201
|
Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 2011; 31:118-28. [PMID: 22198202 DOI: 10.1016/j.biotechadv.2011.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022]
Abstract
Plant stress tolerance depends on many factors among which signaling by mitogen-activated protein-kinase (MAPK) modules plays a crucial role. Reversible phosphorylation of MAPKs, their upstream activators and downstream targets such as transcription factors can trigger a myriad of transcriptomic, cellular and physiological responses. Genetic manipulation of abundance and/or activity of some of these modular MAPK components can lead to better stress tolerance in Arabidopsis and crop plant species such as tobacco and cereals. The main focus of this review is devoted to the MAPK-related signaling components which show the most promising biotechnological potential. Additionally, recent studies identified MAPK components to be involved both in plant development as well as in stress responses, suggesting that these processes are tightly linked in plants.
Collapse
Affiliation(s)
- Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
202
|
Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). PLANT MOLECULAR BIOLOGY 2011; 77:577-90. [PMID: 22002747 PMCID: PMC3215867 DOI: 10.1007/s11103-011-9832-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/23/2011] [Indexed: 05/19/2023]
Abstract
Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.
Collapse
Affiliation(s)
- Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Raimund Nagel
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Trygve Krekling
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Paal Krokene
- Norwegian Forest and Landscape Institute, Pb 115, 1431 Ås, Norway
| |
Collapse
|
203
|
Méndez-Bravo A, Calderón-Vázquez C, Ibarra-Laclette E, Raya-González J, Ramírez-Chávez E, Molina-Torres J, Guevara-García AA, López-Bucio J, Herrera-Estrella L. Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. PLoS One 2011; 6:e27251. [PMID: 22076141 PMCID: PMC3208606 DOI: 10.1371/journal.pone.0027251] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Alkamides are fatty acid amides of wide distribution in plants, structurally related to N-acyl-L-homoserine lactones (AHLs) from Gram-negative bacteria and to N- acylethanolamines (NAEs) from plants and mammals. Global analysis of gene expression changes in Arabidopsis thaliana in response to N-isobutyl decanamide, the most highly active alkamide identified to date, revealed an overrepresentation of defense-responsive transcriptional networks. In particular, genes encoding enzymes for jasmonic acid (JA) biosynthesis increased their expression, which occurred in parallel with JA, nitric oxide (NO) and H₂O₂ accumulation. The activity of the alkamide to confer resistance against the necrotizing fungus Botrytis cinerea was tested by inoculating Arabidopsis detached leaves with conidiospores and evaluating disease symptoms and fungal proliferation. N-isobutyl decanamide application significantly reduced necrosis caused by the pathogen and inhibited fungal proliferation. Arabidopsis mutants jar1 and coi1 altered in JA signaling and a MAP kinase mutant (mpk6), unlike salicylic acid- (SA) related mutant eds16/sid2-1, were unable to defend from fungal attack even when N-isobutyl decanamide was supplied, indicating that alkamides could modulate some necrotrophic-associated defense responses through JA-dependent and MPK6-regulated signaling pathways. Our results suggest a role of alkamides in plant immunity induction.
Collapse
Affiliation(s)
- Alfonso Méndez-Bravo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Irapuato, Guanajuato, México
| | - Carlos Calderón-Vázquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Irapuato, Guanajuato, México
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-IPN, Guasave, Sinaloa, México
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Irapuato, Guanajuato, México
| | - Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Enrique Ramírez-Chávez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Cinvestav, Irapuato, Guanajuato, México
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Cinvestav, Irapuato, Guanajuato, México
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
204
|
Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:583-96. [PMID: 21831212 DOI: 10.1111/j.1365-313x.2011.04709.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H(2)O(2) biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H(2)O(2) pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects.
Collapse
Affiliation(s)
- Jing Lu
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Liu JZ, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu WL, Lee Y, Nettleton D, Hill JH, Whitham SA. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. PLANT PHYSIOLOGY 2011; 157:1363-78. [PMID: 21878550 PMCID: PMC3252160 DOI: 10.1104/pp.111.185686] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/25/2011] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Steven A. Whitham
- Department of Plant Pathology (J.-Z.L., H.D.H., E.B., C.Z., W.-L.Q., Y.L., J.H.H., S.A.W.), Department of Agronomy (M.A.G.), and Department of Statistics (D.N.), Iowa State University, Ames, Iowa 50011; Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Ames, Iowa 50011 (M.A.G.); United States Department of Agriculture-Agricultural Research Service, Department of Plant Pathology, Washington State University, Prosser, Washington 99350 (D.N.)
| |
Collapse
|
206
|
Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1291-303. [PMID: 21477122 DOI: 10.1111/j.1365-3040.2011.02329.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are signalling modules that transduce extracellular signalling to a range of cellular responses. Plant MAPK cascades have been implicated in development and stress response. In this study, we isolated a novel group C MAPKK gene, ZmMKK4, from maize. Northern blotting analysis revealed that the ZmMKK4 transcript expression was up-regulated by cold, high salt and exogenous H(2)O(2,) but down-regulated by exogenous abscisic acid (ABA). Over-expression of ZmMKK4 in Arabidopsis conferred tolerance to cold and salt stresses by increased germination rate, lateral root numbers, plant survival rate, chlorophyll, proline and soluble sugar contents, and antioxidant enzyme [peroxidase (POD), catalase (CAT)] activities compared with control plants. Furthermore, ZmMKK4 enhanced a 37 kDa kinase activity after cold and salt stresses. RT-PCR analysis revealed that the transcript levels of stress-responsive transcription factors and functional genes were higher in ZmMKK4-over-expressing plants than in control plants. In addition, ZmMKK4 protein is localized in the nucleus. Taken together, these results indicate that ZmMKK4 is a positive regulator of salt and cold tolerance in plants.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Bonaventure G, Baldwin IT. Transduction of wound and herbivory signals in plastids. Commun Integr Biol 2011; 3:313-7. [PMID: 20798815 DOI: 10.4161/cib.3.4.11834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/19/2010] [Accepted: 03/21/2010] [Indexed: 01/27/2023] Open
Abstract
Plastids are the central orchestrators of the early and late responses to wounding and herbivory in plants. This organelle houses some of the most important enzymes involved in the biogenesis of intra and extracellular signals that mediate defense responses against these stresses. Among these enzymes are the ones initiating the biosynthesis of oxylipins [e.g., jasmonic acid (JA) and C(6) volatiles], terpenoid volatiles and phenolic compounds, including both volatile [e.g., methylsalicylate (MeSA)] and non-volatile compounds [e.g., salicylic acid (SA)]. Plastids also play a major role in orchestrating changes in primary metabolism during herbivory and thereby in the reallocation of carbon and nitrogen to different functions in response to herbivory. How the primary stress signals generated by mechanical damage and herbivory reach the plastid to activate the rapid synthesis of these signal molecules is at present largely unknown.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Department of Molecular Ecology; Max Planck Institute for Chemical Ecology; Jena, Germany
| | | |
Collapse
|
208
|
Hu J, Zhou J, Peng X, Xu H, Liu C, Du B, Yuan H, Zhu L, He G. The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. PLANT PHYSIOLOGY 2011; 156:856-72. [PMID: 21487048 PMCID: PMC3177281 DOI: 10.1104/pp.111.174334] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/08/2011] [Indexed: 05/03/2023]
Abstract
We examined ways in which the Brown planthopper induced008a (Bphi008a; AY256682) gene of rice (Oryza sativa) enhances the plant's resistance to a specialist herbivore, the brown planthopper (BPH; Nilaparvata lugens). Measurement of the expression levels of ethylene synthases and of ethylene emissions showed that BPH feeding rapidly initiated the ethylene signaling pathway and up-regulated Bphi008a transcript levels after 6 to 96 h of feeding. In contrast, blocking ethylene transduction (using 1-methylcyclopropene) reduced Bphi008a transcript levels in wild-type plants fed upon by BPH. In vitro kinase assays showed that Bphi008a can be phosphorylated by rice Mitogen-activated Protein Kinase5 (OsMPK5), and yeast two-hybrid assays demonstrated that the carboxyl-terminal proline-rich region of Bphi008a interacts directly with this kinase. Furthermore, bimolecular fluorescence complementation assays showed that this interaction occurs in the nucleus. Subsequently, we found that Bphi008a up-regulation and down-regulation were accompanied by different changes in transcription levels of OsMPK5, OsMPK12, OsMPK13, and OsMPK17 in transgenic plants. Immunoblot analysis also showed that the OsMPK5 protein level increased in overexpressing plants and decreased in RNA interference plants after BPH feeding. In transgenic lines, changes in the expression levels of several enzymes that are important components of the defenses against the BPH were also observed. Finally, yeast two-hybrid screening results showed that Bphi008a is able to interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China (J.H., J.Z., X.P., H.X., C.L., B.D., L.Z., G.H.); College of Life Sciences, Xinyang Normal University, Xinyang 464000, People’s Republic of China (H.Y.)
| |
Collapse
|
209
|
Wang P, Du Y, Song CP. Phosphorylation by MPK6: a conserved transcriptional modification mediates nitrate reductase activation and NO production? PLANT SIGNALING & BEHAVIOR 2011; 6:889-91. [PMID: 21593598 PMCID: PMC3218497 DOI: 10.4161/psb.6.6.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitrate reductase is a central enzyme of nitrogen assimilation in plants. In a recent work, we have revealed MPK6 could phosphorylate Arabidopsis NIA2 at the serine 627 in hinge 2 region, this phosporylation may represent a rapid activation mechnism when plant need excessive nitrate reduction. Interestingly, all eukaryotic NRs have conserved docking sequence in their FAD domains, and many plant NR proteins have the conserved MAPK phosphorylation site. Those results indicated the MAPK cascades, the conserved signaling pathway also involved in lateral root development, mediated of NR phosporylation and NO generation. We noticed that the phosphorylation of S627 residue by MPK6 have a specially influence on the NO generation activity of NIA2. Although no homology of mammalian NOS has been identified in plants, NR may still share a similar regulation mechanism with mammalian NOS.
Collapse
Affiliation(s)
- Pengcheng Wang
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng, China
| | | | | |
Collapse
|
210
|
Bonaventure G, VanDoorn A, Baldwin IT. Herbivore-associated elicitors: FAC signaling and metabolism. TRENDS IN PLANT SCIENCE 2011; 16:294-9. [PMID: 21354852 DOI: 10.1016/j.tplants.2011.01.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/13/2010] [Accepted: 01/31/2011] [Indexed: 05/19/2023]
Abstract
The recognition of insect and pathogen attack requires the plant's ability to perceive chemical cues generated by the attacker. In contrast to the recognition of microbe-associated molecular patterns and effectors, little is known about the molecular recognition of herbivore-associated elicitors (HAEs) and the signaling mechanisms operating in plants after their perception. HAE perception depends strongly on the natural history of both plants and insects and it is therefore expected that many of the responses induced by different HAEs are specific to the species involved in the interaction. The interaction between Nicotiana attenuata and the specialist lepidopteran Manduca sexta presents a relevant biological system to understand HAE perception and signal transduction systems in plants.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans-Knoell-Str. 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
211
|
De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill JD, Goossens A. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:1053-65. [PMID: 21418355 DOI: 10.1111/j.1365-313x.2011.04566.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Transcription factors of the plant-specific apetala2/ethylene response factor (AP2/ERF) family control plant secondary metabolism, often as part of signalling cascades induced by jasmonate (JA) or other elicitors. Here, we functionally characterized the JA-inducible tobacco (Nicotiana tabacum) AP2/ERF factor ORC1, one of the members of the NIC2-locus ERFs that control nicotine biosynthesis and a close homologue of ORCA3, a transcriptional activator of alkaloid biosynthesis in Catharanthus roseus. ORC1 positively regulated the transcription of several structural genes coding for the enzymes involved in nicotine biosynthesis. Accordingly, overexpression of ORC1 was sufficient to stimulate alkaloid biosynthesis in tobacco plants and tree tobacco (Nicotiana glauca) root cultures. In contrast to ORCA3 in C. roseus, which needs only the GCC motif in the promoters of the alkaloid synthesis genes to induce their expression, ORC1 required the presence of both GCC-motif and G-box elements in the promoters of the tobacco nicotine biosynthesis genes for maximum transactivation. Correspondingly, combined application with the JA-inducible Nicotiana basic helix-loop-helix (bHLH) factors that bind the G-box element in these promoters enhanced ORC1 action. Conversely, overaccumulation of JAZ repressor proteins that block bHLH activity reduced ORC1 functionality. Finally, the activity of both ORC1 and bHLH proteins was post-translationally upregulated by a JA-modulated phosphorylation cascade, in which a specific mitogen-activated protein kinase kinase, JA-factor stimulating MAPKK1 (JAM1), was identified. This study highlights the complexity of the molecular machinery involved in the regulation of tobacco alkaloid biosynthesis and provides mechanistic insights about its transcriptional regulators.
Collapse
Affiliation(s)
- Kathleen De Boer
- School of Biological Sciences, Monash University, Melbourne, Vic. 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 2011; 41:649-60. [PMID: 21419340 DOI: 10.1016/j.molcel.2011.02.029] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/10/2010] [Accepted: 02/24/2011] [Indexed: 12/21/2022]
Abstract
Rapid recognition and signal transduction of mechanical wounding through various signaling molecules, including calcium (Ca²+), protein phosphorylation, and reactive oxygen species (ROS), are necessary early events leading to stress resistance in plants. Here we report that an Arabidopsis mitogen-activated protein kinase 8 (MPK8) connects protein phosphorylation, Ca²+, and ROS in the wound-signaling pathway. MPK8 is activated through mechanical wounding, and this activation requires direct binding of calmodulins (CaMs) in a Ca²+-dependent manner. MPK8 is also phosphorylated and activated by a MAPKK MKK3 in the prototypic kinase cascade, and full activation of MPK8 needs both CaMs and MKK3 in planta. The MPK8 pathway negatively regulates ROS accumulation through controlling expression of the Rboh D gene. These findings suggest that two major activation modes in eukaryotes, Ca²+/CaMs and the MAP kinase phosphorylation cascade, converge at MPK8 to monitor or maintain an essential part of ROS homeostasis.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|
213
|
van Verk MC, Bol JF, Linthorst HJM. Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC PLANT BIOLOGY 2011; 11:88. [PMID: 21595873 PMCID: PMC3125348 DOI: 10.1186/1471-2229-11-88] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/19/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND In order to comprehend the mechanisms of induced plant defense, knowledge of the biosynthesis and signaling pathways mediated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) is essential. Potentially, many transcription factors could be involved in the regulation of these pathways, although finding them is a difficult endeavor. Here we report the use of publicly available Arabidopsis microarray datasets to generate gene co-expression networks. RESULTS Using 372 publicly available microarray data sets, a network was constructed in which Arabidopsis genes for known components of SA, JA and ET pathways together with the genes of over 1400 transcription factors were assayed for co-expression. After determining the Pearson Correlation Coefficient cutoff to obtain the most probable biologically relevant co-expressed genes, the resulting network confirmed the presence of many genes previously reported in literature to be relevant for stress responses and connections that fit current models of stress gene regulation, indicating the potential of our approach. In addition, the derived network suggested new candidate genes and associations that are potentially interesting for future research to further unravel their involvement in responses to stress. CONCLUSIONS In this study large sets of stress related microarrays were used to reveal co-expression networks of transcription factors and signaling pathway components. These networks will benefit further characterization of the signal transduction pathways involved in plant defense.
Collapse
Affiliation(s)
- Marcel C van Verk
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - John F Bol
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Huub JM Linthorst
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
214
|
Plant mitogen-activated protein kinases and their roles in mediation of signal transduction in abiotic stresses. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-011-1072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
215
|
Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 2011; 108:5891-6. [PMID: 21436041 PMCID: PMC3078376 DOI: 10.1073/pnas.1103010108] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense.
Collapse
Affiliation(s)
- Petri Lackman
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | - Miguel González-Guzmán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Sofie Tilleman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Inês Carqueijeiro
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
- Instituto de Biologia Molecular e Celular and Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4150-180 Porto, Portugal
| | - Amparo Cuéllar Pérez
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Tessa Moses
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
- Department of Molecular Microbiology, VIB, B-3001 Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Belgium; and
| | - Mitsunori Seo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Kanno
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Suvi T. Häkkinen
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | | | - Johan M. Thevelein
- Department of Molecular Microbiology, VIB, B-3001 Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Belgium; and
| | - Hannu Maaheimo
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | | | - Pedro L. Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Heiko Rischer
- VTTTechnical Research Center of Finland, FIN-02044 VTT, Espoo, Finland
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
216
|
Forzani C, Carreri A, de la Fuente van Bentem S, Lecourieux D, Lecourieux F, Hirt H. The Arabidopsis protein kinase Pto-interacting 1-4 is a common target of the oxidative signal-inducible 1 and mitogen-activated protein kinases. FEBS J 2011; 278:1126-36. [PMID: 21276203 DOI: 10.1111/j.1742-4658.2011.08033.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Arabidopsis thaliana, the serine/threonine protein kinase oxidative signal-inducible 1 (OXI1), mediates oxidative stress signalling. Its activity is required for full activation of the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, in response to oxidative stress. In addition, the serine/threonine protein kinase Pto-interacting 1-2 (PTI1-2) has been positioned downstream from OXI1, but whether PTI1-2 signals through MAPK cascades is unclear. Using a yeast two-hybrid screen we show that OXI1 also interacts with PTI1-4. OXI1 and PTI1-4 are stress-responsive genes and are expressed in the same tissues. Therefore, studies were undertaken to determine whether PTI1-4 is positioned in the OXI1/MAPK signalling pathway. The interaction between OXI1 and PTI1-4 was confirmed by using in vivo co-immunoprecipitation experiments. OXI1 and PTI1-4 were substrates of MPK3 and MPK6 in vitro. Although no direct interaction was detected between OXI1 and MPK3 or MPK6, in vitro binding studies showed interactions between MPK3 or MPK6 with PTI1-4. In addition, PTI1-4 and MPK6 were found in vivo in the same protein complex. These results demonstrate that PTI1-4 signals via OXI1 and MPK6 signalling cascades.
Collapse
|
217
|
Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. PLANT SIGNALING & BEHAVIOR 2011; 6:196-203. [PMID: 21512321 PMCID: PMC3121978 DOI: 10.4161/psb.6.2.14701] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/30/2010] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.
Collapse
Affiliation(s)
- Alok Krishna Sinha
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Monika Jaggi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
218
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
219
|
Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. PLANT & CELL PHYSIOLOGY 2011; 52:14-29. [PMID: 20965998 PMCID: PMC3023851 DOI: 10.1093/pcp/pcq157] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/13/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, the CLAVATA (CLV) pathway operates in the regulation of the size of the stem cell population in the shoot apical meristem (SAM). CLV3 functions as a small peptide ligand to negatively regulate the expression of the WUSCHEL (WUS) transcription factor through three major receptor kinase complexes of CLV1, CLV2-SUPPRESSOR OF LLP1-2 (SOL2)/CORYNE (CRN) and recently identified RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2)/TOADSTOOL 2 (TOAD2). Aiming to understand the precise molecular details of CLV3 signaling, we investigated the contribution of phospho-signaling, potentially regulated by these kinase complexes, to the CLV pathway. We detected CLV3-triggered CLV1 phosphorylation, which is also conditioned by the rest of the CLV receptors, presumably by their direct association. Our comprehensive analysis of the activities of the respective CLV receptors on mitogen-activated protein kinases (MAPKs) suggested that the precise balanced regulation of MAPK activity by the CLV receptors is likely to be key for SAM homeostasis.
Collapse
Affiliation(s)
- Shigeyuki Betsuyaku
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
220
|
Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 188:762-73. [PMID: 20796215 DOI: 10.1111/j.1469-8137.2010.03422.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Phospholipase D (PLD) hydrolyzes phospholipids to produce phosphatidic acid (PA) and a head group, and is involved in the response to various environmental stresses, including salinity. Here, we determined the roles of PLDα and PA in the mediation of salt (NaCl)-stress signaling through the regulation of mitogen-activated protein kinase (MAPK or MPK) in Arabidopsis thaliana. • NaCl-induced changes in the content and composition of PA were quantitatively profiled by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). A specific PA species (a MAPK 16:0-18:2 PA), which was increased in abundance by exposure to NaCl, bound to a MPK6, according to filter binding and ELISA. The effect of PA on MPK6 activity was tested using in-gel analysis. • 16:0-18:2 PA stimulated the activity of MPK6 immunoprecipitated from Arabidopsis leaf extracts. Treatment with NaCl induced a transient activation of MPK6 in wild-type plant, but the activation was abolished in the pldα1 plant mutant. A plasma membrane Na(+)/H(+) antiporter (SOS1) was identified as a downstream target of MPK6. MPK6 phosphorylated the C-terminal fragment of SOS1. The MPK6 phosphorylation of SOS1 was stimulated by treatment with NaCl, as well as directly by PA. • These results suggest that PA plays a critical role in coupling MAPK cascades in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Yu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. PLANT PHYSIOLOGY 2010; 154:1403-14. [PMID: 20810545 PMCID: PMC2971616 DOI: 10.1104/pp.110.161497] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 08/30/2010] [Indexed: 05/17/2023]
Abstract
As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.
Collapse
|
222
|
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. PLANT SIGNALING & BEHAVIOR 2010; 5:1370-8. [PMID: 20980831 PMCID: PMC3115236 DOI: 10.4161/psb.5.11.13020] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades play diverse roles in intra- and extra-cellular signaling in plants. MAP kinases are the component of kinase modules which transfer information from sensors to responses in eukaryotes including plants. They play a pivotal role in transduction of diverse extracellular stimuli such as biotic and abiotic stresses as well as a range of developmental responses including differentiation, proliferation and death. Several cascades are induced by different biotic and abiotic stress stimuli such as pathogen infections, heavy metal, wounding, high and low temperatures, high salinity, UV radiation, ozone, reactive oxygen species, drought and high or low osmolarity. MAPK signaling has been implicated in biotic stresses and has also been associated with hormonal responses. The cascade is regulated by various mechanisms, including not only transcriptional and translational regulation but through post-transcriptional regulation such as protein-protein interactions. Recent detailed analysis of certain specific MAP kinase pathways have revealed the specificity of the kinases in the cascade, signal transduction patterns, identity of pathway targets and the complexity of the cascade. The latest insights and finding are discussed in this paper in relation to the role of MAPK pathway modules in plant stress signaling.
Collapse
Affiliation(s)
- Gohar Taj
- Molecular Biology and Genetic Engineering, College of Basic Science and Humanities, G.B. Pant University of Agriculture & Technology, Uttrakhand, Uttrangal, India.
| | | | | | | |
Collapse
|
223
|
Wang P, Du Y, Li Y, Ren D, Song CP. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. THE PLANT CELL 2010; 22:2981-98. [PMID: 20870959 PMCID: PMC2965546 DOI: 10.1105/tpc.109.072959] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 08/26/2010] [Accepted: 09/10/2010] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological and developmental processes in plants, including lateral root development. In this study, we used biochemical and genetic approaches to analyze the function of Arabidopsis thaliana mitogen-activated protein kinase 6 (MPK6) in the regulation of NO synthesis in response to hydrogen peroxide (H₂O₂) during lateral root development. In both mpk6 mutants studied, H₂O₂-induced NO synthesis and nitrate reductase (NR) activity were decreased dramatically. Furthermore, one NR isoform, NIA2, was required for the MPK6-mediated production of NO induced by H₂O₂. Notably, NIA2 interacted physically with MPK6 in vitro and in vivo and also served as a substrate of MPK6. Phosphorylation of NIA2 by MPK6 led to an increase in NR activity, and Ser-627 was identified as the putative phosphorylation site on NIA2. Phenotypical analysis revealed that mpk6-2 and mpk6-3 seedlings produce more and longer lateral roots than wild-type plants did after application of the NO donor sodium nitroprusside or H₂O₂. These data support strongly a function of MPK6 in modulating NO production and signal transduction in response to H₂O₂ during Arabidopsis root development.
Collapse
Affiliation(s)
- Pengcheng Wang
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yanyan Du
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
224
|
Organogenic nodule formation in hop: a tool to study morphogenesis in plants with biotechnological and medicinal applications. J Biomed Biotechnol 2010; 2010. [PMID: 20811599 PMCID: PMC2929504 DOI: 10.1155/2010/583691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites.
Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications.
Collapse
|
225
|
Sato M, Tsuda K, Wang L, Coller J, Watanabe Y, Glazebrook J, Katagiri F. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling. PLoS Pathog 2010; 6:e1001011. [PMID: 20661428 PMCID: PMC2908620 DOI: 10.1371/journal.ppat.1001011] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/18/2010] [Indexed: 12/17/2022] Open
Abstract
Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. When a plant detects pathogen attack, this information is conveyed through a molecular signaling network to turn on a large variety of immune responses. We investigated how this plant immune signaling network was organized using the model plant Arabidopsis. Wild type and mutant plants with defects in immune signaling were challenged with a pathogen. Then, expression levels of many genes were measured using microarrays. Detailed analysis of the mutation effects on gene expression allowed us to build a signaling network model composed of the genes corresponding to the mutations. This model predicted that the network components are highly interconnected and that it is very common for network components that mediate different signaling events to inhibit each other. The prevalent signaling inhibitions in the network suggest that only part of the signaling network is usually used but that if this part is attacked by pathogens, other parts kick in and back up the function of the attacked part. We speculate that plant immune signaling is highly tolerant to pathogen attack due to this backup mechanism. We also speculate use of only part of the network at any one time helps minimize negative impacts of the immune response on plant fitness.
Collapse
Affiliation(s)
- Masanao Sato
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kenichi Tsuda
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Lin Wang
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - John Coller
- Stanford Functional Genomics Facility, Stanford, California, United States of America
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Jane Glazebrook
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Fumiaki Katagiri
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
226
|
Hoehenwarter W, Chen Y, Recuenco-Munoz L, Wienkoop S, Weckwerth W. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics. Amino Acids 2010; 41:329-41. [PMID: 20602127 DOI: 10.1007/s00726-010-0669-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 06/16/2010] [Indexed: 12/16/2022]
Abstract
Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.
Collapse
Affiliation(s)
- Wolfgang Hoehenwarter
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | | | | | | | | |
Collapse
|
227
|
Abstract
Production of reactive oxygen species (ROS) is a hallmark of successful recognition of infection and activation of plant defenses. ROS play multifaceted signaling functions mediating the establishment of multiple responses and can act as local toxins. Controversy surrounds the origin of these ROS. Several enzymatic mechanisms, among them a plasma membrane NADPH oxidase and cell wall peroxidases, can be responsible for the ROS detected in the apoplast. However, high levels of ROS from metabolic origins and/or from downregulation of ROS-scavenging systems can also accumulate in different compartments of the plant cell. This compartmentalization could contribute to the specific functions attributed to ROS. Additionally, ROS interact with other signals and phytohormones, which could explain the variety of different scenarios where ROS signaling plays an important part. Interestingly, pathogens have developed ways to alter ROS accumulation or signaling to modify plant defenses. Although ROS have been mainly associated with pathogen attack, ROS are also detected in other biotic interactions including beneficial symbiotic interactions with bacteria or mycorrhiza, suggesting that ROS production is a common feature of different biotic interactions. Here, we present a comprehensive review describing the newer views in ROS signaling and function during biotic stress.
Collapse
Affiliation(s)
- Miguel Angel Torres
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
228
|
Abstract
Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS.
Collapse
Affiliation(s)
- Pinja Jaspers
- Department of Biological and Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| | | |
Collapse
|
229
|
Bonaventure G, Baldwin IT. New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves. PLANT SIGNALING & BEHAVIOR 2010; 5:287-9. [PMID: 20037473 PMCID: PMC2881280 DOI: 10.4161/psb.5.3.10713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 05/18/2023]
Abstract
In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany.
| | | |
Collapse
|
230
|
Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus. TRENDS IN PLANT SCIENCE 2010; 15:106-13. [PMID: 20047850 DOI: 10.1016/j.tplants.2009.12.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/01/2009] [Accepted: 12/07/2009] [Indexed: 05/04/2023]
Abstract
Although mitogen-activated protein kinase (MAPK) signal transduction cascades are known regulators of various aspects of plant biology, our knowledge of these systems has been largely restricted to a small subset of the MAPKs. However, global analyses are now revealing that many more of these kinases are probably engaged in modulating developmental and fitness adaptation processes in the plant kingdom. In this review, we show how these new findings are beginning to define the overall architecture of plant MAPK signaling, with a particular focus on the interplay between the terminal MPKs and their activators, inactivators and cellular targets.
Collapse
Affiliation(s)
- Erik Andreasson
- Department of Cell and Organism Biology, Lund University, SE-223 62 Lund, Sweden
| | | |
Collapse
|
231
|
Kallenbach M, Alagna F, Baldwin IT, Bonaventure G. Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. PLANT PHYSIOLOGY 2010; 152:96-106. [PMID: 19897603 PMCID: PMC2799349 DOI: 10.1104/pp.109.149013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/03/2009] [Indexed: 05/18/2023]
Abstract
Wounding and herbivore attack elicit the rapid (within minutes) accumulation of jasmonic acid (JA) that results from the activation of previously synthesized biosynthetic enzymes. Recently, several regulatory factors that affect JA production have been identified; however, how these regulators affect JA biosynthesis remains at present unknown. Here we demonstrate that Nicotiana attenuata salicylate-induced protein kinase (SIPK), wound-induced protein kinase (WIPK), nonexpressor of PR-1 (NPR1), and the insect elicitor N-linolenoyl-glutamate [corrected] (18:3-Glu) participate in mechanisms affecting early enzymatic steps of the JA biosynthesis pathway. Plants silenced in the expression of SIPK and NPR1 were affected in the initial accumulation of 13-hydroperoxy-linolenic acid (13-OOH-18:3) after wounding and 18:3-Glu elicitation by mechanisms independent of changes in 13-lipoxygenase activity. Moreover, 18:3-Glu elicited an enhanced and rapid accumulation of 13-OOH-18:3 that depended partially on SIPK and NPR1 but was independent of increased 13-lipoxygenase activity. Together, the results suggested that substrate supply for JA production was altered by 18:3-Glu elicitation and SIPK- and NPR1-mediated mechanisms. Consistent with a regulation at the level of substrate supply, we demonstrated by virus-induced gene silencing that a wound-repressed plastidial glycerolipase (NaGLA1) plays an essential role in the induction of de novo JA biosynthesis. In contrast to SIPK and NPR1, mechanisms mediated by WIPK did not affect the production of 13-OOH-18:3 but were critical to control the conversion of this precursor into 12-oxo-phytodienoic acid. These differences could be partially accounted for by reduced allene oxide synthase activity in WIPK-silenced plants.
Collapse
Affiliation(s)
| | | | | | - Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena 07745, Germany
| |
Collapse
|
232
|
Rodriguez MCS, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:621-49. [PMID: 20441529 DOI: 10.1146/annurev-arplant-042809-112252] [Citation(s) in RCA: 717] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways.
Collapse
|
233
|
Vadassery J, Oelmüller R. Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2009; 4:1024-7. [PMID: 19829075 PMCID: PMC2819509 DOI: 10.4161/psb.4.11.9800] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 05/19/2023]
Abstract
Elevation of intracellular calcium levels in a plant cell is an early signaling event in many mutualistic and pathogenic plant/microbe interactions. In pathogenic plant/fungus interactions, receptor-mediated cytoplasmic calcium elevations induce defense genes via the activation of ion fluxes at the plasma membrane, an oxidative burst and MAPK activation. Mycorrhizal and beneficial endophytic plant/fungus interactions result in a better plant performance through sequencial cytoplasmic and nuclear calcium elevations. The specificity of the calcium responses depends on the calcium signature, its amplitude, duration, frequency and location, a selective activation of calcium channels in the diverse cellular membranes and the stimulation of calcium-dependent signaling components. Arabidopsis contains more than 100 genes for calcium-binding proteins and channels and the response to pathogens and beneficial fungi relies on a highly specific activation of individual members of these protein families. Genetic tools are required to understand this complex response patterns and the cross talks between the individual calcium-dependent signaling pathways. The beneficial interaction of Arabidopsis with the growth-promoting endophyte Piriformospora indica provides a nice model system to unravel signaling events leading to mutualistic or pathogenic plant/fungus interactions.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Institut für Allgemeine Botanik und Pflanzenphysiologie; Jena, Germany
| |
Collapse
|
234
|
Ludwików A, Kierzek D, Gallois P, Zeef L, Sadowski J. Gene expression profiling of ozone-treated Arabidopsis abi1td insertional mutant: protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene. PLANTA 2009; 230:1003-17. [PMID: 19705149 DOI: 10.1007/s00425-009-1001-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 08/05/2009] [Indexed: 05/09/2023]
Abstract
We report on the characterization of the interaction between reactive oxygen species signalling and abscisic acid (ABA)-mediated gene network in ozone (O(3)) stress response. To identify the stress-related signalling pathways and possible cross-talk controlled by an ABA-negative regulator, the protein phosphatase 2C abscisic acid insensitive1 (ABI1), we performed a genome-wide transcription profiling of O(3)-treated wild-type and ABI1 knockout (abi1td) plants. In addition, to better understand ABA signalling and the interactions between stress response pathways, we performed a microarray analysis of drought-treated plants. Functional categorization of the identified genes showed that ABI1 is involved in the modulation of several cellular processes including metabolism, transport, development, information pathways and variant splicing. Comparisons with available transcriptome data sets revealed the extent of ABI1 involvement in both ABA-dependent and ABA-independent gene expression. Furthermore, in O(3) stress the ABA hypersensitivity of abi1td resulted in a significant reduction of the ABA level, ethylene (ET) over-production and O(3) tolerance. Moreover, the physical interaction of ABI1 with ACC synthase2 and ACC synthase6 was shown. We provide a model explaining how ABI1 can regulate both ABA and ET biosynthesis. Altogether, our findings indicate that ABI1 plays the role of a general signal transducer linking ABA and ET biosynthesis as well as signalling pathways to O(3) stress tolerance.
Collapse
Affiliation(s)
- Agnieszka Ludwików
- Department of Biotechnology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | | | | | | |
Collapse
|
235
|
Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 2009; 28:3439-49. [PMID: 19763087 DOI: 10.1038/emboj.2009.263] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 08/06/2009] [Indexed: 11/09/2022] Open
Abstract
Pattern recognition receptors in eukaryotes initiate defence responses on detection of microbe-associated molecular patterns shared by many microbe species. The Leu-rich repeat receptor-like kinases FLS2 and EFR recognize the bacterial epitopes flg22 and elf18, derived from flagellin and elongation factor-Tu, respectively. We describe Arabidopsis 'priority in sweet life' (psl) mutants that show de-repressed anthocyanin accumulation in the presence of elf18. EFR accumulation and signalling, but not of FLS2, are impaired in psl1, psl2, and stt3a plants. PSL1 and PSL2, respectively, encode calreticulin3 (CRT3) and UDP-glucose:glycoprotein glycosyltransferase that act in concert with STT3A-containing oligosaccharyltransferase complex in an N-glycosylation pathway in the endoplasmic reticulum. However, EFR-signalling function is impaired in weak psl1 alleles despite its normal accumulation, thereby uncoupling EFR abundance control from quality control. Furthermore, salicylic acid-induced, but EFR-independent defence is weakened in psl2 and stt3a plants, indicating the existence of another client protein than EFR for this immune response. Our findings suggest a critical and selective function of N-glycosylation for different layers of plant immunity, likely through quality control of membrane-localized regulators.
Collapse
Affiliation(s)
- Yusuke Saijo
- Department of Plant Microbe Interactions, Max Planck Institute für Züchtungforschung, Köln, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Bartels S, Anderson JC, González Besteiro MA, Carreri A, Hirt H, Buchala A, Métraux JP, Peck SC, Ulm R. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. THE PLANT CELL 2009; 21:2884-97. [PMID: 19789277 PMCID: PMC2768924 DOI: 10.1105/tpc.109.067678] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/28/2009] [Accepted: 09/08/2009] [Indexed: 05/17/2023]
Abstract
Mitogen-activated protein (MAP) kinase phosphatases are important negative regulators of the levels and kinetics of MAP kinase activation that modulate cellular responses. The dual-specificity phosphatase MAP KINASE PHOSPHATASE1 (MKP1) was previously shown to regulate MAP KINASE6 (MPK6) activation levels and abiotic stress responses in Arabidopsis thaliana. Here, we report that the mkp1 null mutation in the Columbia (Col) accession results in growth defects and constitutive biotic defense responses, including elevated levels of salicylic acid, camalexin, PR gene expression, and resistance to the bacterial pathogen Pseudomonas syringae. PROTEIN TYROSINE PHOSPHATASE1 (PTP1) also interacts with MPK6, but the ptp1 null mutant shows no aberrant growth phenotype. However, the pronounced constitutive defense response of the mkp1 ptp1 double mutant reveals that MKP1 and PTP1 repress defense responses in a coordinated fashion. Moreover, mutations in MPK3 and MPK6 distinctly suppress mkp1 and mkp1 ptp1 phenotypes, indicating that MKP1 and PTP1 act as repressors of inappropriate MPK3/MPK6-dependent stress signaling. Finally, we provide evidence that the natural modifier of mkp1 in Col is largely the disease resistance gene homolog SUPPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1) that is absent in the Wassilewskija accession. Our data thus indicate a major role of MKP1 and PTP1 in repressing salicylic acid biosynthesis in the autoimmune-like response caused by SNC1.
Collapse
Affiliation(s)
- Sebastian Bartels
- Faculty of Biology, Institute of Biology II, University of Freiburg, D-79104 Freiburg, Germany
| | - Jeffrey C. Anderson
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Marina A. González Besteiro
- Faculty of Biology, Institute of Biology II, University of Freiburg, D-79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Alessandro Carreri
- Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Heribert Hirt
- Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
- Unité de Recherche en Génomique Végétale-Plant Genomics, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, University Evry, F-91057 Evry Cedex, France
| | - Antony Buchala
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Jean-Pierre Métraux
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Scott C. Peck
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Roman Ulm
- Faculty of Biology, Institute of Biology II, University of Freiburg, D-79104 Freiburg, Germany
- Centre for Biological Signaling Studies (bioss), University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
237
|
Memelink J. Regulation of gene expression by jasmonate hormones. PHYTOCHEMISTRY 2009; 70:1560-70. [PMID: 19796781 DOI: 10.1016/j.phytochem.2009.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/04/2009] [Accepted: 09/06/2009] [Indexed: 05/19/2023]
Abstract
Plants possess inducible defense systems to oppose attack by pathogens and herbivores. Jasmonates are important signaling molecules produced by plants which regulate in positive or negative crosstalk with ethylene subsets of genes involved in defense against necrotrophic microorganisms or herbivorous insects, respectively. This review presents an overview of promoter sequences and transcription factors involved in jasmonate-responsive gene expression with the most important components summarized here. Frequently occurring jasmonate-responsive promoter sequences are the GCC motif, which is commonly found in promoters activated synergistically by jasmonate and ethylene, and the G-box, which is commonly found in promoters activated by jasmonates and repressed by ethylene. Important transcription factors conferring jasmonate-responsive gene expression in Arabidopsis are ORA59 and AtMYC2. ORA59 interacts with the GCC motif and controls the expression of genes that are synergistically induced by jasmonates and ethylene, whereas AtMYC2 interacts with the G-box and related sequences, and controls genes activated by jasmonate alone. AtMYC2 can interact with JAZ proteins, which are hypothesized to act as repressors. The bioactive jasmonate (+)-7-iso-JA-l-Ile promotes the interaction between the ubiquitin ligase complex SCF(COI1) and JAZ proteins, resulting in their degradation by the 26S proteasome, thereby liberating AtMYC2 from repression according to the prevailing model. Literature up to 1 June 2009 was used for this review.
Collapse
Affiliation(s)
- Johan Memelink
- Institute of Biology, Sylvius Laboratory, Sylviusweg 72, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
238
|
Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:193-206. [PMID: 19392691 DOI: 10.1111/j.1365-313x.2009.03867.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth-promoting fungus Piriformospora indica and Arabidopsis thaliana. A cell wall extract (CWE) from the fungus promotes the growth of wild-type seedlings but not of seedlings from P. indica-insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling-related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+](cyt)) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum) plants, as well as in BY-2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY-2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen-activated protein kinases (MAPKs) in a Ca2+-dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica. Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Street 159, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Gális I, Gaquerel E, Pandey SP, Baldwin IT. Molecular mechanisms underlying plant memory in JA-mediated defence responses. PLANT, CELL & ENVIRONMENT 2009; 32:617-27. [PMID: 18657055 DOI: 10.1111/j.1365-3040.2008.01862.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants must respond to biotic and abiotic challenges to optimize their Darwinian fitness in nature. Many of these challenges occur repeatedly during a plant's lifetime, and their sequence and timing can profoundly influence the fitness outcome of a plant's response. The ability to perceive, store and recall previous stressful events is likely useful for efficient, rapid and cost-effective responses, but we know very little about the mechanisms involved. Using jasmonate-elicited anti-herbivore defence responses as an example, we consider how 'memories' of previous attacks could be created in (1) the biosynthetic processes involved in the generation of the oxylipin bursts elicited by herbivore attacks; (2) the perception of oxylipins and their transduction into cellular events by transcription factors and transcriptional activators; and (3) the role of small RNAs in the formation of long-term stress imprints in plants.
Collapse
Affiliation(s)
- Ivan Gális
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
240
|
Davies NJ, Hayden RE, Simpson PJ, Birtwistle J, Mayer K, Ride JP, Bunce CM. AKR1C Isoforms Represent a Novel Cellular Target for Jasmonates alongside Their Mitochondrial-Mediated Effects. Cancer Res 2009; 69:4769-75. [DOI: 10.1158/0008-5472.can-08-4533] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
241
|
Zhou C, Cai Z, Guo Y, Gan S. An arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. PLANT PHYSIOLOGY 2009; 150:167-77. [PMID: 19251906 PMCID: PMC2675715 DOI: 10.1104/pp.108.133439] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 02/24/2009] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a developmentally programmed cell death process that constitutes the final step of leaf development, and it can be regulated by multiple environmental cues and endogenous signals. The mitogen-activated protein kinase (MAPK) cascades play diverse roles in intracellular and extracellular signaling in plants. Roles of the MAPK signaling module in leaf senescence are unknown. Here, a MAPK cascade involving MKK9-MPK6 is shown to play an important role in regulating leaf senescence in Arabidopsis (Arabidopsis thaliana). Both MKK9 and MPK6 possess kinase activities, with MPK6 an immediate target of MKK9, as revealed by in vitro, in vivo, and in planta assays. The constitutive and inducible overexpression of MKK9 causes premature senescence in leaves and in whole Arabidopsis plants. The premature senescence phenotype is suppressed when MKK9 is overexpressed in the mpk6 null background. When either MKK9 or MPK6 is knocked out, leaf senescence is delayed.
Collapse
Affiliation(s)
- Chunjiang Zhou
- Department of Horticulture, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
242
|
Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 2009; 4:672-4. [PMID: 19416906 DOI: 10.1073/pnas.0810206106] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK)-mediated responses are in part regulated by the repertoire of MAPK substrates, which is still poorly elucidated in plants. Here, the in vivo enzyme-substrate interaction of the Arabidopsis thaliana MAP kinase, MPK6, with an ethylene response factor (ERF104) is shown by fluorescence resonance energy transfer. The interaction was rapidly lost in response to flagellin-derived flg22 peptide. This complex disruption requires not only MPK6 activity, which also affects ERF104 stability via phosphorylation, but also ethylene signaling. The latter points to a novel role of ethylene in substrate release, presumably allowing the liberated ERF104 to access target genes. Microarray data show enrichment of GCC motifs in the promoters of ERF104-up-regulated genes, many of which are stress related. ERF104 is a vital regulator of basal immunity, as altered expression in both erf104 and overexpressors led to more growth inhibition by flg22 and enhanced susceptibility to a non-adapted bacterial pathogen.
Collapse
|
243
|
Hahn A, Harter K. Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? PLANT PHYSIOLOGY 2009; 149:1207-10. [PMID: 19109412 PMCID: PMC2649397 DOI: 10.1104/pp.108.132241] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/17/2008] [Indexed: 05/20/2023]
Affiliation(s)
- Achim Hahn
- ZMBP/Plant Physiology, University of Tuebingen, 72076 Tuebingen, Germany
| | | |
Collapse
|
244
|
Cho K, Agrawal GK, Jwa NS, Kubo A, Rakwal R. Rice OsSIPK and its orthologs: A “central master switch” for stress responses. Biochem Biophys Res Commun 2009; 379:649-53. [DOI: 10.1016/j.bbrc.2008.12.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 12/18/2022]
|
245
|
Pitzschke A, Hirt H. Disentangling the complexity of mitogen-activated protein kinases and reactive oxygen species signaling. PLANT PHYSIOLOGY 2009; 149:606-15. [PMID: 19201916 PMCID: PMC2633849 DOI: 10.1104/pp.108.131557] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Andrea Pitzschke
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | |
Collapse
|
246
|
Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 2009; 23:80-92. [PMID: 19095804 PMCID: PMC2632172 DOI: 10.1101/gad.1740009] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/07/2008] [Indexed: 12/24/2022]
Abstract
Signaling through mitogen-activated protein kinases (MPKs) cascades is a complex and fundamental process in eukaryotes, requiring MPK-activating kinases (MKKs) and MKK-activating kinases (MKKKs). However, to date only a limited number of MKK-MPK interactions and MPK phosphorylation substrates have been revealed. We determined which Arabidopsis thaliana MKKs preferentially activate 10 different MPKs in vivo and used the activated MPKs to probe high-density protein microarrays to determine their phosphorylation targets. Our analyses revealed known and novel signaling modules encompassing 570 MPK phosphorylation substrates; these substrates were enriched in transcription factors involved in the regulation of development, defense, and stress responses. Selected MPK substrates were validated by in planta reconstitution experiments. A subset of activated and wild-type MKKs induced cell death, indicating a possible role for these MKKs in the regulation of cell death. Interestingly, MKK7- and MKK9-induced death requires Sgt1, a known regulator of cell death induced during plant innate immunity. Our predicted MKK-MPK phosphorylation network constitutes a valuable resource to understand the function and specificity of MPK signaling systems.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - George V. Popescu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Shawn Bachan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Zimei Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Gerstein
- Department of Biochemistry and Biophysics, Yale University, New Haven, Connecticut 06520, USA
| | - Michael Snyder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Biochemistry and Biophysics, Yale University, New Haven, Connecticut 06520, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
247
|
Chung HS, Howe GA. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. THE PLANT CELL 2009; 21:131-45. [PMID: 19151223 PMCID: PMC2648087 DOI: 10.1105/tpc.108.064097] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/22/2008] [Accepted: 01/02/2009] [Indexed: 05/17/2023]
Abstract
JASMONATE ZIM-domain (JAZ) proteins act as repressors of jasmonate (JA) signaling. Perception of bioactive JAs by the F-box protein CORONATINE INSENSITIVE1 (COI1) causes degradation of JAZs via the ubiquitin-proteasome pathway, which in turn activates the expression of genes involved in plant growth, development, and defense. JAZ proteins contain two highly conserved sequence regions: the Jas domain that interacts with COI1 to destabilize the repressor and the ZIM domain of unknown function. Here, we show that the conserved TIFY motif (TIFF/YXG) within the ZIM domain mediates homo- and heteromeric interactions between most Arabidopsis thaliana JAZs. We have also identified an alternatively spliced form (JAZ10.4) of JAZ10 that lacks the Jas domain and, as a consequence, is highly resistant to JA-induced degradation. Strong JA-insensitive phenotypes conferred by overexpression of JAZ10.4 were suppressed by mutations in the TIFY motif that block JAZ10.4-JAZ interactions. We conclude that JAZ10.4 functions to attenuate signal output in the presence of JA and further suggest that the dominant-negative action of this splice variant involves protein-protein interaction through the ZIM/TIFY domain. The ability of JAZ10.4 to interact with MYC2 is consistent with a model in which a JAZ10.4-containing protein complex directly represses the activity of transcription factors that promote expression of JA response genes.
Collapse
Affiliation(s)
- Hoo Sun Chung
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
248
|
Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, Rosahl S. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:230-42. [PMID: 18801014 DOI: 10.1111/j.1365-313x.2008.03688.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.
Collapse
Affiliation(s)
- Vincentius A Halim
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle, Saale, Germany
| | | | | | | | | | | | | |
Collapse
|
249
|
Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:183-205. [PMID: 19025383 DOI: 10.1146/annurev.arplant.043008.092007] [Citation(s) in RCA: 624] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The oxylipin jasmonate (JA) regulates many aspects of growth, development, and environmental responses in plants, particularly defense responses against herbivores and necrotrophic pathogens. Mutants of Arabidopsis helped researchers define the biochemical pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA hormone, and demonstrated that JA is required for plant survival of insect and pathogen attacks and for plant fertility. Transcriptional profiling led to the discovery of the JASMONATE ZIM-DOMAIN (JAZ) proteins, which are repressors of JA signaling. JA-Ile relieves repression by promoting binding of the JAZ proteins to the F-box protein CORONATINE INSENSITIVE1 (COI1) and their subsequent degradation by the ubiquitination/26S-proteasome pathway. Although we now have a much better understanding of the molecular mechanism of JA action, many questions remain. Experimental answers to these questions will expand our knowledge of oxylipin signaling in plants and animals and will also provide new tools for efforts to improve crop protection and reproductive performance.
Collapse
Affiliation(s)
- John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| |
Collapse
|
250
|
Lee JS, Huh KW, Bhargava A, Ellis BE. Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signalling modules. PLANT SIGNALING & BEHAVIOR 2008; 3:1037-41. [PMID: 19513235 PMCID: PMC2634456 DOI: 10.4161/psb.3.12.6848] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 08/26/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome encodes a 20-member gene family of mitogen-activated protein kinases (MPKs) but biological roles have only been identified for a small subset of these crucial signalling components. In particular, it is unclear how the MPKs may be organized into functional modules within the cell. To gain insight into their potential relationships, we used the yeast two-hybrid system to conduct a directed protein-protein interaction screen between all the Arabidopsis MPKs and their upstream activators (MAPK kinases; MKK). Novel interactions were also tested in vitro for enzyme-substrate functionality, using recombinant proteins. The resulting data confirm a number of earlier reported MKK-MPK relationships, but also reveal a more extensive pattern of interactions that should help to guide future analyses of MAPK signalling in plants.
Collapse
Affiliation(s)
- Jin Suk Lee
- Michael Smith Laboratories; University of British Columbia; Vancouver, British Columbia Canada
| | | | | | | |
Collapse
|