201
|
Demonstration of the efficacy of curcumin on carbapenem-resistant Pseudomonas aeruginosa with Galleria mellonella larvae model. Arch Microbiol 2022; 204:524. [PMID: 35882691 DOI: 10.1007/s00203-022-03135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/31/2022]
Abstract
Due to increasing antimicrobial resistance, studies where new treatment options are investigated along with the synergistic effects of natural products with antibiotics have arisen. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and infection with multi-drug resistant (MDR) P. aeruginosa poses a critical problem during treatment. Curcumin (CUR) is listed in the literature as one of the promising natural ingredients with its strong antimicrobial activity. In our study, our aim was to investigate the in vitro synergistic effect of CUR with imipenem (IMP) and Colistin (CST) in MDR P. aeruginosa isolates and in vivo activity on Galleria mellonella (G. mellonella) larvae. Three clinical isolates of MDR P. aeruginosa, which were determined to be phenotypically resistant to carbapenems, were used, and KPC and OXA48 resistance genes were determined by PCR method. The synergistic effect of CUR with antibiotics were investigated by the checkerboard method. Larval survival and bacterial load were compared with the in vivo study. In this study, IMP MIC values were significantly reduced (two to eight-fold decrease) in the presence of CUR, and partial synergy was observed. For CST, this value decreased two-fold. Bacterial load was evaluated to investigate the effect of antimicrobials during infection. While the CFUs increased over time in non-treated larvae as compared to the initial inoculum, bacterial load was significantly decreased for the groups treated with CUR, IMP and CST compared to the untreated group (p < 0.05). It was concluded CUR-antibiotic combinations can provide an alternative approach in the treatment of infections with MDR bacteria.
Collapse
|
202
|
Pseudomonas aeruginosa Alters Critical Lung Epithelial Cell Functions through Activation of ADAM17. Cells 2022; 11:cells11152303. [PMID: 35892600 PMCID: PMC9331763 DOI: 10.3390/cells11152303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Severe epithelial dysfunction is one major hallmark throughout the pathophysiological progress of bacterial pneumonia. Junctional and cellular adhesion molecules (e.g., JAMA-A, ICAM-1), cytokines (e.g., TNFα), and growth factors (e.g., TGFα), controlling proper lung barrier function and leukocyte recruitment, are proteolytically cleaved and released into the extracellular space through a disintegrin and metalloproteinase (ADAM) 17. In cell-based assays, we could show that the protein expression, maturation, and activation of ADAM17 is upregulated upon infection of lung epithelial cells with Pseudomonas aeruginosa and Exotoxin A (ExoA), without any impact of infection by Streptococcus pneumoniae. The characterization of released extracellular vesicles/exosomes and the comparison to heat-inactivated bacteria revealed that this increase occurred in a cell-associated and toxin-dependent manner. Pharmacological targeting and gene silencing of ADAM17 showed that its activation during infection with Pseudomonas aeruginosa was critical for the cleavage of junctional adhesion molecule A (JAM-A) and epithelial cell survival, both modulating barrier integrity, epithelial regeneration, leukocyte adhesion and transepithelial migration. Thus, site-specific targeting of ADAM17 or blockage of the activating toxins may constitute a novel anti-infective therapeutic option in Pseudomonas aeruginosa lung infection preventing severe epithelial and organ dysfunctions and stimulating future translational studies.
Collapse
|
203
|
Wen A, Zhao M, Jin S, Lu YQ, Feng Y. Structural basis of AlpA-dependent transcription antitermination. Nucleic Acids Res 2022; 50:8321-8330. [PMID: 35871295 PMCID: PMC9371919 DOI: 10.1093/nar/gkac608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
AlpA positively regulates a programmed cell death pathway linked to the virulence of Pseudomonas aeruginosa by recognizing an AlpA binding element within the promoter, then binding RNA polymerase directly and allowing it to bypass an intrinsic terminator positioned downstream. Here, we report the single-particle cryo-electron microscopy structures of both an AlpA-loading complex and an AlpA-loaded complex. These structures indicate that the C-terminal helix-turn-helix motif of AlpA binds to the AlpA binding element and that the N-terminal segment of AlpA forms a narrow ring inside the RNA exit channel. AlpA was also revealed to render RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Structural analysis predicted that AlpA, 21Q, λQ and 82Q share the same mechanism of transcription antitermination.
Collapse
Affiliation(s)
- Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Sha Jin
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases , Hangzhou 310058, China
| |
Collapse
|
204
|
Kalgudi R, Tamimi R, Kyazze G, Keshavarz T. Effect of quorum quenchers on virulence factors production and quorum sensing signalling pathway of non-mucoid, mucoid, and heavily mucoid Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:163. [PMID: 35835899 PMCID: PMC9283346 DOI: 10.1007/s11274-022-03339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Quorum quenching (QQ), a mechanism which inhibits, interferes or inactivates quorum sensing, has been investigated for control of biofilms instigated by quorum sensing process. Application of quorum quenchers (QQs) provides the possibility to investigate how different phenotypes of Pseudomonas aeruginosa (non-mucoid, mucoid, and heavily mucoid strains) modulate their gene expression to form biofilms, their quorum sensing (QS) mediated biofilm to be formed, and their virulence expressed. The mRNA expression of the AHL-mediated QS circuit and AHL-mediated virulence factors in P. aeruginosa was investigated in presence of QQs. qPCR analysis showed that farnesol and tyrosol actively reduce the expression of the synthase protein, LasI and RhlI, and prevent production of 3OC12-HSL and C4-HSL, respectively. Also, the use of farnesol and tyrosol significantly moderated gene expression for exo-proteins toxA, aprA, LasB, as well as rhlAB, which are responsible for rhamnolipid production. Our findings were promising, identifying several suppressive regulatory effects of furanone and Candida albicans QS signal molecules, tyrosol, and farnesol on the AHL-mediated P. aeruginosa QS network and related virulence factors.
Collapse
Affiliation(s)
- Rachith Kalgudi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, UK.
| | - Roya Tamimi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, UK
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, UK
| | - Tajalli Keshavarz
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, UK
| |
Collapse
|
205
|
Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022; 11:antiox11071330. [PMID: 35883820 PMCID: PMC9311800 DOI: 10.3390/antiox11071330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Thyme (Thymus vulgaris L.) essential oil (TEO) is widely used as an alternative therapy especially for infections of the upper respiratory tract. TEO possesses antiviral, antibacterial, and antifungal properties. The emerging antibiotic resistance of bacterial strains, including Pseudomonas aeruginosa, has prompted the urge to find alternative treatments. In the present study, we examined the anti-inflammatory and antioxidant effects of thymol, the main compound of TEO, and two TEOs prepared at the beginning and at the end of the flowering period that may make these oils promising candidates as complementary or alternative therapies against P. aeruginosa infections. The activity measurements of the antioxidant enzymes peroxidase (PX), catalase (CAT), and superoxide dismutase (SOD) as well as the determination of total antioxidant capacity of P. aeruginosa-activated THP-1 cells revealed that thymol and both TEOs increased CAT and SOD activity as well as the antioxidant capacity of the THP-1 cells. The measurements of the proinflammatory cytokine mRNA expression and secreted protein level of LPS-activated THP-1 cells showed that from the two TEOs, only TEO prepared at the beginning of the flowering period acted as a potent inhibitor of the synthesis of IL-6, IL-8, IL-β, and TNF-α. Our results suggest that not only thymol, but also the synergism or the antagonistic effects of the additional compounds of the essential oils are responsible for the anti-inflammatory activity of TEOs.
Collapse
|
206
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
207
|
Scheffler RJ, Bratton BP, Gitai Z. Pseudomonas aeruginosa clinical blood isolates display significant phenotypic variability. PLoS One 2022; 17:e0270576. [PMID: 35793311 PMCID: PMC9258867 DOI: 10.1371/journal.pone.0270576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a significant threat in healthcare settings where it deploys a wide host of virulence factors to cause disease. Many virulence-related phenotypes such as pyocyanin production, biofilm formation, and twitching motility have been implicated in causing disease in a number of hosts. In this study, we investigate these three virulence factors in a collection of 22 clinical strains isolated from blood stream infections. Despite the fact that all 22 strains caused disease and came from the same body site of different patients, they show significant variability in assays for each of the three specific phenotypes examined. There was no significant correlation between the strength of the three phenotypes across our collection, suggesting that they can be independently modulated. Furthermore, strains deficient in each of the virulence-associated phenotypes examined could be identified. To understand the genetic basis of this variability we sequenced the genomes of the 22 strains. We found that the majority of genes responsible for pyocyanin production, biofilm formation, and twitching motility were highly conserved among the strains despite their phenotypic variability, suggesting that the phenotypic variability is likely due to regulatory changes. Our findings thus demonstrate that no one lab-assayed phenotype of pyocyanin production, biofilm production, and twitching motility is necessary for a P. aeruginosa strain to cause blood stream infection and that additional factors may be needed to fully predict what strains will lead to specific human diseases.
Collapse
Affiliation(s)
- Robert J. Scheffler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Benjamin P. Bratton
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
208
|
Epiphytic and endophytic microorganisms associated to different cultivar of tomato fruits in greenhouse environment and characterization of beneficial bacterial strains for the control of post-harvest tomato pathogens. Int J Food Microbiol 2022; 379:109861. [DOI: 10.1016/j.ijfoodmicro.2022.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
209
|
Ojo SKS, Sunmonu GT, Adeoye AO, Akinwunmi CF, Obakunle MI, Ojerinde AO, Awakan OJ.
Therapeutic potential of Ipomoea asarifolia on infected Swiss albino rats with Pseudomonas aeruginosa and Staphylococcus aureus. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Curative misuse of medicinal plants are worrisome with the paucity of histological information. This led to the investigation of Ipomoea asarifolia in Swiss albino rats infected with Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Extraction was done using the cold maceration method. The minimum inhibitory concentrations (MIC) of the extracts were determined using the micro-dilution method. Swiss albino rats of 6 sub-groups with 6 animals each (36 animals/organism) were administered with 0.3 ml single oral dose of P. aeruginosa and S. aureus respectively. The animals received treatment for 5 days as follows: 0.5 ml of 5% dimethyl sulphoxide (DMSO) (negative control), 250 mg/kg of amoxicillin (positive control), 2 mg/kg of whole plant extract, 4 mg/kg of whole plant extract, 2 mg/kg of leaf extract, and 4 mg/kg of leaf extract, respectively. The packed cell volume (PCV) and white blood count (WBC) of the animals were determined before and after treatment with histology examination of vital organs. Results: MIC for S. aureus was 2 mg/mL; the mortality in S. aureus group at 2 mg/kg was 66.7%. The PCV values (50.5±0.5, 45.0±1.0, and 50.5±1.5) decreased after infection, and a corresponding increase in the PCV was observed after treatment with the extracts. Also, a significant increase in the WBC values (3.40±0.35, 4.10±0.15, and 3.30±0.40) following infection and a corresponding decrease after treatment were observed. Congestion of vessels in the kidney was also observed. Conclusion: I. asarifolia has a dose-dependent antibacterial and curative activity, and could enhance innate immunity.
Collapse
Affiliation(s)
- Stephen Kayode S. Ojo
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Gabriel Temitope Sunmonu
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi O. Adeoye
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Christiana Fisayo Akinwunmi
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Moses Ifeoluwa Obakunle
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | | | - Oluwakemi J. Awakan
- Department of Biochemistry, Landmark University, Omu-Aran, Kwara-State, Nigeria
| |
Collapse
|
210
|
Huber P. ExlA: A New Contributor to Pseudomonas aeruginosa Virulence. Front Cell Infect Microbiol 2022; 12:929150. [PMID: 35811671 PMCID: PMC9260685 DOI: 10.3389/fcimb.2022.929150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
ExlA (also called exolysin) is a recently discovered virulence factor secreted by a subset of Pseudomonas aeruginosa strains in which a type 3 secretion system is lacking. exlA-positive strains were identified worldwide in the clinic, causing several types of infectious diseases, and were detected in various locations in the environment. ExlA possesses pore-forming activity and is cytolytic for most human cell types. It belongs to a class of poorly characterized bacterial toxins, sharing a similar protein domain organization and a common secretion pathway. This review summarizes the recent findings regarding ExlA synthesis, its secretion pathway, and its toxic behavior for host cells.
Collapse
|
211
|
Rozner M, Nukarinen E, Wolfinger MT, Amman F, Weckwerth W, Bläsi U, Sonnleitner E. Rewiring of Gene Expression in Pseudomonas aeruginosa During Diauxic Growth Reveals an Indirect Regulation of the MexGHI-OpmD Efflux Pump by Hfq. Front Microbiol 2022; 13:919539. [PMID: 35832820 PMCID: PMC9272787 DOI: 10.3389/fmicb.2022.919539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In Pseudomonas aeruginosa, the RNA chaperone Hfq and the catabolite repression protein Crc act in concert to regulate numerous genes during carbon catabolite repression (CCR). After alleviation of CCR, the RNA CrcZ sequesters Hfq/Crc, which leads to a rewiring of gene expression to ensure the consumption of less preferred carbon and nitrogen sources. Here, we performed a multiomics approach by assessing the transcriptome, translatome, and proteome in parallel in P. aeruginosa strain O1 during and after relief of CCR. As Hfq function is impeded by the RNA CrcZ upon relief of CCR, and Hfq is known to impact antibiotic susceptibility in P. aeruginosa, emphasis was laid on links between CCR and antibiotic susceptibility. To this end, we show that the mexGHI-opmD operon encoding an efflux pump for the antibiotic norfloxacin and the virulence factor 5-Methyl-phenazine is upregulated after alleviation of CCR, resulting in a decreased susceptibility to the antibiotic norfloxacin. A model for indirect regulation of the mexGHI-opmD operon by Hfq is presented.
Collapse
Affiliation(s)
- Marlena Rozner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Ella Nukarinen
- Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Michael T. Wolfinger
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
212
|
Bitar I, Salloum T, Merhi G, Hrabak J, Araj GF, Tokajian S. Genomic Characterization of Mutli-Drug Resistant Pseudomonas aeruginosa Clinical Isolates: Evaluation and Determination of Ceftolozane/Tazobactam Activity and Resistance Mechanisms. Front Cell Infect Microbiol 2022; 12:922976. [PMID: 35782142 PMCID: PMC9241553 DOI: 10.3389/fcimb.2022.922976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022] Open
Abstract
Resistance to ceftolozane/tazobactam (C/T) in Pseudomonas aeruginosa is a health concern. In this study, we conducted a whole-genome-based molecular characterization to correlate resistance patterns and β-lactamases with C/T resistance among multi-drug resistant P. aeruginosa clinical isolates. Resistance profiles for 25 P. aeruginosa clinical isolates were examined using disk diffusion assay. Minimal inhibitory concentrations (MIC) for C/T were determined by broth microdilution. Whole-genome sequencing was used to check for antimicrobial resistance determinants and reveal their genetic context. The clonal relatedness was evaluated using MLST, PFGE, and serotyping. All the isolates were resistant to C/T. At least two β-lactamases were detected in each with the blaOXA-4, blaOXA-10, blaOXA-50, and blaOXA-395 being the most common. blaIMP-15, blaNDM-1, or blaVIM-2, metallo-β-lactamases, were associated with C/T MIC >256 μg/mL. Eight AmpC variants were identified, and PDC-3 was the most common. We also determined the clonal relatedness of the isolates and showed that they grouped into 11 sequence types (STs) some corresponding to widespread clonal complexes (ST111, ST233, and ST357). C/T resistance was likely driven by the acquired OXA β-lactamases such as OXA-10, and OXA-50, ESBLs GES-1, GES-15, and VEB-1, and metallo- β-lactamases IMP-15, NDM-1, and VIM-2. Collectively, our results revealed C/T resistance determinants and patterns in multi-drug resistant P. aeruginosa clinical isolates. Surveillance programs should be implemented and maintained to better track and define resistance mechanisms and how they accumulate and interact.
Collapse
Affiliation(s)
- Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Georgi Merhi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon,*Correspondence: Sima Tokajian,
| |
Collapse
|
213
|
Paprocka P, Durnaś B, Mańkowska A, Król G, Wollny T, Bucki R. Pseudomonas aeruginosa Infections in Cancer Patients. Pathogens 2022; 11:pathogens11060679. [PMID: 35745533 PMCID: PMC9230571 DOI: 10.3390/pathogens11060679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most frequent opportunistic microorganisms causing infections in oncological patients, especially those with neutropenia. Through its ability to adapt to difficult environmental conditions and high intrinsic resistance to antibiotics, it successfully adapts and survives in the hospital environment, causing sporadic infections and outbreaks. It produces a variety of virulence factors that damage host cells, evade host immune responses, and permit colonization and infections of hospitalized patients, who usually develop blood stream, respiratory, urinary tract and skin infections. The wide intrinsic and the increasing acquired resistance of P. aeruginosa to antibiotics make the treatment of infections caused by this microorganism a growing challenge. Although novel antibiotics expand the arsenal of antipseudomonal drugs, they do not show activity against all strains, e.g., MBL (metalo-β-lactamase) producers. Moreover, resistance to novel antibiotics has already emerged. Consequently, preventive methods such as limiting the transmission of resistant strains, active surveillance screening for MDR (multidrug-resistant) strains colonization, microbiological diagnostics, antimicrobial stewardship and antibiotic prophylaxis are of particular importance in cancer patients. Unfortunately, surveillance screening in the case of P. aeruginosa is not highly effective, and a fluoroquinolone prophylaxis in the era of increasing resistance to antibiotics is controversial.
Collapse
Affiliation(s)
- Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Jana Kilińśkiego 1 Białystok, 15-089 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-54-83
| |
Collapse
|
214
|
Faucher SP, Matthews S, Nickzad A, Vounba P, Shetty D, Bédard É, Prévost M, Déziel E, Paranjape K. Toxoflavin secreted by Pseudomonas alcaliphila inhibits the growth of Legionella pneumophila and Vermamoeba vermiformis. WATER RESEARCH 2022; 216:118328. [PMID: 35364354 DOI: 10.1016/j.watres.2022.118328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Legionella pneumophila is a natural inhabitant of water systems. From there, it can be transmitted to humans by aerosolization resulting in severe pneumonia. Most large outbreaks are caused by cooling towers colonized with L. pneumophila. The resident microbiota of the cooling tower is a key determinant for the colonization and growth of L. pneumophila. In our preceding study, the genus Pseudomonas correlated negatively with the presence of L. pneumophila in cooling towers, but it was not clear which species was responsible. Therefore, we identified the Pseudomonas species inhabiting 14 cooling towers using a Pseudomonas-specific 16S rRNA amplicon sequencing strategy. We found that cooling towers that are free of L. pneumophila contained a high relative abundance of members from the Pseudomonas alcaliphila/oleovorans phylogenetic cluster. P. alcaliphila JCM 10630 inhibited the growth of L. pneumophila on agar plates. Analysis of the P. alcaliphila genome revealed the presence of a gene cluster predicted to produce toxoflavin. L. pneumophila growth was inhibited by pure toxoflavin and by extracts from P. alcaliphila culture found to contain toxoflavin by liquid chromatography coupled with mass spectrometry. In addition, toxoflavin inhibits the growth of Vermameoba vermiformis, a host cell of L. pneumophila. Our study indicates that P. alcaliphila may be important to restrict growth of L. pneumophila in water systems through the production of toxoflavin. A sufficiently high concentration of toxoflavin is likely not achieved in the bulk water but might have a local inhibitory effect such as near or in biofilms.
Collapse
Affiliation(s)
- Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Sara Matthews
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Passoret Vounba
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Deeksha Shetty
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | - Michele Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
215
|
Characterization of Uropathogenic Pseudomonas aeruginosa: Serotypes, Resistance Phenotypes, and Virulence Genotypes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of urinary tract infections. This organism has extended resistance to antimicrobials along with multiple virulence factors, making it difficult to treat. In this study, 49 isolates from urine samples were identified as P. aeruginosa and serotyped by the slide agglutination method. The sensitivity of isolates against 10 antipseudomonal drugs was determined. Phenotypically, lipase, protease, hemolysin, and biofilm production were detected. Genes for the type III secretion system, elastase B, and exotoxin A were detected by PCR. Serotype O11 was the most predominant serotype among test isolates. High levels of resistance were observed against ceftazidime, cefepime, piperacillin, and piperacillin/tazobactam while 10.2% of isolates were resistant to amikacin. MDR was detected in 20.4% of the isolates and was significantly associated with strong biofilm producers. About 95.9% and 63.3% of P. aeruginosa isolates had proteolytic and lipolytic activity, respectively. Among the genes detected, the exoY gene was the most prevalent gene (79.6%), while the exoU gene was the least frequent one (10.2%). toxA and lasB genes were amplified in 63.27% and 75.5% of the isolates, respectively. In addition, the exoU gene was significantly associated with MDR isolates. The high incidence of exoS, exoT, exoY, lasB, and toxA genes in uropathogenic P. aeruginosa implies that these genes can be considered markers for virulent isolates. Furthermore, the coexistence of exoU and exoS genes, even in 6% of isolates, poses a significant treatment challenge because those isolates possess both the invasive and cytotoxic properties of both effector proteins.
Collapse
|
216
|
Rojas-Gätjens D, Valverde-Madrigal KS, Rojas-Jimenez K, Pereira R, Avey-Arroyo J, Chavarría M. Antibiotic-producing Micrococcales govern the microbiome that inhabits the fur of two- and three-toed sloths. Environ Microbiol 2022; 24:3148-3163. [PMID: 35621042 DOI: 10.1111/1462-2920.16082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Sloths have a dense coat on which insects, algae, and fungi coexist in a symbiotic relationship. This complex ecosystem requires different levels of control, however, most of these mechanisms remain unknown. We investigated the bacterial communities inhabiting the hair of two- (Choloepus Hoffmani) and three-toed (Bradypus variegatus) sloths and evaluated their potential for producing antibiotic molecules capable of exerting control over the hair microbiota. The analysis of 16S rRNA amplicon sequence variants (ASVs) revealed that the communities in both host species are dominated by Actinobacteriota and Firmicutes. The most abundant genera were Brevibacterium, Kocuria/Rothia, Staphylococcus, Rubrobacter, Nesterenkonia, and Janibacter. Furthermore, we isolated nine strains of Brevibacterium and Rothia capable of producing substances that inhibited the growth of common mammalian pathogens. The analysis of the biosynthetic gene clusters (BCGs) of these nine isolates suggests that the pathogen-inhibitory activity could be mediated by the presence of siderophores, terpenes, beta-lactones, Type III polyketide synthases (T3PKS), ribosomally synthesized, and post-translationally modified peptides (RiPPs), non-alpha poly-amino acids (NAPAA) like e-Polylysin, ectoine or nonribosomal peptides (NRPs). Our data suggest that Micrococcales that inhabit sloth hair could have a role in controlling microbial populations in that habitat, improving our understanding of this highly complex ecosystem. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología (LANOTEC), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
217
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
218
|
Khayat MT, Ibrahim TS, Khayyat AN, Alharbi M, Shaldam MA, Mohammad KA, Khafagy ES, El-damasy DA, Hegazy WAH, Abbas HA. Sodium Citrate Alleviates Virulence in Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10051046. [PMID: 35630488 PMCID: PMC9145658 DOI: 10.3390/microorganisms10051046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
The development of bacterial resistance is an insistent global health care issue, especially in light of the dwindled supply of new antimicrobial agents. This mandates the development of new innovative approaches to overcome the resistance development obstacle. Mitigation of bacterial virulence is an interesting approach that offers multiple advantages. Employing safe chemicals or drugs to mitigate bacterial virulence is an additive advantage. In the current study, the in vitro antivirulence activities of citrate were evaluated. Significantly, sodium citrate inhibited bacterial biofilm formation at sub-MIC concentrations. Furthermore, sodium citrate decreased the production of virulence factors protease and pyocyanin and diminished bacterial motility. Quorum sensing (QS) is the communicative system that bacterial cells utilize to communicate with each other and regulate the virulence of the host cells. In the present study, citrate in silico blocked the Pseudomonas QS receptors and downregulated the expression of QS-encoding genes. In conclusion, sodium citrate showed a significant ability to diminish bacterial virulence in vitro and interfered with QS; it could serve as a safe adjuvant to traditional antibiotic treatment for aggressive resistant bacterial infections such as Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.); (K.A.M.)
- Correspondence: (M.T.K.); (W.A.H.H.)
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.); (K.A.M.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.); (K.A.M.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.); (K.A.M.)
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33511, Egypt;
| | - Khadijah A. Mohammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.); (K.A.M.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| | - Dalia A. El-damasy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Tenth of Ramadan 44629, Egypt;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (M.T.K.); (W.A.H.H.)
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
219
|
Cai P, Han M, Zhang R, Ding S, Zhang D, Liu D, Liu S, Hu QN. SynBioStrainFinder: A microbial strain database of manually curated CRISPR/Cas genetic manipulation system information for biomanufacturing. Microb Cell Fact 2022; 21:87. [PMID: 35568950 PMCID: PMC9107733 DOI: 10.1186/s12934-022-01813-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microbial strain information databases provide valuable data for microbial basic research and applications. However, they rarely contain information on the genetic operating system of microbial strains. RESULTS We established a comprehensive microbial strain database, SynBioStrainFinder, by integrating CRISPR/Cas gene-editing system information with cultivation methods, genome sequence data, and compound-related information. It is presented through three modules, Strain2Gms/PredStrain2Gms, Strain2BasicInfo, and Strain2Compd, which combine to form a rapid strain information query system conveniently curated, integrated, and accessible on a single platform. To date, 1426 CRISPR/Cas gene-editing records of 157 microbial strains have been manually extracted from the literature in the Strain2Gms module. For strains without established CRISPR/Cas systems, the PredStrain2Gms module recommends the system of the most closely related strain as a reference to facilitate the construction of a new CRISPR/Cas gene-editing system. The database contains 139,499 records of strain cultivation and genome sequences, and 773,298 records of strain-related compounds. To facilitate simple and intuitive data application, all microbial strains are also labeled with stars based on the order and availability of strain information. SynBioStrainFinder provides a user-friendly interface for querying, browsing, and visualizing detailed information on microbial strains, and it is publicly available at http://design.rxnfinder.org/biosynstrain/ . CONCLUSION SynBioStrainFinder is the first microbial strain database with manually curated information on the strain CRISPR/Cas system as well as other microbial strain information. It also provides reference information for the construction of new CRISPR/Cas systems. SynBioStrainFinder will serve as a useful resource to extend microbial strain research and application for biomanufacturing.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Dachuan Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
220
|
Galzitskaya OV, Kurpe SR, Panfilov AV, Glyakina AV, Grishin SY, Kochetov AP, Deryusheva EI, Machulin AV, Kravchenko SV, Domnin PA, Surin AK, Azev VN, Ermolaeva SA. Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. Int J Mol Sci 2022; 23:5463. [PMID: 35628272 PMCID: PMC9140876 DOI: 10.3390/ijms23105463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic-resistant bacteria are recognized as one of the leading causes of death in the world. We proposed and successfully tested peptides with a new mechanism of antimicrobial action "protein silencing" based on directed co-aggregation. The amyloidogenic antimicrobial peptide (AAMP) interacts with the target protein of model or pathogenic bacteria and forms aggregates, thereby knocking out the protein from its working condition. In this review, we consider antimicrobial effects of the designed peptides on two model organisms, E. coli and T. thermophilus, and two pathogenic organisms, P. aeruginosa and S. aureus. We compare the amino acid composition of proteomes and especially S1 ribosomal proteins. Since this protein is inherent only in bacterial cells, it is a good target for studying the process of co-aggregation. This review presents a bioinformatics analysis of these proteins. We sum up all the peptides predicted as amyloidogenic by several programs and synthesized by us. For the four organisms we studied, we show how amyloidogenicity correlates with antibacterial properties. Let us especially dwell on peptides that have demonstrated themselves as AMPs for two pathogenic organisms that cause dangerous hospital infections, and in which the minimal inhibitory concentration (MIC) turned out to be comparable to the MIC of gentamicin sulfate. All this makes our study encouraging for the further development of AAMP. The hybrid peptides may thus provide a starting point for the antibacterial application of amyloidogenic peptides.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, 142290 Pushchino, Russia
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047 Moscow, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Alexey P. Kochetov
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
| | - Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Science”, 142290 Pushchino, Russia;
| | - Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Pavel A. Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia; (P.A.D.); (S.A.E.)
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
| | - Svetlana A. Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia; (P.A.D.); (S.A.E.)
| |
Collapse
|
221
|
Zhao X, Hu R, Liu Y, He Y, Li S, Yang J, Zhou J, Zhang J. Genomics analysis of Lactobacillus paracasei SLP16. Lett Appl Microbiol 2022; 75:881-887. [PMID: 35526150 DOI: 10.1111/lam.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Lactobacillus paracasei SLP 16 was obtained from liquor cellar mud, and it was analyzed by genome sequencing on Illumina Hiseqq platfrom. Then the biological information of Lactobacillus paracasei SLP16 was analyzed by ExPasy (wedsite), and the toxin safety of the strian SLP 16 was analyzed by PSI/PHI in the virulence factor database VFDB. Through the second-generation DNA sequencing platform technology, the whole genome information of Lactobacillus paracasei SLP16 was obtained, which showed that the genome size of the strian SLP 16 was 2.65M, and the GC content of the strian SLP 16 was 46.9%. And a total of 3,131 genes were detected, including 3,067 genes encoding protein and 63 genes encoding RNA. Whole genome analysis showed that Lactobacillus paracasei SLP16 had 5 coding genes of F0 F1 -ATPase, 4 coding genes of Na+ /H+ antiporter and 3 coding genes of A-ATPase, which were closely related to the acid tolerance of lactic acid bacteria (LAB). Whole genome analysis of Lactobacillus paracasei SLP16 showed that SLP 16 had only one CFA synthetic coding gene, and no important BSH coding gene, however, it had F0 F1 -ATPase, Na+ /H+ antiporter and several two-component regulatory systems, and which were related to bile salt tolerance of LAB. Safety evaluation in Lactobacillus paracasei SLP16 showed that it did not have the virulence factor coding gene related to toxin. Common antibiotic sensitivity tests showed that Lactobacillus paracasei SLP16 was resistant to compound sulfamethoxazole, ciprofloxacin, gentamicin and lincomycin. In summary, Lactobacillus paracasei SLP16 had coding genes closely related to acid tolerance and bile salt tolerance, and no coding gene of virulence factors related to toxins, and few kinds of resistant antibiotics. Therefore, whole genome analysis showed that Lactobacillus paracasei SLP16 was a safe probiotic strain that can be safely applied.
Collapse
Affiliation(s)
- Xingxiu Zhao
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Rong Hu
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Yuanhao Liu
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Yiguo He
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Shilu Li
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Jiao Yang
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Jing Zhou
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Jing Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| |
Collapse
|
222
|
Sen-Kilic E, Huckaby AB, Damron FH, Barbier M. P. aeruginosa type III and type VI secretion systems modulate early response gene expression in type II pneumocytes in vitro. BMC Genomics 2022; 23:345. [PMID: 35508983 PMCID: PMC9068226 DOI: 10.1186/s12864-022-08554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung airway epithelial cells are part of innate immunity and the frontline of defense against bacterial infections. During infection, airway epithelial cells secrete proinflammatory mediators that participate in the recruitment of immune cells. Virulence factors expressed by bacterial pathogens can alter epithelial cell gene expression and modulate this response. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, expresses numerous virulence factors to facilitate establishment of infection and evade the host immune response. This study focused on identifying the role of two major P. aeruginosa virulence factors, type III (T3SS) and type VI (T6SS) secretion systems, on the early transcriptome response of airway epithelial cells in vitro. RESULTS We performed RNA-seq analysis of the transcriptome response of type II pneumocytes during infection with P. aeruginosa in vitro. We observed that P. aeruginosa differentially upregulates immediate-early response genes and transcription factors that induce proinflammatory responses in type II pneumocytes. P. aeruginosa infection of type II pneumocytes was characterized by up-regulation of proinflammatory networks, including MAPK, TNF, and IL-17 signaling pathways. We also identified early response genes and proinflammatory signaling pathways whose expression change in response to infection with P. aeruginosa T3SS and T6SS mutants in type II pneumocytes. We determined that T3SS and T6SS modulate the expression of EGR1, FOS, and numerous genes that are involved in proinflammatory responses in epithelial cells during infection. T3SS and T6SS were associated with two distinct transcriptomic signatures related to the activation of transcription factors such as AP1, STAT1, and SP1, and the secretion of pro-inflammatory cytokines such as IL-6 and IL-8. CONCLUSIONS Taken together, transcriptomic analysis of epithelial cells indicates that the expression of immediate-early response genes quickly changes upon infection with P. aeruginosa and this response varies depending on bacterial viability and injectosomes. These data shed light on how P. aeruginosa modulates host epithelial transcriptome response during infection using T3SS and T6SS.
Collapse
Affiliation(s)
- Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA. .,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
223
|
Liu Y, Ahator SD, Wang H, Feng Q, Xu Y, Li C, Zhou X, Zhang LH. Microevolution of the mexT and lasR Reinforces the Bias of Quorum Sensing System in Laboratory Strains of Pseudomonas aeruginosa PAO1. Front Microbiol 2022; 13:821895. [PMID: 35495693 PMCID: PMC9041413 DOI: 10.3389/fmicb.2022.821895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa strain PAO1 has routinely been used as a laboratory model for quorum sensing (QS). However, the microevolution of P. aeruginosa laboratory strains resulting in genetic and phenotypic variations have caused inconsistencies in QS research. To investigate the underlying causes of these variations, we analyzed 5 Pseudomonas aeruginosa PAO1 sublines from our laboratory using a combination of phenotypic characterization, high throughput genome sequencing, and bioinformatic analysis. The major phenotypic variations among the sublines spanned across the levels of QS signals and virulence factors such as pyocyanin and elastase. Furthermore, the sublines exhibited distinct variations in motility and biofilm formation. Most of the phenotypic variations were mapped to mutations in the lasR and mexT, which are key components of the QS circuit. By introducing these mutations in the subline PAO1-E, which is devoid of such mutations, we confirmed their influence on QS, virulence, motility, and biofilm formation. The findings further highlight a possible divergent regulatory mechanism between the LasR and MexT in the P. aeruginosa. The results of our study reveal the effects of microevolution on the reproducibility of most research data from QS studies and further highlight mexT as a key component of the QS circuit of P. aeruginosa.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Research group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Huishan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yinuo Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
224
|
Kamal Eltayb E, Sfouq Aleanizy F, Alqahtani FY, Alkahtani HM, Akber Ansari S, Alsarra I. Preparation and characterization of Meta-bromo-thiolactone calcium alginate nanoparticles. Saudi Pharm J 2022; 30:946-953. [PMID: 35903530 PMCID: PMC9315301 DOI: 10.1016/j.jsps.2022.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Recently, the focus has been shifting toward Quorum sensing inhibitors which reduce Pseudomonas aeruginosa virulence factors, alleviating infections. In this work, me-ta-bromo-thiolactone (mBTL), a potent quorum and virulence inhibitor for the Pseudomonas aeruginosa strains, were formulated in calcium alginate nanoparticles (CANPs). Alginate is used as nutrients and as backbone virulence aspect for Pseudomonas and therefore was chosen. mBTL-loaded-CANPs were characterized for particle size, polydispersity index, zeta potential, morphology visualized by Transmission Electron Microscopy (TEM) and drug release profile. Chemical and physical analysis of formulated mBTL-loaded-CANPs were evaluated using Fourier transform infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC) and Physical stability of mBTL-loaded-CANPs assessed at various temperature 25 ± 1 °C, 4 ± 0.5 °C and −30° ± 1 °C over a period of 4 and 9 months. Synthesized CANPs showed nano-size particles ranging from 140 to 200 nm with spherical particles for plain CANPS and irregular shape for mBTL-loaded-CANPs with a sustainable release profile over 48hrs. FTIR showed stable structure of loaded-mBTL and DSC displayed no interaction between mBTL and polymer. State of released mBTL from CANPs kept at 25 °C, 4 °C and −30 °C over 4 and 9 months showed stable formula at room temperature which kept as a goal of nanoparticles storage. The findings of this study revealed successful preparation of mBTL-loaded-CANPs.
Collapse
|
225
|
Huang XH, She MT, Zhang YH, Liu YF, Zhong DX, Zhang YH, Zheng JX, Sun N, Wong WL, Lu YJ. Novel quinoline-based derivatives as the PqsR inhibitor against Pseudomonas aeruginosa PAO1. J Appl Microbiol 2022; 133:2167-2181. [PMID: 35490292 DOI: 10.1111/jam.15601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
Abstract
AIMS The emerging of drug resistant Pseudomonas aeruginosa is a critical challenge and renders an urgent action to discover innovative antimicrobial interventions. One of these interventions is to disrupt the pseudomonas quinolone signal (pqs) quorum sensing (QS) system, which governs multiple virulence traits and biofilm formation. This study aimed to investigate the QS inhibitory activity of a series of new PqsR inhibitors bearing a quinoline scaffold against Ps. aeruginosa. METHODS AND RESULTS The results showed that compound 1 suppressed the expression of QS-related genes and showed the best inhibitory activity to the pqs system of wild-type Ps. aeruginosa PAO1 with an IC50 of 20.22 μmol l-1 . The virulence factors including pyocyanin, total protease, elastase, and rhamnolipid were significantly suppressed in a concentration-dependent manner with the compound. In addition, 1 in combination with tetracycline inhibited synergistically the bacterial growth and suppressed the biofilm formation of PAO1. The molecular docking studies also suggested that 1 could potentially interact with the ligand-binding domain of the Lys-R type transcriptional regulator PqsR as a competitive antagonist. CONCLUSIONS The quinoline-based derivatives were found to interrupt the quorum sensing system via the pqs pathway and thus the production of virulence factors was inhibited and the antimicrobial susceptibility of Ps. aeruginosa was enhanced. SIGNIFICANCE AND IMPACT OF STUDY The study showed that the quinoline-based derivatives could be used as an anti-virulence agent for treating Ps. aeruginosa infections.
Collapse
Affiliation(s)
- Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Hang Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Fu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Dong-Xiao Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Han Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Jun-Xia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Ning Sun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, P. R. China.,Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan, P. R. China
| |
Collapse
|
226
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
227
|
Tang H, Hao S, Khan MF, Zhao L, Shi F, Li Y, Guo H, Zou Y, Lv C, Luo J, Zeng Z, Wu Q, Ye G. Epigallocatechin-3-Gallate Ameliorates Acute Lung Damage by Inhibiting Quorum-Sensing-Related Virulence Factors of Pseudomonas aeruginosa. Front Microbiol 2022; 13:874354. [PMID: 35547130 PMCID: PMC9083413 DOI: 10.3389/fmicb.2022.874354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
The superbug Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens. With declining options for antibiotic-resistant infections, new medicines are of utmost importance to combat with P. aeruginosa. In our previous study, we demonstrated that Epigallocatechin-3-gallate (EGCG) can inhibit the production of quorum sensing (QS)-regulated virulence factors in vitro. Accordingly, the protective effect and molecular mechanisms of EGCG against P. aeruginosa-induced pneumonia were studied in a mouse model. The results indicated that EGCG significantly lessened histopathological changes and increased the survival rates of mice infected with P. aeruginosa. EGCG effectively alleviated lung injury by reducing the expression of virulence factors and bacterial burden. In addition, EGCG downregulated the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, and IL-17, and increased the expression of anti-inflammatory cytokines IL-4 and IL-10. Thus, the experimental results supported for the first time that EGCG improved lung damage in P. aeruginosa infection by inhibiting the production of QS-related virulence factors in vivo.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
- Engineering Research Center of the Medicinal Diet Industry, Tongren Polytechnic College, Tongren, China
| | - Ze Zeng
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
| | - Qiang Wu
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
228
|
Peres-Emidio EC, Freitas GJC, Costa MC, Gouveia-Eufrasio L, Silva LMV, Santos APN, Carmo PHF, Brito CB, Arifa RDN, Bastos RW, Ribeiro NQ, Oliveira LVN, Silva MF, Paixão TA, Saliba AM, Fagundes CT, Souza DG, Santos DA. Pseudomonas aeruginosa Infection Modulates the Immune Response and Increases Mice Resistance to Cryptococcus gattii. Front Cell Infect Microbiol 2022; 12:811474. [PMID: 35548467 PMCID: PMC9083911 DOI: 10.3389/fcimb.2022.811474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcosis is an invasive mycosis caused by Cryptococcus spp. that affects the lungs and the central nervous system (CNS). Due to the severity of the disease, it may occur concomitantly with other pathogens, as a coinfection. Pseudomonas aeruginosa (Pa), an opportunistic pathogen, can also cause pneumonia. In this work, we studied the interaction of C. gattii (Cg) and Pa, both in vitro and in vivo. Pa reduced growth of Cg by the secretion of inhibitory molecules in vitro. Macrophages previously stimulated with Pa presented increased fungicidal activity. In vivo, previous Pa infection reduced morbidity and delayed the lethality due to cryptococcosis. This phenotype was correlated with the decreased fungal burden in the lungs and brain, showing a delay of Cg translocation to the CNS. Also, there was increased production of IL-1β, CXCL-1, and IL-10, together with the influx of iNOS-positive macrophages and neutrophils to the lungs. Altogether, Pa turned the lung into a hostile environment to the growth of a secondary pathogen, making it difficult for the fungus to translocate to the CNS. Further, iNOS inhibition reverted the Pa protective phenotype, suggesting its
important role in the coinfection. Altogether, the primary Pa infection leads to balanced pro-inflammatory and anti-inflammatory responses during Cg infection. This response provided better control of cryptococcosis and was decisive for the mild evolution of the disease and prolonged survival of coinfected mice in a mechanism dependent on iNOS.
Collapse
Affiliation(s)
- Eluzia C. Peres-Emidio
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo J. C. Freitas
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C. Costa
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia M. V. Silva
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson P. N. Santos
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H. F. Carmo
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila B. Brito
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel D. N. Arifa
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael W. Bastos
- Faculdade de Ciencias Farmaceuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Noelly Q. Ribeiro
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena V. N. Oliveira
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monique F. Silva
- Departamento de Patologia/Laboratorio de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia/Laboratorio de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra M. Saliba
- Departamento de Microbiologia e Imunologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio T. Fagundes
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele G. Souza
- Departamento de Microbiologia/Laboratorio de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A. Santos
- Departamento de Microbiologia/Laboratorio de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Daniel A. Santos, ;
| |
Collapse
|
229
|
Yan J, Liang Q, Chai Z, Duan N, Li X, Liu Y, Yang N, Li M, Jin Y, Bai F, Wu W, Cheng Z. Glutathione Synthesis Regulated by CtrA Protects Ehrlichia chaffeensis From Host Cell Oxidative Stress. Front Microbiol 2022; 13:846488. [PMID: 35432225 PMCID: PMC9005958 DOI: 10.3389/fmicb.2022.846488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia chaffeensis, a small Gram-negative obligatory intracellular bacterium, infects human monocytes or macrophages, and causes human monocytic ehrlichiosis, one of the most prevalent, life-threatening emerging zoonoses. Reactive oxygen species are produced by the host immune cells in response to bacterial infections. The mechanisms exploited by E. chaffeensis to resist oxidative stress have not been comprehensively demonstrated. Here, we found that E. chaffeensis encodes two functional enzymes, GshA and GshB, to synthesize glutathione that confers E. chaffeensis the oxidative stress resistance, and that the expression of gshA and gshB is upregulated by CtrA, a global transcriptional regulator, upon oxidative stress. We found that in E. chaffeensis, the expression of gshA and gshB was upregulated upon oxidative stress using quantitative RT-PCR. Ehrlichia chaffeensis GshA or GshB restored the ability of Pseudomonas aeruginosa GshA or GshB mutant to cope with oxidative stress, respectively. Recombinant E. chaffeensis CtrA directly bound to the promoters of gshA and gshB, determined with electrophoretic mobility shift assay, and activated the expression of gshA and gshB determined with reporter assay. Peptide nucleic acid transfection of E. chaffeensis, which reduced the CtrA protein level, inhibited the oxidative stress-induced upregulation of gshA and gshB. Our findings provide insights into the function and regulation of the two enzymes critical for E. chaffeensis resistance to oxidative stress and may deepen our understanding of E. chaffeensis pathogenesis and adaptation in hosts.
Collapse
Affiliation(s)
- Jiaqi Yan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qi'an Liang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhouyi Chai
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Nan Duan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxiao Li
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yajing Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Nan Yang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Meifang Li
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
230
|
Gonzaga ZJC, Zhang J, Rehm BHA. Intranasal Delivery of Antigen-Coated Polymer Particles Protects against Pseudomonas aeruginosa Infection. ACS Infect Dis 2022; 8:744-756. [PMID: 35238554 DOI: 10.1021/acsinfecdis.1c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is intrinsically resistant to multiple antibiotics, causing severe and persistent infections in immunocompromised individuals. This bacterium has been listed as a priority pathogen by the WHO in 2017, and there is no vaccine available for human use. In this study, 10 vaccine candidate antigens were selected for particulate vaccine design. We engineered Escherichia coli to assemble biopolymer particles (BPs) that were either coated with epitopes (Ag) derived from OprF/I-AlgE proteins or PopB or PopB-Ag or coated with single or double copies of epitopes (10Ag and 10Ag(2x)) derived from OprF, OprI, AlgE, OprL, PopB, PilA, PilO, FliC, Hcp1, and CdrA. Antigen-coated BPs showed a diameter of 0.93-1.16 μm with negative surface charge. Antigens attached to BPs were identified by mass spectrometry. Vaccination with BP-Ag, BP-PopB, BP-PopBAg, PB-10Ag, and BP-10Ag(2x) with and without Alhydrogel adjuvant induced significant antigen-specific humoral and cell-mediated immune responses in mice. All particulate vaccines with Alhydrogel induced protection in an acute pneumonia murine model of P. aeruginosa infection, contributing to up to 80% survival when administered intramuscularly, and the addition of Alhydrogel boosted immunity. The BP-10Ag(2x) vaccine candidate showed the best performance and even induced protective immunity in the absence of Alhydrogel. Intramuscular administration of the BP-10Ag(2x) without Alhydrogel vaccine resulted in 60% survival. Intranasal vaccination induced immunity, contributing to about 90% survival. Overall, our data suggest that vaccination with BPs coated with P. aeruginosa antigens induce protective immunity against P. aeruginosa infections. The possibility of intranasal delivery will strongly facilitate administration and use of BP vaccines.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
231
|
Esmaeilzadeh F, Mahmoodi S. A Novel Design of Multi-epitope Peptide Vaccine Against Pseudomonas
aeruginosa. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211013110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As an opportunistic pathogen, Pseudomonas aeruginosa causes many different
hazardous infections. The high mortality rate resulting from infection with this antibiotic-resistant pathogen
has made it a major challenge in clinical treatment; it has been listed as the most harmful bacterium to
humans by the WHO. So far, no vaccine has been approved for P. aeruginosa.
Objective:
Infections performed by bacterial attachment and colonization with type IV pili (T4P), known
as the most essential adhesive vital for adhesion, while pilQ is necessary for the biogenesis of T4P, also
outer membrane proteins of a pathogen is also effective in stimulating the immune system; in this regard,
pilQ, OprF, and OprI, are excellent candidate antigens for production of an effective vaccine against P.
aeruginosa.
Methods:
In this research, various bioinformatics methods were employed in order to design a new multiepitope
peptide vaccine versus P. aeruginosa. Since T CD4+ cell immunity is important in eradicating P.
aeruginosa, OprF, OprI, and pilQ antigens were analyzed to determine Helper T cell Lymphocyte (HTL)
epitopes by many different immunoinformatics servers. One of the receptor agonists 2 (TLR2), a segment
of the Por B protein from Neisseria meningitides was used as an adjuvant in order to stimulate an effective
cellular immune response, and suitable linkers were used to connect all the above mentioned parts. In
the vaccine construct, linear B cell epitopes were also identified.
Results:
Conforming the bioinformatics forecasts, the designed vaccine possesses high antigenicity and is
not allergen.
Conclusion:
In this regard, the designed vaccine candidate is strongly believed to possess the potential of
inducing cellular and humoral immunity against P. aeruginosa.
Collapse
Affiliation(s)
| | - Shirin Mahmoodi
- Department of Medical Biotechnology,
School of Medicine, Fasa University of Medical Sciences, Fasa, Fars, Iran
| |
Collapse
|
232
|
Wolfmeier H, Wardell SJT, Liu LT, Falsafi R, Draeger A, Babiychuk EB, Pletzer D, Hancock REW. Targeting the Pseudomonas aeruginosa Virulence Factor Phospholipase C With Engineered Liposomes. Front Microbiol 2022; 13:867449. [PMID: 35369481 PMCID: PMC8971843 DOI: 10.3389/fmicb.2022.867449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen Pseudomonas aeruginosa. We used the highly virulent cystic fibrosis P. aeruginosa Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the Pseudomonas secretome. Mass spectrometry of liposome-sequestered Pseudomonas proteins identified the virulence-promoting hemolytic phospholipase C (PlcH) as having been neutralized. Pseudomonas aeruginosa supernatants incubated with liposomes demonstrated reduced PlcH activity as assessed by the p-nitrophenylphosphorylcholine (NPPC) assay. Testing the in vivo efficacy of the liposomes in a murine cutaneous abscess model revealed that Sm and Ch:Sm, as single dose treatments, attenuated abscesses by >30%, demonstrating a similar effect to that of a mutant lacking plcH in this infection model. Thus, sphingomyelin-containing liposome therapy offers an interesting approach to treat and reduce virulence of complex infections caused by P. aeruginosa and potentially other Gram-negative pathogens expressing PlcH.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Samuel J. T. Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Leo T. Liu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Daniel Pletzer
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- *Correspondence: Daniel Pletzer,
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Robert E. W. Hancock,
| |
Collapse
|
233
|
Kiyaga S, Kyany'a C, Muraya AW, Smith HJ, Mills EG, Kibet C, Mboowa G, Musila L. Genetic Diversity, Distribution, and Genomic Characterization of Antibiotic Resistance and Virulence of Clinical Pseudomonas aeruginosa Strains in Kenya. Front Microbiol 2022; 13:835403. [PMID: 35369511 PMCID: PMC8964364 DOI: 10.3389/fmicb.2022.835403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide. It can produce a range of debilitating infections, have a propensity for developing antimicrobial resistance, and present with a variety of potent virulence factors. This study investigated the sequence types (ST), phenotypic antimicrobial susceptibility profiles, and resistance and virulence genes among clinical isolates from urinary tract and skin and soft tissue infections. Fifty-six P. aeruginosa clinical isolates were obtained from six medical centers across five counties in Kenya between 2015 and 2020. Whole-genome sequencing (WGS) was performed to conduct genomic characterization, sequence typing, and phylogenetic analysis of the isolates. Results showed the presence of globally distributed high-risk clones (ST244 and ST357), local high-risk clones (ST2025, ST455, and ST233), and a novel multidrug-resistant (MDR) clone carrying virulence genes (ST3674). Furthermore, 31% of the study isolates were found to be MDR with phenotypic resistance to a variety of antibiotics, including piperacillin (79%), ticarcillin-clavulanic acid (57%), meropenem (34%), levofloxacin (70%), and cefepime (32%). Several resistance genes were identified, including carbapenemases VIM-6 (ST1203) and NDM-1 (ST357), fluoroquinolone genes, crpP, and qnrVCi, while 14 and 22 different chromosomal mutations were detected in the gyrA and parC genes, respectively. All isolates contained at least three virulence genes. Among the virulence genes identified, phzB1 was the most abundant (50/56, 89%). About 21% (12/56) of the isolates had the exoU+/exoS- genotype, while 73% (41/56) of the isolates had the exoS+/exoU- genotype. This study also discovered 12 novel lineages of P. aeruginosa, of which one (ST3674) demonstrated both extensive antimicrobial resistance and the highest number of virulence genes (236/242, 98%). Although most high-risk clones were detected in Nairobi County, high-risk and clones of interest were found throughout the country, indicating the local spread of global epidemic clones and the emergence of new strains. Thus, this study illustrates the urgent need for coordinated local, regional, and international antimicrobial resistance surveillance efforts.
Collapse
Affiliation(s)
- Shahiid Kiyaga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Cecilia Kyany'a
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Angela W. Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Hunter J. Smith
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Emma G. Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Caleb Kibet
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lillian Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
234
|
CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun 2022; 13:1295. [PMID: 35277504 PMCID: PMC8917168 DOI: 10.1038/s41467-022-28967-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Type 3 Secretion System (T3SS) is a highly conserved virulence structure that plays an essential role in the pathogenesis of many Gram-negative pathogenic bacteria, including Pseudomonas aeruginosa. Exotoxin T (ExoT) is the only T3SS effector protein that is expressed in all T3SS-expressing P. aeruginosa strains. Here we show that T3SS recognition leads to a rapid phosphorylation cascade involving Abl / PKCδ / NLRC4, which results in NLRC4 inflammasome activation, culminating in inflammatory responses that limit P. aeruginosa infection in wounds. We further show that ExoT functions as the main anti-inflammatory agent for P. aeruginosa in that it blocks the phosphorylation cascade through Abl / PKCδ / NLRC4 by targeting CrkII, which we further demonstrate to be important for Abl transactivation and NLRC4 inflammasome activation in response to T3SS and P. aeruginosa infection. Pseudomonas aeruginosa secretes the toxin ExoT, which is important for pathogenesis. Here, the authors show that ExoT inhibits NLRC4-dependent inflammatory responses during wound infection.
Collapse
|
235
|
Xiao Q, Luo Y, Shi W, Lu Y, Xiong R, Wu X, Huang H, Zhao C, Zeng J, Chen C. The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:284. [PMID: 35434009 PMCID: PMC9011280 DOI: 10.21037/atm-22-617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Background Antimicrobial peptides (AMPs) have shown promise in the treatment of multi-resistant pathogens. It was therefore of interest to analyze the effects of the AMP LL-37 on the regulation of several virulence factors related to the quorum sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) in vitro. Methods The minimum inhibitory concentration (MIC) was evaluated by the micro broth dilution method. The expression of QS-related and QS-regulated virulence factor genes was also evaluated. Exotoxin A activity was measured with the nicotinamide adenine dinucleotide (NAD) (Coenzyme I) method; Elastase activity was detected with the elastin-Congo red (ECR) method; Pyocyanin detection was performed using the chloroform extraction method. The effects of LL-37 were assessed by measuring the expression changes of the virulence protein-encoding genes of the strains with quantitative polymerase chain reaction (PCR). Results The MIC of LL-37 against both P. aeruginosa reference strain (ATCC 15692 PAO1) and PA-ΔlasI/rhII was therefore determined to be 256 µg/mL. LL-37 at sub-minimum inhibitory concentrations (sub-MICs) had no significant effects on P. aeruginosa bacterial growth (P>0.05), but significantly downregulated the expression of all 3 virulence factors. Conclusions Interestingly, this effect appeared to be dose-related. These findings suggest that LL-37 could be a potential candidate for QS inhibition against bacterial infection and may have significant clinical potential in the treatment of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanfen Luo
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Shi
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinggui Wu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haihao Huang
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
236
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
237
|
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022; 11:pathogens11030300. [PMID: 35335624 PMCID: PMC8950561 DOI: 10.3390/pathogens11030300] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.
Collapse
|
238
|
Feehan DD, Jamil K, Polyak MJ, Ogbomo H, Hasell M, LI SS, Xiang RF, Parkins M, Trapani JA, Harrison JJ, Mody CH. Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathog 2022; 18:e1010325. [PMID: 35202434 PMCID: PMC8903247 DOI: 10.1371/journal.ppat.1010325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that often infects individuals with the genetic disease cystic fibrosis, and contributes to airway blockage and loss of lung function. Natural killer (NK) cells are cytotoxic, granular lymphocytes that are part of the innate immune system. NK cell secretory granules contain the cytolytic proteins granulysin, perforin and granzymes. In addition to their cytotoxic effects on cancer and virally infected cells, NK cells have been shown to play a role in an innate defense against microbes, including bacteria. However, it is not known if NK cells kill extracellular P. aeruginosa or how bacterial killing might occur at the molecular level. Here we show that NK cells directly kill extracellular P. aeruginosa using NK effector molecules. Live cell imaging of a co-culture of YT cells, a human NK cell line, and GFP-expressing P. aeruginosa in the presence of the viability dye propidium iodide demonstrated that YT cell killing of P. aeruginosa is contact-dependent. CRISPR knockout of granulysin or perforin in YT cells had no significant effect on YT cell killing of P. aeruginosa. Pre-treatment of YT and NK cells with the serine protease inhibitor 3,4-dichloroisocoumarin (DCI) to inhibit all granzymes, resulted in an inhibition of killing. Although singular CRISPR knockout of granzyme B or H had no effect, knockout of both in YT cells completely abrogated killing of P. aeruginosa in comparison to wild type YT cell controls. Nitrocefin assays suggest that the bacterial membrane is damaged. Inhibition of killing by antioxidants suggest that ROS are required for the bactericidal mode-of-action. Taken together, these results identify that NK cells kill P. aeruginosa through a membrane damaging, contact-dependent process that requires granzyme induced ROS production, and moreover, that granzyme B and H are redundant in this killing process. Natural Killer (NK) cells comprise at least 10% of the resident lymphocytes in the lung and are increasingly recognized as an important part of the immune response to bacterial pathogens. Despite invivo studies demonstrating the importance of NK cells in the host response to the respiratory pathogen Pseudomonas aeruginosa, the mechanism of antimicrobial activity has yet to be found. Using human NK cell lines and NK cells isolated from human peripheral blood, we show that NK cells exhibit direct, contact-dependent cytotoxicity against P. aeruginosa, leading to bacterial cell death. NK cells use granzyme B and H to damage bacterial membranes and permeabilize the cells. We provide evidence that this leads to increased reactive oxygen species (ROS) in the bacteria that kills them. Furthermore, granzyme function appears to be redundant because loss of function by one granzyme is rescued by the activity of the other. These findings identify a role for granzymes in the antibacterial functions of NK cells, providing new insight into the host response to P. aeruginosa infections.
Collapse
Affiliation(s)
- David D. Feehan
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Khusraw Jamil
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Maria J. Polyak
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Henry Ogbomo
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Family Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Hasell
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shu Shun LI
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Richard F. Xiang
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher H. Mody
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
239
|
Barceló IM, Torrens G, Escobar-Salom M, Jordana-Lluch E, Capó-Bauzá MM, Ramón-Pallín C, García-Cuaresma D, Fraile-Ribot PA, Mulet X, Oliver A, Juan C. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence. Microbiol Spectr 2022; 10:e0201921. [PMID: 35171032 PMCID: PMC8849096 DOI: 10.1128/spectrum.02019-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
In the current scenario of antibiotic resistance magnification, new weapons against top nosocomial pathogens like Pseudomonas aeruginosa are urgently needed. The interplay between β-lactam resistance and virulence is considered a promising source of targets to be attacked by antivirulence therapies, and in this regard, we previously showed that a peptidoglycan recycling blockade dramatically attenuated the pathogenic power of P. aeruginosa strains hyperproducing the chromosomal β-lactamase AmpC. Here, we sought to ascertain whether this observation could be applicable to other β-lactamases. To do so, P. aeruginosa wild-type or peptidoglycan recycling-defective strains (ΔampG and ΔnagZ) harboring different cloned β-lactamases (transferable GES, VIM, and OXA types) were used to assess their virulence in Galleria mellonella larvae by determining 50% lethal doses (LD50s). A mild yet significant LD50 increase was observed after peptidoglycan recycling disruption per se, whereas the expression of class A and B enzymes did not impact virulence. While the production of the narrow-spectrum class D OXA-2 entailed a slight attenuation, its extended-spectrum derivatives OXA-226 (W159R [bearing a change of W to R at position 159]), OXA-161 (N148D), and principally, OXA-539 (D149 duplication) were associated with outstanding virulence impairments, especially in recycling-defective backgrounds (with some LD50s being >1,000-fold that of the wild type). Although their exact molecular bases remain to be deciphered, these results suggest that mutations affecting the catalytic center and, therefore, the hydrolytic spectrum of OXA-2-derived enzymes also drastically impact the pathogenic power of P. aeruginosa. This work provides new and relevant knowledge to the complex topic of the interplay between the production of β-lactamases and virulence that could be useful to build future therapeutic strategies against P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is one of the leading nosocomial pathogens whose growing resistance makes the development of therapeutic options extremely urgent. The resistance-virulence interplay has classically aroused researchers' interest as a source of therapeutic targets. In this regard, we describe a wide array of virulence attenuations associated with different transferable β-lactamases, among which the production of OXA-2-derived extended-spectrum β-lactamases stood out as a dramatic handicap for pathogenesis, likely as a side effect of mutations causing the expansion of their hydrolytic spectrums. Moreover, our results confirm the validity of disturbing peptidoglycan recycling as a weapon to attenuate P. aeruginosa virulence in class C and D β-lactamase production backgrounds. In the current scenario of dissemination of horizontally acquired β-lactamases, this work brings out new data on the complex interplay between the production of specific enzymes and virulence attenuation that, if complemented with the characterization of the underlying mechanisms, will likely be exploitable to develop future virulence-targeting antipseudomonal strategies.
Collapse
Affiliation(s)
- Isabel M. Barceló
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Gabriel Torrens
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - María Escobar-Salom
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Elena Jordana-Lluch
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - María Magdalena Capó-Bauzá
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Carlos Ramón-Pallín
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Daniel García-Cuaresma
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Pablo A. Fraile-Ribot
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Xavier Mulet
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Antonio Oliver
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Carlos Juan
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
240
|
NrtR Mediated Regulation of H1-T6SS in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0185821. [PMID: 35196795 PMCID: PMC8865458 DOI: 10.1128/spectrum.01858-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
NrtR is a Nudix-related transcriptional regulator that is distributed among diverse bacteria and plays an important role in modulating bacterial intracellular NAD homeostasis. Previously, we showed that NrtR influences the T3SS expression and pathogenesis of Pseudomonas aeruginosa and demonstrated that NrtR mediates T3SS regulation through the cAMP/Vfr pathway. In the present study, we found that mutation of the nrtR gene leads to upregulation of the Hcp secretion island-I type VI secretion system (H1-T6SS). Further analysis revealed that mutation of the nrtR gene results in upregulation of regulatory RNAs (RsmY/RsmZ) that are known to control the H1-T6SS by sequestration of RsmA or RsmN. Simultaneous deletion of rsmY/rsmZ reduced the expression of H1-T6SS in the ΔnrtR mutant. In addition, overexpression of either rsmA or rsmN in ΔnrtR decreased H1-T6SS expression. Chromatin immunoprecipitation (ChIP)-Seq and electrophoretic mobility shift assay (EMSA) analyses revealed that NrtR directly binds to the promoters of rsmY, rsmZ and tssA1 (first gene of the H1-T6SS operon). Overall, the results from this study reveal the molecular details of NrtR-mediated regulation of H1-T6SS in P. aeruginosa. IMPORTANCE NrtR is a Nudix-related transcriptional regulator and controls the NAD cofactor biosynthesis in bacteria. P. aeruginosa NrtR binds to the intergenic region between nadD2 and pcnA to repress the expression of the two operons, therefore controlling the NAD biosynthesis. We have previously reported that NrtR controls T3SS expression via the cAMP/Vfr pathway in P. aeruginosa. However, the global regulatory function and direct binding targets of the NrtR remain elusive in P. aeruginosa. This study reveals novel direct regulatory targets of the NrtR in P. aeruginosa, elucidating the molecular mechanism of NrtR-mediated regulation of H1-T6SS.
Collapse
|
241
|
Bhandari S, Adhikari S, Karki D, Chand AB, Sapkota S, Dhungel B, Banjara MR, Joshi P, Lekhak B, Rijal KR. Antibiotic Resistance, Biofilm Formation and Detection of mexA/mexB Efflux-Pump Genes Among Clinical Isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.810863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efflux-pump system and biofilm formation are two important mechanisms Pseudomonas aeruginosa deploys to escape the effects of antibiotics. The current study was undertaken from September 2019 to March 2020 at a tertiary-care hospital in Kathmandu in order to ascertain the burden of P. aeruginosa in clinical specimens, examine their biofilm-forming ability and determine their antibiotic susceptibility pattern along with the possession of two efflux-pump genes-mexA and mexB. Altogether 2820 clinical specimens were collected aseptically from the patients attending the hospital and processed according to standard microbiological procedures. Identification of P. aeruginosa was done by Gram stain microscopy and an array of biochemical tests. All the P. aeruginosa isolates were subjected to in vitro antibiotic susceptibility testing and their biofilm-forming ability was also examined. Presence of mexA and mexB efflux-pump genes was analyzed by Polymerase Chain Reaction (PCR) using specific primers. Out of 603 culture positive isolates, 31 (5.14%) were found to be P. aeruginosa, of which 55% were multi-drug resistant (MDR). Out of 13 commonly used antibiotics tested by Kirby-Bauer disc diffusion method, greatest resistance was shown against piperacillin-tazobactam 15 (48.4%) and ceftazidime 15 (48.4%), and least against meropenem 6 (19.4%) and ofloxacin 5 (16.2%). Of all 17 MDR isolates subjected to biofilm detection, strong biofilm formation was exhibited by 11 (65%) and 14 (82%) isolates with microtiter plate method and tube method respectively. Out of 17 isolates tested, 12 (70.6%) isolates possessed mexA and mexB genes indicating the presence of active efflux-pump system. Higher number of the isolates recovered from sputum 7 (58.3%) and pus 5 (41.7%) possessed mexA/mexB genes while the genes were not detected at all in the isolates recovered from the urine (p<0.05). This study assessed no significant association between biofilm production and multi-drug resistance (p>0.05). Adoption of stern measures by the concerned authorities to curb the incidence of multi-drug resistant and biofilm-forming isolates is recommended to prevent their dissemination in the hospital settings.
Collapse
|
242
|
Golla VK, Piselli C, Kleinekathöfer U, Benz R. Permeation of Fosfomycin through the Phosphate-Specific Channels OprP and OprO of Pseudomonas aeruginosa. J Phys Chem B 2022; 126:1388-1403. [PMID: 35138863 DOI: 10.1021/acs.jpcb.1c08696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for many nosocomial infections. It is quite resistant to various antibiotics, caused by the absence of general diffusion pores in the outer membrane. Instead, it contains many substrate-specific channels. Among them are the two phosphate- and pyrophosphate-specific porins OprP and OprO. Phosphonic acid antibiotics such as fosfomycin and fosmidomycin seem to be good candidates for using these channels to enter P. aeruginosa bacteria. Here, we investigated the permeation of fosfomycin through OprP and OprO using electrophysiology and molecular dynamics (MD) simulations. The results were compared to those of the fosmidomycin translocation, for which additional MD simulations were performed. In the electrophysiological approach, we noticed a higher binding affinity of fosfomycin than of fosmidomycin to OprP and OprO. In MD simulations, the ladder of arginine residues and the cluster of lysine residues play an important role in the permeation of fosfomycin through the OprP and OprO channels. Molecular details on the permeation of fosfomycin through OprP and OprO channels were derived from MD simulations and compared to those of fosmidomycin translocation. In summary, this study demonstrates that the selectivity of membrane channels can be employed to improve the permeation of antibiotics into Gram-negative bacteria and especially into resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
243
|
Qu J, Cai Z, Duan X, Zhang H, Cheng H, Han S, Yu K, Jiang Z, Zhang Y, Liu Y, Bai F, Liu Y, Liu L, Yang L. Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients. Cell Biosci 2022; 12:14. [PMID: 35139898 PMCID: PMC8827185 DOI: 10.1186/s13578-022-00748-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Background COVID-19 pneumonia has caused huge impact on the health of infected patients and associated with high morbidity and mortality. Shift in the lung microbial ecology upon such viral infection often worsens the disease and increases host susceptibility to superinfections. Bacterial superinfection contributes to the aggravation of COVID-19 and poses a great challenge to clinical treatments. An in-depth investigation on superinfecting bacteria in COVID-19 patients might facilitate understanding of lung microenvironment post virus infections and superinfection mechanism. Results We analyzed the adaptation of two pairs of P. aeruginosa strains with the same MLST type isolated from two critical COVID-19 patients by combining sequencing analysis and phenotypic assays. Both P. aeruginosa strains were found to turn on alginate biosynthesis and attenuate type VI secretion system (T6SS) during short-term colonization in the COVID-19 patients, which results in excessive biofilm formation and virulence reduction-two distinct markers for chronic infections. The macrophage cytotoxicity test and intracellular reactive oxygen species measurement confirmed that the adapted P. aeruginosa strains reduced their virulence towards host cells and are better to escape from host immune clearance than their ancestors. Conclusion Our study suggests that SARS-CoV-2 infection can create a lung environment that allow rapid adaptive evolution of bacterial pathogens with genetic traits suitable for chronic infections. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00748-z.
Collapse
Affiliation(s)
- Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangke Duan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Han Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hang Cheng
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuhong Han
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaiwei Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaofang Jiang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China
| | - Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Fang Bai
- School of Biological Sciences, Nankai University, Tianjin, 300071, China
| | - Yingxia Liu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lei Liu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China. .,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Liang Yang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), National Clinical Research Center for Infectious Diseases, Shenzhen, 518000, Guangdong, China. .,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China. .,Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
244
|
Gervasoni S, Spencer J, Hinchliffe P, Pedretti A, Vairoletti F, Mahler G, Mulholland AJ. A multiscale approach to predict the binding mode of metallo beta-lactamase inhibitors. Proteins 2022; 90:372-384. [PMID: 34455628 PMCID: PMC8944931 DOI: 10.1002/prot.26227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a major threat to global public health. β-lactamases, which catalyze breakdown of β-lactam antibiotics, are a principal cause. Metallo β-lactamases (MBLs) represent a particular challenge because they hydrolyze almost all β-lactams and to date no MBL inhibitor has been approved for clinical use. Molecular simulations can aid drug discovery, for example, predicting inhibitor complexes, but empirical molecular mechanics (MM) methods often perform poorly for metalloproteins. Here we present a multiscale approach to model thiol inhibitor binding to IMP-1, a clinically important MBL containing two catalytic zinc ions, and predict the binding mode of a 2-mercaptomethyl thiazolidine (MMTZ) inhibitor. Inhibitors were first docked into the IMP-1 active site, testing different docking programs and scoring functions on multiple crystal structures. Complexes were then subjected to molecular dynamics (MD) simulations and subsequently refined through QM/MM optimization with a density functional theory (DFT) method, B3LYP/6-31G(d), increasing the accuracy of the method with successive steps. This workflow was tested on two IMP-1:MMTZ complexes, for which it reproduced crystallographically observed binding, and applied to predict the binding mode of a third MMTZ inhibitor for which a complex structure was crystallographically intractable. We also tested a 12-6-4 nonbonded interaction model in MD simulations and optimization with a SCC-DFTB QM/MM approach. The results show the limitations of empirical models for treating these systems and indicate the need for higher level calculations, for example, DFT/MM, for reliable structural predictions. This study demonstrates a reliable computational pipeline that can be applied to inhibitor design for MBLs and other zinc-metalloenzyme systems.
Collapse
Affiliation(s)
- Silvia Gervasoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Franco Vairoletti
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | | |
Collapse
|
245
|
Tony-Odigie A, Wilke L, Boutin S, Dalpke AH, Yi B. Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce P. aeruginosa Induced Inflammation. Front Cell Infect Microbiol 2022; 12:824101. [PMID: 35174108 PMCID: PMC8842722 DOI: 10.3389/fcimb.2022.824101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic Pseudomonas aeruginosa infections play an important role in the progress of lung disease in patients suffering from cystic fibrosis (CF). Recent studies indicate that polymicrobial microbiome profiles in the airway are associated with less inflammation. Thus, the hypothesis was raised that certain commensal bacteria might protect the host from inflammation. We therefore performed a screening study with commensals isolated from CF airway microbiome samples to identify potential beneficial commensals. We isolated more than 80 aerobic or facultative anaerobic commensal strains, including strains from genera Streptococcus, Neisseria, Actinomyces, Corynebacterium, Dermabacter, Micrococcus and Rothia. Through a screening experiment of co-infection in human epithelial cell lines, we identified multiple commensal strains, especially strains belonging to Streptococcus mitis, that reduced P. aeruginosa triggered inflammatory responses. The results were confirmed by co-infection experiments in ex-vivo precision cut lung slices (PCLS) from mice. The underlying mechanisms of the complex host-pathogen-commensal crosstalk were investigated from both the host and the bacterial sides with a focus on S. mitis. Transcriptome changes in the host in response to co-infection and mono-infection were evaluated, and the results indicated that several signalling pathways mediating inflammatory responses were downregulated by co-infection with S. mitis and P. aeruginosa compared to P. aeruginosa mono-infection, such as neutrophil extracellular trap formation. The genomic differences among S. mitis strains with and without protective effects were investigated by whole genome sequencing, revealing genes only present in the S. mitis strains showing protective effects. In summary, through both in vitro and ex vivo studies, we could identify a variety of commensal strains that may reduce host inflammatory responses induced by P. aeruginosa infection. These findings support the hypothesis that CF airway commensals may protect the host from inflammation.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonie Wilke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Buqing Yi,
| |
Collapse
|
246
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
247
|
Acebrón-García-de-Eulate M, Mayol-Llinàs J, Holland MTO, Kim SY, Brown KP, Marchetti C, Hess J, Di Pietro O, Mendes V, Abell C, Floto RA, Coyne AG, Blundell TL. Discovery of Novel Inhibitors of Uridine Diphosphate- N-Acetylenolpyruvylglucosamine Reductase (MurB) from Pseudomonas aeruginosa, an Opportunistic Infectious Agent Causing Death in Cystic Fibrosis Patients. J Med Chem 2022; 65:2149-2173. [PMID: 35080396 PMCID: PMC7614804 DOI: 10.1021/acs.jmedchem.1c01684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is of major concern for cystic fibrosis patients where this infection can be fatal. With the emergence of drug-resistant strains, there is an urgent need to develop novel antibiotics against P. aeruginosa. MurB is a promising target for novel antibiotic development as it is involved in the cell wall biosynthesis. MurB has been shown to be essential in P. aeruginosa, and importantly, no MurB homologue exists in eukaryotic cells. A fragment-based drug discovery approach was used to target Pa MurB. This led to the identification of a number of fragments, which were shown to bind to MurB. One fragment, a phenylpyrazole scaffold, was shown by ITC to bind with an affinity of Kd = 2.88 mM (LE 0.23). Using a structure guided approach, different substitutions were synthesized and the initial fragment was optimized to obtain a small molecule with Kd = 3.57 μM (LE 0.35).
Collapse
Affiliation(s)
| | - Joan Mayol-Llinàs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Matthew T O Holland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - So Yeon Kim
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Karen P Brown
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB23 3RE, UK
| | - Chiara Marchetti
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeannine Hess
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ornella Di Pietro
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB23 3RE, UK
| | - Anthony G Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| |
Collapse
|
248
|
Cheng X, Lu M, Qiu H, Li Y, Huang L, Dai W. Spontaneous quorum-sensing hierarchy reprogramming in Pseudomonas aeruginosa laboratory strain PAO1. AMB Express 2022; 12:6. [PMID: 35083573 PMCID: PMC8792115 DOI: 10.1186/s13568-022-01344-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa strain PAO1 has been commonly used in the laboratory, with frequent genome variations reported. Quorum sensing (QS), a cell–cell communication system, plays important role in controlling a variety of virulence factors. However, the evolution and adaptability of QS in those laboratory strains are still poorly understood. Here we used the QS reporter and whole-genome sequencing (WGS) to systematically investigate the QS phenotypes and corresponding genetic basis in collected laboratory PAO1 strains. We found that the PAO1-z strain has an inactive LasR protein, while bearing an active Rhl QS system and exhibiting QS-controlled protease-positive activity. Our study revealed that an 18-bp insertion in mexT gene gave rise to the active QS system in the PAO1-z strain. This MexT inactivation restored the QS activity caused by the inactive LasR, showing elevated production of pyocyanin, cyanide and elastase. Our results implied the evolutionary trajectory for the PAO1-z strain, with the evulutionary order from the first Las QS inactivation to the final Rhl QS activation. Our findings point out that QS homeostasis occurs in the laboratory P. aeruginosa strain, offering a potential platform for the QS study in clinical isolates.
Collapse
|
249
|
Dorri K, Modaresi F, Shakibaie MR, Moazamian E. Effect of gold nanoparticles on the expression of efflux pump mexA and mexB genes of Pseudomonas aeruginosa strains by Quantitative real-time PCR. PHARMACIA 2022; 69:125-133. [DOI: 10.3897/pharmacia.69.e77608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa infections are usually difficult to treat, and there are limited antibiotics for treating them. Increased antibiotic resistance of this bacterium, especially in a multidrug form, has caused many problems for treatment. Nowadays, metal nanoparticles are considered as appropriate alternatives to antibiotics. The objective of the present study was to investigate the effect of gold nanoparticles on the expression of MexB and MexA genes in Pseudomonas aeruginosa isolates.Pseudomonas aeruginosa isolate was identified using biochemical tests and an API kit. The antibiotic sensitivitytest for different antibiotics was performed withthe Kirby-Bauer test according to the CLSI standard. The presence of MexB and MexA genes was assessed by PCR. The effect of gold nanoparticles was investigated by microdilution to evaluate the minimum inhibitory concentration, and the expression of MexB and MexA treated genes was done with silver nanoparticles by the Real-Time PCR method.40 Pseudomonas aeruginosa isolates were detected and identified. These isolates showed significant resistance to various antibiotics. All strains were carriers of MexB and MexA genes, and finally, in the expression of MexB and MexA genes,a significant decrease in the expression of these genes was observed in the samples treated with gold nanoparticles compared to non-treated samples.One of the mechanisms of antibacterial activity of gold nanoparticles is through reducing the expression of mexA and mexB genes and thus reducing the number of active efflux pumps at the cell surface.
Collapse
|
250
|
Doumith M, Alhassinah S, Alswaji A, Alzayer M, Alrashidi E, Okdah L, Aljohani S, Balkhy HH, Alghoribi MF. Genomic Characterization of Carbapenem-Non-susceptible Pseudomonas aeruginosa Clinical Isolates From Saudi Arabia Revealed a Global Dissemination of GES-5-Producing ST235 and VIM-2-Producing ST233 Sub-Lineages. Front Microbiol 2022; 12:765113. [PMID: 35069471 PMCID: PMC8770977 DOI: 10.3389/fmicb.2021.765113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Carbapenem-resistant P. aeruginosa has become a major clinical problem due to limited treatment options. However, studies assessing the trends in the molecular epidemiology and mechanisms of antibiotic resistance in this pathogen are lacking in Saudi Arabia. Here, we reported the genome characterization in a global context of carbapenem non-susceptible clinical isolates from a nationally representative survey. The antibiotic resistance profiles of the isolates (n = 635) collected over 14 months between March 2018 and April 2019 from different geographical regions of Saudi Arabia showed resistance rates to relevant β-lactams, aminoglycosides and quinolones ranging between 6.93 and 27.56%. Overall, 22.52% (143/635) of the isolates exhibited resistance to both imipenem and meropenem that were mainly explained by porin loss and efflux overexpression. However, 18.18% of resistant isolates harbored genes encoding GES (69.23%), VIM (23.07%), NDM (3.85%) or OXA-48-like (3.85%) carbapenemases. Most common GES-positive isolates produced GESs −5, −15 or −1 and all belonged to ST235 whereas the VIM-positive isolates produced mainly VIM-2 and belonged to ST233 or ST257. GES and VIM producers were detected at different sampling periods and in different surveyed regions. Interestingly, a genome-wide comparison revealed that the GES-positive ST235 and VIM-2-positive ST233 genomes sequenced in this study and those available through public databases from various locations worldwide, constituted each a phylogenetically closely related sub-lineage. Profiles of virulence determinants, antimicrobial resistance genes and associated mobile elements confirmed relatedness within each of these two different sub-lineages. Sequence analysis located the blaGES gene in nearly all studied genomes (95.4%) in the same integrative conjugative element that also harbored the acc(6′)-Ib, aph(3′)-XV, aadA6, sul1, tet(G), and catB resistance genes while blaVIM–2 in most (98.89%) ST233-positive genomes was co-located with aac(6′)-I1, dfrB-5, and aac(3′)-Id in the same class I integron. The study findings revealed the global spread of GES-5 ST235 and VIM-2 ST233 sub-lineages and highlighted the importance of routine detection of rare β-lactamases.
Collapse
Affiliation(s)
- Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sarah Alhassinah
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman Alswaji
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maha Alzayer
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Essa Alrashidi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Liliane Okdah
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sameera Aljohani
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | | | - Majed F Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|