in Ws and activation in rop10-1 at 1 microm but not 10 and 100 microm of ABA. This indicates that ROP10 gates the expression of genes that are specific to low concentrations of ABA. Furthermore, almost all of these 21 genes are known to be highly induced by various biotic and abiotic stresses. Consequently, we found that rop10-1 enhanced the sensitivity of seed germination inhibition to mannitol and sodium chloride. Our results suggest that ROP10 negatively regulates ABA responses by specifically and differentially modulating the ABA sensitivity of a subset of genes including protein kinases and zinc-finger family proteins.
Collapse
Affiliation(s)
- Zeyu Xin
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| | | | | |
Collapse
|