201
|
|
202
|
Abstract
Extracellular plant peptides perform a large variety of functions, including signalling and defence. Intracellular peptides often have physiological functions or may merely be the products of general proteolysis. Plant peptides have been identified and, in part, functionally characterized through biochemical and genetic studies, which are lengthy and in some cases impractical. Peptidomics is a branch of proteomics that has been developed over the last 5 years, and has been used mainly to study neuropeptides in animals and the degradome of proteases. Peptidomics is a fast, efficient methodology that can detect minute and transient amounts of peptides and identify their post-translational modifications. This review describes known plant peptides and introduces the use of peptidomics for the detection of novel plant peptides.
Collapse
Affiliation(s)
- Naser Farrokhi
- National Institute of Genetic Engineering and Biotechnology, Pajoohesh Blvd., Tehran-Karaj Highway, 17th Km., Tehran, Iran.
| | | | | |
Collapse
|
203
|
Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T. Bioinformatic analysis of the CLE signaling peptide family. BMC PLANT BIOLOGY 2008; 8:1. [PMID: 18171480 PMCID: PMC2254619 DOI: 10.1186/1471-2229-8-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 01/03/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants encode a large number of leucine-rich repeat receptor-like kinases. Legumes encode several LRR-RLK linked to the process of root nodule formation, the ligands of which are unknown. To identify ligands for these receptors, we used a combination of profile hidden Markov models and position-specific iterative BLAST, allowing us to detect new members of the CLV3/ESR (CLE) protein family from publicly available sequence databases. RESULTS We identified 114 new members of the CLE protein family from various plant species, as well as five protein sequences containing multiple CLE domains. We were able to cluster the CLE domain proteins into 13 distinct groups based on their pairwise similarities in the primary CLE motif. In addition, we identified secondary motifs that coincide with our sequence clusters. The groupings based on the CLE motifs correlate with known biological functions of CLE signaling peptides and are analogous to groupings based on phylogenetic analysis and ectopic overexpression studies. We tested the biological function of two of the predicted CLE signaling peptides in the legume Medicago truncatula. These peptides inhibit the activity of the root apical and lateral root meristems in a manner consistent with our functional predictions based on other CLE signaling peptides clustering in the same groups. CONCLUSION Our analysis provides an identification and classification of a large number of novel potential CLE signaling peptides. The additional motifs we found could lead to future discovery of recognition sites for processing peptidases as well as predictions for receptor binding specificity.
Collapse
Affiliation(s)
- Karsten Oelkers
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia
- The Australian Research Council Centre of Excellence for Integrative Legume Research
| | - Nicolas Goffard
- Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia
- The Australian Research Council Centre of Excellence for Integrative Legume Research
| | - Georg F Weiller
- Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia
- The Australian Research Council Centre of Excellence for Integrative Legume Research
| | - Peter M Gresshoff
- The University of Queensland, Brisbane, QLD, Australia
- The Australian Research Council Centre of Excellence for Integrative Legume Research
| | - Ulrike Mathesius
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia
- The Australian Research Council Centre of Excellence for Integrative Legume Research
| | - Tancred Frickey
- Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia
- The Australian Research Council Centre of Excellence for Integrative Legume Research
| |
Collapse
|
204
|
Tucker ML, Burke A, Murphy CA, Thai VK, Ehrenfried ML. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3395-406. [PMID: 17916637 DOI: 10.1093/jxb/erm188] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Changes in transcript accumulation for cell wall-modifying proteins were examined in excised soybean root pieces colonized by soybean cyst nematodes (SCN), Heterodera glycines, using RT-PCR and soybean Affymetrix GeneChips. Sequence-specific PCR primer pairs were prepared from sequence data for core sequences in the GenBank soybean database and consensus sequences derived from the assembly of soybean ESTs. In addition, to identify previously uncharacterized soybean transcripts, degenerate primers were prepared for conserved motifs in cellulases (endo-1,4-beta-glucanases, EGases) and polygalacturonases (PGs) and these were used to amplify segments of transcripts that were then extended with 3' and 5' RACE. Several novel EGase and PG transcripts were identified. Gene expression patterns were determined by real-time RT-PCR for 11 EGases, three expansins (EXPs), 14 PGs, two pectate lyases (PLs), and two xyloglucan endotransglucosylase/hydrolases (XTHs) in soybean roots inoculated with SCN, non-inoculated roots, serial dissections of root tips, leaf abscission zones, flowers, apical buds, and expanding leaves. A large number of genes associated with cell wall modifications are strongly up-regulated in root pieces colonized by SCN. However, in contrast to most of the transcripts for cell wall proteins, two XTH transcripts were specifically down-regulated in the colonized root pieces. Gene expression in serial dissections of root tips (0-2 mm, and 2-7 mm) and whole roots indicate that the SCN up-regulated genes are associated with a wide range of developmental processes in roots. Also of interest, many of the cDNAs examined were up-regulated in petiole abscission zones induced to abscise with ethylene.
Collapse
Affiliation(s)
- Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Bldg 006, 10300 Baltimore Ave, Beltsville, MD 20705-2350, USA.
| | | | | | | | | |
Collapse
|
205
|
Fukuda H, Hirakawa Y, Sawa S. Peptide signaling in vascular development. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:477-82. [PMID: 17904408 DOI: 10.1016/j.pbi.2007.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/21/2007] [Accepted: 08/28/2007] [Indexed: 05/07/2023]
Abstract
In plants and animals, putative small peptide ligands have been suggested to play crucial roles in development as signal molecules of cell-cell communication. Recent studies of CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) genes and their products have revealed that distinctive dodeca-CLE peptide ligands function in various developmental processes. In particular, the finding and characterization of TDIF, a dodeca-CLE peptide suppressing tracheary element differentiation, indicates regulation of vascular organization by cell-cell communication through CLE peptides. In addition, other extracellular peptides such as phytosulfokine, proteins such as xylogen, and phytohormones all participate in the ordered formation of vascular tissues.
Collapse
Affiliation(s)
- Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
206
|
Tucker MR, Laux T. Connecting the paths in plant stem cell regulation. Trends Cell Biol 2007; 17:403-10. [PMID: 17766120 DOI: 10.1016/j.tcb.2007.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 01/11/2023]
Abstract
Stem cell niches are specialized microenvironments where pluripotent cells are maintained to provide undifferentiated cells for the formation of new tissues and organs. The balance between stem cell maintenance within the niche and differentiation of cells that exit it is regulated by local cell-cell communication, together with external cues. Recent findings have shown connections between key developmental pathways and added significant insights into the central principles of stem cell maintenance in plant meristems. These insights include the convergence of important stem cell transcriptional regulators with cytokinin signaling in the shoot meristem, the biochemical dissection of peptide signaling in the shoot niche and the identification of conserved regulators in shoot and root niches.
Collapse
Affiliation(s)
- Matthew R Tucker
- Institute of Biology III, University of Freiburg, Freiburg 79104, Germany
| | | |
Collapse
|
207
|
Djordjevic MA, Oakes M, Li DX, Hwang CH, Hocart CH, Gresshoff PM. The glycine max xylem sap and apoplast proteome. J Proteome Res 2007; 6:3771-9. [PMID: 17696379 DOI: 10.1021/pr0606833] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular signaling interactions in the plant apoplast are important for defense and developmental responses. We examined the soybean proteome of the apoplastic conduit of root-to-shoot communication, the xylem stream, using gel electrophoresis combined with two types of tandem mass spectrometry. We examined soybeans for the presence of a Bradyrhizobium japonicum-induced, long distance developmental signal that controls autoregulation of nodulation (AON) to determine if xylem proteins (XPs) were involved directly or indirectly in AON. The xylem and apoplast fluids collected in hypocotyl, epicotyl, and stem tissue contained a highly similar set of secreted proteins. The XPs were different from those secreted from imbibing seed implying they play important basic roles in xylem function. The XPs of wild-type and nts1007 plants were indistinguishable irrespective of plant age, inoculation status, or time after inoculation suggesting that none was directly involved in AON. XPs were continuously loaded into the xylem stream, as they were present even 28 h after shoot decapitation. These results were consistent with semiquantitative RT-PCR studies that examined the expression of genes corresponding to the XPs under inoculated or uninoculated conditions. Monitoring the expression of XP genes by RT-PCR showed that four possessed root biased expression. This suggested that the corresponding protein products could be produced in roots and travel long distances to shoots. Of these, a species of lipid transfer protein is a candidate for a water-soluble, long-distance signal-carrier due to the presence of hydrophobic clefts that bind known plant signals in vitro. Two soybean XPs identified in this study, lipid transfer protein and Kunitz trypsin inhibitor (KTI), have known roles in plant signaling.
Collapse
Affiliation(s)
- Michael A Djordjevic
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Mass Spectrometry Facility, Research School of Biological Science, Australian National University, Canberra ACT.
| | | | | | | | | | | |
Collapse
|
208
|
Chu H, Zhang D. The Shoot Apical Meristem Size Regulated by FON4 in Rice. PLANT SIGNALING & BEHAVIOR 2007; 2:115-6. [PMID: 19704753 PMCID: PMC2633912 DOI: 10.4161/psb.2.2.3641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 05/07/2023]
Abstract
CLAVATA pathway is one of best-characterized signaling pathway involves in the regulation of meristem development in Arabidopsis. Increasing evidence indicated that this pathway also exist in the monocots as well as in the dicots. We have recently identified FON4 in rice as an ortholog of CLV3 in Arabidopsis. FON4 is putative ligand of FON1, which play a role in restricting the meristem size in rice. FON4 and CLV3 are the members of CLE gene family, which encode small functional secreted peptide with a conserved 14-amino acid motif (CLE motif) near or at the C termini.
Collapse
Affiliation(s)
- Huangwei Chu
- Shanghai Institutes for Biological Sciences; Pennsylvania State University Joint Center for Life Sciences; Key Laboratory of Microbial Metabolism; Ministry of Education; School of Life Science and Biotechnology; Shanghai Jiaotong University; Shanghai, China
| | | |
Collapse
|
209
|
Zhang K, McKinlay C, Hocart CH, Djordjevic MA. The Medicago truncatula small protein proteome and peptidome. J Proteome Res 2007; 5:3355-67. [PMID: 17137337 DOI: 10.1021/pr060336t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small protein and native peptide component of plant tissues is a neglected area of proteomic studies. We have used fractionation techniques for denatured and nondenatured protein preparations combined with 2-D LC tandem mass spectrometry to examine the sequences of small proteins and peptides in four tissues of the model legume, Medicago truncatula: the root tip and root of germinating seedlings, nitrogen fixing nodules, and young leaves. The isolation and fractionation strategies successfully enriched the small protein and native peptide content of the samples. Eighty-one small M. truncatula proteins and native peptides were identified. Most samples were dominated by ribosomal and histone proteins, and leaf samples possessed photosynthesis-related proteins. Secreted proteins such as lipid transfer proteins were common to several tissues. Twenty-four hours after germination, the roots and root tip tissues possessed several "seed-specific" and late-embryogenesis proteins. We conclude that these proteins are present in cells prior to germination and that they are subsequently used as a nutritional source for the young tissues. Native UV absorbing peptides were detected in very low molecular weight fractions and sequenced. Each peptide shared C-terminal residues and showed homology to the seed storage protein legumin. The strategies used here would be suitable for combining bioassays and mass spectrometry to identify bioactive peptides in the M. truncatula peptidome.
Collapse
Affiliation(s)
- Kerong Zhang
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
210
|
Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene. PLANT & CELL PHYSIOLOGY 2006; 47:1591-602. [PMID: 17056620 DOI: 10.1093/pcp/pcl025] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To elucidate the genetic mechanism that regulates meristem maintenance in monocots, here we have examined the function of the gene FLORAL ORGAN NUMBER2 (FON2) in Oryza sativa (rice). Mutations in FON2 cause enlargement of the floral meristem, resulting in an increase in the number of floral organs, although the vegetative and inflorescence meristems are largely normal. Molecular cloning reveals that FON2 encodes a small secreted protein, containing a CLE domain, that is closely related to CLAVATA3 in Arabidopsis thaliana. FON2 transcripts are localized at the apical region in all meristems in the aerial parts of rice plants, showing an expression pattern similar to that of Arabidopsis CLV3. Constitutive expression of FON2 causes a reduction in the number of floral organs and flowers, suggesting that both the flower and inflorescence meristems are reduced in size. This action of FON2 requires the function of FON1, an ortholog of CLV1. Constitutive expression of FON2 also causes premature termination of the shoot apical meristem in Arabidopsis, a phenotype similar to that caused by constitutive expression of CLV3. Together with our previous study of FON1, these results clearly indicate that the FON1-FON2 system in rice corresponds to the CLV signaling system in Arabidopsis and suggest that the negative regulation of stem cell identity by these systems may be principally conserved in a wide range of plants within the Angiosperms. In addition, we propose a model of the genetic regulation of meristem maintenance in rice that includes an alternative pathway independent of FON2-FON1.
Collapse
Affiliation(s)
- Takuya Suzaki
- Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | | | |
Collapse
|
211
|
Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. PLANT PHYSIOLOGY 2006; 142:1039-52. [PMID: 17012407 PMCID: PMC1630730 DOI: 10.1104/pp.106.086736] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely due to enlarged SAMs, fon4 mutants produced thick culms (stems) and increased numbers of both primary rachis branches and floral organs. We identified FON4 using a map-based cloning approach and found it encodes a small putatively secreted protein, which is the putative ortholog of the Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) gene. FON4 transcripts mainly accumulated in the small group of cells at the apex of the SAMs, whereas the rice ortholog of CLV1 (FON1) is expressed throughout the SAMs, suggesting that the putative FON4 ligand might be sequestered as a possible mechanism for rice meristem regulation. Exogenous application of the peptides FON4p and CLV3p corresponding to the CLV3/ESR-related (CLE) motifs of FON4 and CLV3, respectively, resulted in termination of SAMs in rice, and treatment with CLV3p caused consumption of both rice and Arabidopsis root meristems, suggesting that the CLV pathway in limiting meristem size is conserved in both rice and Arabidopsis. However, exogenous FON4p did not have an obvious effect on limiting both rice and Arabidopsis root meristems, suggesting that the CLE motifs of Arabidopsis CLV3 and FON4 are potentially functionally divergent.
Collapse
Affiliation(s)
- Huangwei Chu
- Shanghai Jiaotong University, Shanghai Institutes for Biological Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KLC, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K. The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. THE PLANT CELL 2006; 18:3058-72. [PMID: 17138700 PMCID: PMC1693943 DOI: 10.1105/tpc.106.040790] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The rate and plane of cell division and anisotropic cell growth are critical for plant development and are regulated by diverse mechanisms involving several hormone signaling pathways. Little is known about peptide signaling in plant growth; however, Arabidopsis thaliana POLARIS (PLS), encoding a 36-amino acid peptide, is required for correct root growth and vascular development. Mutational analysis implicates a role for the peptide in hormone responses, but the basis of PLS action is obscure. Using the Arabidopsis root as a model to study PLS action in plant development, we discovered a link between PLS, ethylene signaling, auxin homeostasis, and microtubule cytoskeleton dynamics. Mutation of PLS results in an enhanced ethylene-response phenotype, defective auxin transport and homeostasis, and altered microtubule sensitivity to inhibitors. These defects, along with the short-root phenotype, are suppressed by genetic and pharmacological inhibition of ethylene action. PLS expression is repressed by ethylene and induced by auxin. Our results suggest a mechanism whereby PLS negatively regulates ethylene responses to modulate cell division and expansion via downstream effects on microtubule cytoskeleton dynamics and auxin signaling, thereby influencing root growth and lateral root development. This mechanism involves a regulatory loop of auxin-ethylene interactions.
Collapse
Affiliation(s)
- Paul M Chilley
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K, Pullman GS, Zhang Y, Oh T, Buell CR. Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. PLANT MOLECULAR BIOLOGY 2006; 62:485-501. [PMID: 17001497 DOI: 10.1007/s11103-006-9035-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 06/15/2006] [Indexed: 05/06/2023]
Abstract
The process of embryogenesis in gymnosperms differs in significant ways from the more widely studied process in angiosperms. To further our understanding of embryogenesis in gymnosperms, we have generated Expressed Sequence Tags (ESTs) from four cDNA libraries constructed from un-normalized, normalized, and subtracted RNA populations of zygotic and somatic embryos of loblolly pine (Pinus taeda L.). A total of 68,721 ESTs were generated from 68,131 cDNA clones. Following clustering and assembly, these sequences collapsed into 5,274 contigs and 6,880 singleton sequences for a total of 12,154 non-redundant sequences. Searches of a non-identical amino acid database revealed a putative homolog for 9,189 sequences, leaving 2,965 sequences with no known function. More extensive searches of additional plant sequence data sets revealed a putative homolog for all but 1,388 (11.4%) of the sequences. Using gene ontologies, a known function could be assigned for 5,495 of the 12,154 total non-redundant sequences with 13,633 associations in total assigned. When compared to approximately 72,000 sequences in a collated P. taeda transcript assembly derived from >245,000 ESTs derived from root, xylem, stem, needles, pollen cone, and shoot ESTs, 3,458 (28.5%) of the non-redundant embryo sequences were unique and thereby provide a valuable addition to development of a complete loblolly pine transcriptome. To assess similarities between angiosperm and gymnosperm embryo development, we examined our EST collection for putative homologs of angiosperm genes implicated in embryogenesis. Out of 108 angiosperm embryogenesis-related genes, homologs were present for 83 of these genes suggesting that pine contains similar genes for embryogenesis and that our RNA sampling methods were successful. We also identified sequences from the pine embryo transcriptome that have no known function and may contribute to the programming of gene expression and embryo development.
Collapse
Affiliation(s)
- John Cairney
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500, 10th Street, NW, Atlanta, GA 30332-0620, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Maughan SC, Murray JAH, Bögre L. A greenprint for growth: signalling the pattern of proliferation. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:490-5. [PMID: 16877026 DOI: 10.1016/j.pbi.2006.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
The shoot and root apical meristems (SAM and RAM, respectively) of plants serve both as sites of cell division and as stem cell niches. The SAM is also responsible for the initiation of new leaves, whereas the analogous process of lateral root initiation occurs in the pericycle, a specialized layer of cells that retains organogenic potential within an otherwise non-dividing region of the root. A picture is emerging of how cell division, growth, and differentiation are coordinated in the meristems and lateral organ primordia of plants. This is starting to reveal striking parallels between the control of stem cell maintenance in both shoots and roots, and to provide information on how signalling from developmental processes and the environment impact on cell behaviour within meristems.
Collapse
Affiliation(s)
- Spencer C Maughan
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | | | | |
Collapse
|
215
|
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y. A Plant Peptide Encoded by CLV3 Identified by in Situ MALDI-TOF MS Analysis. Science 2006; 313:845-8. [PMID: 16902141 DOI: 10.1126/science.1128439] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis CLAVATA3 (CLV3) gene encodes a stem cell-specific protein presumed to be a precursor of a secreted peptide hormone. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) applied to in situ Arabidopsis tissues determined the structure of a modified 12-amino acid peptide (MCLV3), which was derived from a conserved motif in the CLV3 sequence. Synthetic MCLV3 induced shoot and root meristem consumption as cells differentiated into other organs, displaying the typical phenotype of transgenic plants overexpressing CLV3. These results suggest that the functional peptide of CLV3 is MCLV3.
Collapse
Affiliation(s)
- Tatsuhiko Kondo
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
216
|
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE Peptides as Suppressors of Plant Stem Cell Differentiation. Science 2006; 313:842-5. [PMID: 16902140 DOI: 10.1126/science.1128436] [Citation(s) in RCA: 454] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10(-11) M and promotes cell division. An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.
Collapse
Affiliation(s)
- Yasuko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
217
|
Fiers M, Golemiec E, van der Schors R, van der Geest L, Li KW, Stiekema WJ, Liu CM. The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences. PLANT PHYSIOLOGY 2006; 141:1284-92. [PMID: 16751438 PMCID: PMC1533954 DOI: 10.1104/pp.106.080671] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
It is believed that CLAVATA3 (CLV3) encodes a peptide ligand that interacts with the CLV1/CLV2 receptor complex to limit the number of stem cells in the shoot apical meristem of Arabidopsis thaliana; however, the exact composition of the functional CLV3 product remains a mystery. A recent study on CLV3 shows that the CLV3/ESR (CLE) motif, together with the adjacent C-terminal sequence, is sufficient to execute CLV3 function when fused behind an N-terminal sequence of ERECTA. Here we show that most of the sequences flanking the CLE motif of CLV3 can be deleted without affecting CLV3 function. Using a liquid culture assay, we demonstrate that CLV3p, a synthetic peptide corresponding to the CLE motif of CLV3, is able to restrict the size of the shoot apical meristem in clv3 seedlings but not in clv1 seedlings. In accordance with this decrease in meristem size, application of CLV3p to in vitro-grown clv3 seedlings restricts the expression of the stem cell-promoting transcription factor WUSCHEL. Thus, we propose that the CLE motif is the functional region of CLV3 and that this region acts independently of its adjacent sequences.
Collapse
Affiliation(s)
- Martijn Fiers
- Plant Research International, Centre for BioSystems Genomics, 6700 AA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
218
|
Avila C, Pérez-Rodríguez J, Cánovas FM. Molecular characterization of a receptor-like protein kinase gene from pine (Pinus sylvestris L.). PLANTA 2006; 224:12-9. [PMID: 16395588 DOI: 10.1007/s00425-005-0184-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 10/20/2005] [Indexed: 05/06/2023]
Abstract
We are developing molecular approaches to study the growth and development of woody plants. As part of our research efforts, we report the molecular cloning and characterization of PsRLK here, a cDNA from the conifer Scots pine (Pinus sylvestris L.) encoding a polypeptide similar to the receptor protein kinases described in angiosperms. A full-length clone was isolated from a cDNA library constructed with poly (A)+ enriched RNA prepared from germinating pine seeds. Characterization of the isolated sequence revealed that it contains multiple leucine-rich repeats in the N-terminal region and a characteristic Ser/Thr protein kinase domain in the C-terminal region. N- and C-terminal conserved domains are separated by a putative membrane spanning sequence. PsRLK protein is encoded by a single gene in the pine genome. A comparison of the pine sequence with the LRR-RLKs from Arabidopsis revealed that PsRLK is phylogenetically related to the LRR XI subfamily members. RT-PCR analyses of transcript abundance in pine tissues suggest that the gene expression pattern of PsRLK reflects the plant body formation programme, with increased levels during development of pine seedlings. The precise localization of PsRLK transcripts revealed that gene expression was restricted to specialized phloem cells suggesting a possible function of the putative receptor-like protein kinase in this particular vascular element.
Collapse
Affiliation(s)
- Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología,Unidad Asociada UMA-CSIC, Campus Universitario de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | | | |
Collapse
|
219
|
Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. THE PLANT CELL 2006; 18:1188-98. [PMID: 16603652 PMCID: PMC1456859 DOI: 10.1105/tpc.105.040444] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana, the stem cell population of the shoot system is controlled by regulatory circuitry involving the WUSCHEL (WUS) and CLAVATA (CLV1-3) genes. WUS signals from the organizing center (OC) to promote stem cell fate at the meristem apex. Stem cells express the secreted peptide CLV3 that activates a signal transduction cascade to restrict WUS expression, thus providing a feedback mechanism. Stem cell homeostasis is proposed to be achieved by balancing these signals. We tested the dynamics of CLV3 signaling using an inducible gene expression system. We show here that increasing the CLV3 signal can very rapidly repress WUS expression during development, which in turn causes a fast reduction of CLV3 expression. We demonstrate that increased CLV3 signaling restricts meristem growth and promotes allocation of peripheral meristem cells into organ primordia. In addition, we extend the current model for stem cell control by showing that meristem homeostasis tolerates variation in CLV3 levels over a 10-fold range and that high-level CLV3 signaling can be partially compensated with time, indicating that the level of CLV3 expression communicates only limited information on stem cell number to the underlying OC cells.
Collapse
Affiliation(s)
- Ralf Müller
- Institut für Genetik der Heinrich-Heine Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
220
|
Strabala TJ, O'donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, Netzler N, Nieuwenhuizen NJ, Quinn BD, Foote HCC, Hudson KR. Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. PLANT PHYSIOLOGY 2006; 140:1331-44. [PMID: 16489133 PMCID: PMC1435808 DOI: 10.1104/pp.105.075515] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Secreted peptide ligands are known to play key roles in the regulation of plant growth, development, and environmental responses. However, phenotypes for surprisingly few such genes have been identified via loss-of-function mutant screens. To begin to understand the processes regulated by the CLAVATA3 (CLV3)/ESR (CLE) ligand gene family, we took a systems approach to gene identification and gain-of-function phenotype screens in transgenic plants. We identified four new CLE family members in the Arabidopsis (Arabidopsis thaliana) genome sequence and determined their relative transcript levels in various organs. Overexpression of CLV3 and the 17 CLE genes we tested resulted in premature mortality and/or developmental timing delays in transgenic Arabidopsis plants. Overexpression of 10 CLE genes and the CLV3 positive control resulted in arrest of growth from the shoot apical meristem (SAM). Overexpression of nearly all the CLE genes and CLV3 resulted in either inhibition or stimulation of root growth. CLE4 expression reversed the SAM proliferation phenotype of a clv3 mutant to one of SAM arrest. Dwarf plants resulted from overexpression of five CLE genes. Overexpression of new family members CLE42 and CLE44 resulted in distinctive shrub-like dwarf plants lacking apical dominance. Our results indicate the capacity for functional redundancy of many of the CLE ligands. Additionally, overexpression phenotypes of various CLE family members suggest roles in organ size regulation, apical dominance, and root growth. Similarities among overexpression phenotypes of many CLE genes correlate with similarities in their CLE domain sequences, suggesting that the CLE domain is responsible for interaction with cognate receptors.
Collapse
|
221
|
Veit B. Stem cell signalling networks in plants. PLANT MOLECULAR BIOLOGY 2006; 60:793-810. [PMID: 16724253 DOI: 10.1007/s11103-006-0033-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 02/23/2006] [Indexed: 05/09/2023]
Abstract
The essential nature of meristematic tissues is addressed with reference to conceptual frameworks that have been developed to explain the behaviour of animal stem cells. Comparisons are made between different types of plant meristems with the objective of highlighting common themes that might illuminate underlying mechanisms. A more in depth comparison of the root and shoot apical meristems is made which suggests a common mechanism for maintaining stem cells. The relevance of organogenesis to stem cell maintenance is discussed, along with the nature of underlying mechanisms which help ensure that stem cell production is balanced with the depletion of cells through differentiation. Mechanisms that integrate stem cell behaviour in the whole plant are considered, with a focus on the roles of auxin and cytokinin. The review concludes with a brief discussion of epigenetic mechanisms that act to stabilise and maintain stem cell populations.
Collapse
Affiliation(s)
- Bruce Veit
- Plant Breeding and Genomics, AgResearch Ltd, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
222
|
Ni J, Clark SE. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. PLANT PHYSIOLOGY 2006; 140:726-33. [PMID: 16407446 PMCID: PMC1361338 DOI: 10.1104/pp.105.072678] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) is hypothesized to act as a ligand for the CLV1 receptor kinase in the regulation of stem cell specification at shoot and flower meristems. CLV3 is a secreted protein, with an amino-terminal signal sequence and a conserved C-terminal domain of 15 amino acids, termed the CLE (CLV3/ESR-related) domain, based on its similarity to a largely unstudied protein family broadly present in land plants. We have tested the function of 13 Arabidopsis CLEs in vivo and found a significant variability in the ability of CLEs to replace CLV3, ranging from complete to no complementation. The best rescuing CLE depends on CLV1 for function, while other CLEs act independently of CLV1. Domain-swap experiments indicate that differences in function can be traced to the CLE domain within these proteins. Indeed, when the CLE domain of CLV3 is placed downstream of an unrelated signal sequence, it is capable of fully replacing CLV3 function. Finally, we have detected proteolytic activity in extracts from cauliflower (Brassica oleracea) that process both CLV3 and CLE1 at their C termini. For CLV3, processing appears to occur at the absolutely conserved arginine-70 found at the beginning of the CLE domain. We propose that CLV3 and other CLEs are C-terminally processed to generate an active CLE peptide.
Collapse
Affiliation(s)
- Jun Ni
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
223
|
Hardtke CS. Root development--branching into novel spheres. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:66-71. [PMID: 16324881 DOI: 10.1016/j.pbi.2005.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/21/2005] [Indexed: 05/05/2023]
Abstract
Recent progress in deciphering the genetics of Arabidopsis root development has been driven by the availability of novel molecular tools. For instance, combining enhancer trap lines and microarray analyses enabled the creation of an expression map for over 22000 genes at cellular resolution. Such expression profiles often suggest redundant action of homologous genes, which has indeed been observed for several pivotal factors that are required for the organization and maintenance of root meristems. Additional regulators of root development are also being identified by analysis of natural genetic variation. Moreover, microRNA control of gene expression has recently been implicated in root development, and progress has been made in understanding the interplay between environmental and genetic factors in root branching.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
224
|
Germain H, Chevalier E, Matton DP. Plant bioactive peptides: an expanding class of signaling molecules. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-162] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, our knowledge of intercellular signaling in plants was limited to the so-called five classical plant hormones: auxin, cytokinin, gibberellin, ethylene, and abscissic acid. Other chemical compounds like sterols and lipids have also been recognized as signaling molecules in plants, but it was only recently discovered that peptides in plants, as in animal cells, play crucial roles in various aspects of growth and development, biotic and abiotic stress responses, and self/non-self recognition in sporophytic self-incompatibility. These peptides are often part of a very large gene family whose members show diverse, sometime overlapping spatial and temporal expression patterns, allowing them to regulate different aspects of plant growth and development. Only a handful of peptides have been linked to a bona fide receptor, thereby activating a cascade of events. Since these peptides have been thoroughly reviewed in the past few years, this review will focus on the small putative plant signaling peptides, some often disregarded in the plant peptide literature, which have been shown through biochemical or genetic studies to play important roles in plants.
Collapse
Affiliation(s)
- Hugo Germain
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101, rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Eric Chevalier
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101, rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Daniel P. Matton
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101, rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
225
|
Abstract
In recent years, numerous biochemical and genetic studies have demonstrated that peptide signaling plays a greater than anticipated role in various aspects of plant growth and development. A substantial proportion of these peptides are secretory and act as local signals mediating cell-to-cell communication. Specific receptors for several peptides were identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. These findings illustrate the importance of peptide signaling in the regulation of plant growth, functions that were previously ascribed to the combined action of small lipophilic compounds referred to as "traditional plant hormones." Here, we outline recent advances in the current understanding of biologically active peptides in plants, currently regarded as a new class of plant hormones.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601 Japan.
| | | |
Collapse
|