201
|
Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol 2014; 64:471-497. [PMID: 25418738 DOI: 10.1099/jmm.0.023036-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/17/2014] [Indexed: 01/23/2023] Open
Abstract
Metals such as mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years with until recently, little understanding of their mode of action. The discovery of antibiotics and new organic antimicrobial compounds during the twentieth century saw a general decline in the clinical use of antimicrobial metal compounds, with the exception of the rediscovery of the use of silver for burns treatments and niche uses for other metal compounds. Antibiotics and new antimicrobials were regarded as being safer for the patient and more effective than the metal-based compounds they supplanted. Bacterial metal ion resistances were first discovered in the second half of the twentieth century. The detailed mechanisms of resistance have now been characterized in a wide range of bacteria. As the use of antimicrobial metals is limited, it is legitimate to ask: are antimicrobial metal resistances in pathogenic and commensal bacteria important now? This review details the new, rediscovered and 'never went away' uses of antimicrobial metals; examines the prevalence and linkage of antimicrobial metal resistance genes to other antimicrobial resistance genes; and examines the evidence for horizontal transfer of these genes between bacteria. Finally, we discuss the possible implications of the widespread dissemination of these resistances on re-emergent uses of antimicrobial metals and how this could impact upon the antibiotic resistance problem.
Collapse
Affiliation(s)
- Jon L Hobman
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
202
|
Prevalence of aminoglycoside modifying enzyme and 16S ribosomal RNA methylase genes among aminoglycoside-resistant Escherichia coli isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:123-6. [PMID: 25442860 DOI: 10.1016/j.jmii.2014.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Aminoglycoside resistance determinants among 188 aminoglycoside-resistant blood culture Escherichia coli isolates from a tertiary hospital in Hong Kong, from 2004 to 2010 were investigated. Overall, 91% had aac(3)-II, 12.2% had aac(6')-Ib/Ib-cr, and 5.4% had the methylase genes (rmtB, armA). Aminoglycoside-resistant isolates with aac(')-Ib/Ib-cr, rmtB, and armA often had coresistance to multiple other antibiotics.
Collapse
|
203
|
Partridge SR, Ginn AN, Wiklendt AM, Ellem J, Wong JSJ, Ingram P, Guy S, Garner S, Iredell JR. Emergence of blaKPC carbapenemase genes in Australia. Int J Antimicrob Agents 2014; 45:130-6. [PMID: 25465526 DOI: 10.1016/j.ijantimicag.2014.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/03/2023]
Abstract
blaKPC genes encoding resistance to carbapenems are increasingly widely reported and are now endemic in parts of several countries, but only one Klebsiella pneumoniae isolate carrying blaKPC-2 had previously been reported in Australia, in 2010. Here we characterised this isolate, six additional K. pneumoniae and one Escherichia coli carrying blaKPC and another K. pneumoniae lacking blaKPC, all isolated in Australia in 2012. Seven K. pneumoniae belonged to clonal complex (CC) 292, associated with blaKPC in several countries. Five with blaKPC-2 plus the isolate lacking a blaKPC gene were sequence type 258 (ST258) and the seventh was the closely related ST512 with blaKPC-3. The eighth K. pneumoniae isolate, novel ST1048, and the E. coli (ST131) also carried blaKPC-2. blaKPC genes were associated with the most common Tn4401a variant, which gives the highest levels of expression, in all isolates. The ST258 isolates appeared to share a similar set of plasmids, with IncFIIK, IncX3 and ColE-type plasmids identified in most isolates. All K. pneumoniae isolates had a characteristic insertion in the ompK35 gene resulting in a frameshift and early termination, but only the ST512 isolate had a GlyAsp insertion in loop 3 of OmpK36 that may contribute to increased resistance. The clinical epidemiology of blaKPC emergence in Australia thus appears to reflect the global dominance of K. pneumoniae CC292 (and perhaps E. coli ST131). Some, but not all, patients carrying these isolates had previously been hospitalised outside Australia, suggesting multiple discrete importation events of closely related strains, as well as undetected nosocomial spread.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Westmead Millennium Institute, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Andrew N Ginn
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Westmead Millennium Institute, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Agnieszka M Wiklendt
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, NSW, Australia
| | - Justin Ellem
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, NSW, Australia
| | - Jenny S J Wong
- Dorevitch Pathology, Department of Microbiology, Footscray, Vic., Australia
| | - Paul Ingram
- Department of Microbiology, Royal Perth Hospital, Perth, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Stephen Guy
- Department of Infectious Diseases, Western Health, Footscray, Vic., Australia
| | - Sarah Garner
- Dorevitch Pathology, Department of Microbiology, Heidelberg, Vic., Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Westmead Millennium Institute, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
204
|
Bellanger X, Guilloteau H, Bonot S, Merlin C. Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:872-82. [PMID: 25000583 DOI: 10.1016/j.scitotenv.2014.06.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 05/26/2023]
Abstract
Plasmid-based dissemination of antibiotic resistance genes in environmental microbial communities is a matter of concern for public health, but it remains difficult to study for methodological reasons. In this study, we used the broad host range plasmid pB10 to compare and to point out the main drawbacks of the three different approaches currently used to evaluate plasmid transfer in natural communities. Culture-based selection of transconjugants appeared to be compromised by high prevalence of antibiotic resistances among natural communities, unless high loads of initial pB10-donor inocula were used. Fluorescence-based detection of transconjugants reached a dead-end consequently to the narrow host range of bacteria expressing fluorescent proteins from a genetically modified pB10 plasmid, in addition to the relatively high background level of fluorescence exhibited by some environmental matrices. The molecular-based approach was the only one to provide a mean to detect rare plasmid transfer events following a low but realistic initial pB10-donor inoculation. Whatever the method, culture-based or molecular-based, the detection of successful transfer events in a given environmental matrix seemed to be linked to the initial stability of the donor inoculum. Depending on the matrix considered, eukaryotic predation plays a significant role in either limiting or promoting the plasmid transfer events.
Collapse
Affiliation(s)
- Xavier Bellanger
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Hélène Guilloteau
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Sébastien Bonot
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Christophe Merlin
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
205
|
Biosensors, antibiotics and food. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:153-85. [PMID: 25216955 DOI: 10.1007/978-3-662-43619-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.
Collapse
|
206
|
Chhibber S, Gupta P, Kaur S. Bacteriophage as effective decolonising agent for elimination of MRSA from anterior nares of BALB/c mice. BMC Microbiol 2014; 14:212. [PMID: 25112504 PMCID: PMC4236609 DOI: 10.1186/s12866-014-0212-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nasal carriers not only pose serious threat to themselves but also to the community by playing an active role in the dissemination of serious and life threatening S. aureus especially MRSA strains. The present study focuses on the use of broad spectrum lytic phage as decolonising agent. In addition, the combined use of lytic phage with mupirocin has also been investigated as an effective decolonising regimen. The effect of phage on the adherence, invasion and cytotoxic effect of MRSA strains on nasal epithelial cells was studied in an ex-vivo model of cultured murine nasal epithelial cells. This was followed by demonstration of therapeutic potential of phage along with mupirocin in decolonising the nares of BALB/c mice using a nasal model of MRSA colonisation. RESULTS Phage was able to significantly reduce the in vitro adherence, invasion and cytotoxicity of MRSA 43300 as well as other clinical MRSA strains on murine nasal epithelial cells as compared to untreated control. Also, the frequency of emergence of spontaneous mutants decreased to negligible levels when both the agents (phage and mupirocin) were used together. CONCLUSION Phage MR-10, given along with mupirocin showed an additive effect and the combination was able to effectively eradicate the colonising MRSA population from the nares of mice by day 5.
Collapse
|
207
|
Tagg KA, Iredell JR, Partridge SR. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid. Antimicrob Agents Chemother 2014; 58:4949-52. [PMID: 24890591 PMCID: PMC4135994 DOI: 10.1128/aac.02773-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/27/2014] [Indexed: 11/20/2022] Open
Abstract
Sequencing of pJIE512b, a 92.3-kb IncI1 sequence type 2 (ST2) plasmid carrying bla(CMY-2), revealed a bla(CMY-2) context that appeared to have been mobilized from an IncA/C plasmid by the insertion sequence IS1294. A comparison with published plasmids suggests that bla(CMY-2) has been mobilized from IncA/C to IncI1 plasmids more than once by IS1294-like elements. Alignment of pJIE512b with the only other available IncI1 ST2 plasmid revealed differences across the backbones, indicating variability within this sequence type.
Collapse
Affiliation(s)
- Kaitlin A Tagg
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, and The University of Sydney, Westmead, New South Wales, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, and The University of Sydney, Westmead, New South Wales, Australia
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, and The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
208
|
Singer RS, Williams-Nguyen J. Human health impacts of antibiotic use in agriculture: A push for improved causal inference. Curr Opin Microbiol 2014; 19:1-8. [PMID: 24945599 DOI: 10.1016/j.mib.2014.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022]
Abstract
Resistant bacterial infections in humans continue to pose a significant challenge globally. Antibiotic use in agriculture contributes to this problem, but failing to appreciate the relative importance of diverse potential causes represents a significant barrier to effective intervention. Standard epidemiologic methods alone are often insufficient to accurately describe the relationships between agricultural antibiotic use and resistance. The integration of diverse methodologies from multiple disciplines will be essential, including causal network modeling and population dynamics approaches. Because intuition can be a poor guide in directing investigative efforts of these non-linear and interconnected systems, integration of modeling efforts with empirical epidemiology and microbiology in an iterative process may result in more valuable information than either in isolation.
Collapse
Affiliation(s)
- Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA; Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Jessica Williams-Nguyen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA; Department of Epidemiology, School of Public Health, University of Washington, 1959 NE Pacific Street, Health Sciences Building F-262, Box 357236, Seattle, WA 98195-7236, USA
| |
Collapse
|
209
|
Baba Ahmed-Kazi Tani Z, Arlet G. [News of antibiotic resistance among Gram-negative bacilli in Algeria]. ACTA ACUST UNITED AC 2014; 62:169-78. [PMID: 24819127 DOI: 10.1016/j.patbio.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country.
Collapse
Affiliation(s)
- Z Baba Ahmed-Kazi Tani
- Laboratoire « antibiotiques antifongiques : physico-chimie, synthèse et activité biologique », faculté des sciences de la nature et de la vie et sciences de la terre et de l'univers, université Abou Bekr Belkaïd, rocade 2, BP 119, Tlemcen, Algérie
| | - G Arlet
- Département de bactériologie, faculté de médecine, université Pierre-et-Marie-Curie, 27, rue de Chaligny, 75012 Paris, France; Département de bactériologie, hôpital Tenon, hôpitaux universitaires Est parisiens, Assistance publique-Hôpitaux de Paris, 4, rue de la Chine, 75970 Paris cedex 20, France.
| |
Collapse
|
210
|
Complete nucleotide sequence of two multidrug-resistant IncR plasmids from Klebsiella pneumoniae. Antimicrob Agents Chemother 2014; 58:4207-10. [PMID: 24752259 DOI: 10.1128/aac.02773-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the complete nucleotide sequence of two IncR replicons encoding multidrug resistance determinants, including β-lactam (blaDHA-1, blaSHV-12), aminoglycoside (aphA1, strA, strB), and fluoroquinolone (qnrB4, aac6'-1b-cr) resistance genes. The plasmids have backbones that are similar to each other, including the replication and stability systems, and contain a wide variety of transposable elements carrying known antibiotic resistance genes. This study confirms the increasing clinical importance of IncR replicons as resistance gene carriers.
Collapse
|
211
|
Coleman NV, Richardson-Harris J, Wilson NL, Holmes AJ. Insertion sequence ISPst4 activates pUC plasmid replication inPseudomonas stutzeri. FEMS Microbiol Lett 2014; 356:242-9. [DOI: 10.1111/1574-6968.12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nicholas V. Coleman
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | | | - Neil L. Wilson
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | - Andrew J. Holmes
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| |
Collapse
|
212
|
Norberg P, Bergström M, Hermansson M. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm. PLoS One 2014; 9:e92321. [PMID: 24647540 PMCID: PMC3960245 DOI: 10.1371/journal.pone.0092321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Abstract
The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp) and pMCBF6 (66 729 bp) have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are “res-site hunters” that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA) and the vegetative replication origin (oriV). One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb) has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND) system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.
Collapse
Affiliation(s)
- Peter Norberg
- Department of Infectious Diseases, University of Gothenburg, Göteborg, Sweden
| | - Maria Bergström
- Department of Chemistry and Molecular Biology, Microbiology, University of Gothenburg, Göteborg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, Microbiology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
213
|
Kaur S, Harjai K, Chhibber S. Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLoS One 2014; 9:e90411. [PMID: 24594764 PMCID: PMC3940871 DOI: 10.1371/journal.pone.0090411] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
Background Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. Methodology Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. Result Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. Conclusion This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
214
|
Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014; 38:761-78. [PMID: 24484530 DOI: 10.1111/1574-6976.12062] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022] Open
Abstract
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, Portugal
| | | | | |
Collapse
|
215
|
Yang J, Wang C, Wu J, Liu L, Zhang G, Feng J. Characterization of a multiresistant mosaic plasmid from a fish farm Sediment Exiguobacterium sp. isolate reveals aggregation of functional clinic-associated antibiotic resistance genes. Appl Environ Microbiol 2014; 80:1482-8. [PMID: 24362420 PMCID: PMC3911065 DOI: 10.1128/aem.03257-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/11/2013] [Indexed: 11/20/2022] Open
Abstract
The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Li Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
216
|
Partridge SR. Movement of resistance genes in hospitals. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
217
|
Venturini C, Hassan KA, Roy Chowdhury P, Paulsen IT, Walker MJ, Djordjevic SP. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts. PLoS One 2013; 8:e78862. [PMID: 24223859 PMCID: PMC3817090 DOI: 10.1371/journal.pone.0078862] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
Collapse
Affiliation(s)
- Carola Venturini
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Piklu Roy Chowdhury
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
- NSW Department of Primary Industries, Camden, New South Wales, Australia
- The ithree Institute - Infection. Immunity. Innovation, University of Technology, Sydney, New South Wales, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Steven P. Djordjevic
- The ithree Institute - Infection. Immunity. Innovation, University of Technology, Sydney, New South Wales, Australia
- * . E-mail:
| |
Collapse
|
218
|
Di Pilato V, Pollini S, Rossolini GM. Characterization of plasmid pAX22, encoding VIM-1 metallo-β-lactamase, reveals a new putative mechanism of In70 integron mobilization. J Antimicrob Chemother 2013; 69:67-71. [DOI: 10.1093/jac/dkt311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
219
|
Complete sequence of pSAM7, an IncX4 plasmid carrying a novel blaCTX-M-14b transposition unit isolated from Escherichia coli and Enterobacter cloacae from cattle. Antimicrob Agents Chemother 2013; 57:4590-4. [PMID: 23836183 DOI: 10.1128/aac.01157-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The same plasmid carrying blaCTX-M-14b was identified from an Escherichia coli isolate and an Enterobacter cloacae isolate collected from cattle in the United Kingdom by complete plasmid sequencing. This 35,341-bp plasmid, pSAM7, had an IncX4 backbone that is 99% identical to that of pJIE143 from a human isolate in Australia. PCR screening identified pSAM7-like plasmids in three other E. coli isolates of different multilocus sequence types isolated from cattle on different farms in the United Kingdom.
Collapse
|
220
|
Ginn AN, Zong Z, Wiklendt AM, Thomas LC, Merlino J, Gottlieb T, van Hal S, Harkness J, Macleod C, Bell SM, Leroi MJ, Partridge SR, Iredell JR. Limited diversity in the gene pool allows prediction of third-generation cephalosporin and aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents 2013; 42:19-26. [PMID: 23706544 DOI: 10.1016/j.ijantimicag.2013.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/06/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022]
Abstract
Early appropriate antibiotic treatment reduces mortality in severe sepsis, but current methods to identify antibiotic resistance still generally rely on bacterial culture. Modern diagnostics promise rapid gene detection, but the apparent diversity of relevant resistance genes in Enterobacteriaceae is a problem. Local surveys and analysis of publicly available data sets suggested that the resistance gene pool is dominated by a relatively small subset of genes, with a very high positive predictive value for phenotype. In this study, 152 Escherichia coli and 115 Klebsiella pneumoniae consecutive isolates with a cefotaxime, ceftriaxone and/or ceftazidime minimum inhibitory concentration (MIC) of ≥ 2 μg/mL were collected from seven major hospitals in Sydney (Australia) in 2008-2009. Nearly all of those with a MIC in excess of European Committee on Antimicrobial Susceptibility Testing (EUCAST) resistance breakpoints contained one or more representatives of only seven gene types capable of explaining this phenotype, and this included 96% of those with a MIC ≥ 2 μg/mL to any one of these drugs. Similarly, 97% of associated gentamicin-non-susceptibility (MIC ≥ 8 μg/mL) could be explained by three gene types. In a country like Australia, with a background prevalence of resistance to third-generation cephalosporins of 5-10%, this equates to a negative predictive value of >99.5% for non-susceptibility and is therefore suitable for diagnostic application. This is an important proof-of-principle that should be tested in other geographic locations.
Collapse
Affiliation(s)
- Andrew N Ginn
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Genetic characterization of IncI2 plasmids carrying blaCTX-M-55 spreading in both pets and food animals in China. Antimicrob Agents Chemother 2013; 57:2824-7. [PMID: 23478963 DOI: 10.1128/aac.02155-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pHN1122-1 carrying bla(CTX-M-55), from an Escherichia coli isolate from a dog, was completely sequenced. pHN1122-1 has an IncI2 replicon and typical IncI2-associated genetic modules, including mok/hok-finO-yafA/B, nikABC, and two transfer regions, tra and pil, as well as a shufflon. bla(CTX-M-55) is found within a 3.084-kb ISEcp1 transposition unit that includes a fragment of IncA/C plasmid backbone. pHN1122-1 and closely related plasmids were identified in other E. coli isolates from animals in China.
Collapse
|
223
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
224
|
Rapa RA, Shimmon R, Djordjevic SP, Stokes HW, Labbate M. Deletion of integron-associated gene cassettes impact on the surface properties of Vibrio rotiferianus DAT722. PLoS One 2013; 8:e58430. [PMID: 23484028 PMCID: PMC3590141 DOI: 10.1371/journal.pone.0058430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 02/06/2013] [Indexed: 01/21/2023] Open
Abstract
Background The integron is a genetic recombination system that catalyses the acquisition of genes on mobilisable elements called gene cassettes. In Vibrio species, multiple acquired gene cassettes form a cassette array that can comprise 1–3% of the bacterial genome. Since 75% of these gene cassettes contain genes encoding proteins of uncharacterised function, how the integron has driven adaptation and evolution in Vibrio species remains largely unknown. A feature of cassette arrays is the presence of large indels. Using Vibrio rotiferianus DAT722 as a model organism, the aim of this study was to determine how large cassette deletions affect vibrio physiology with a view to improving understanding into how cassette arrays influence bacterial host adaptation and evolution. Methodology/Principal Findings Biological assays and proteomic techniques were utilised to determine how artificially engineered deletions in the cassette array of V. rotiferianus DAT722 affected cell physiology. Multiple phenotypes were identified including changes to growth and expression of outer membrane porins/proteins and metabolic proteins. Furthermore, the deletions altered cell surface polysaccharide with Proton Nuclear Magnetic Resonance on whole cell polysaccharide identifying changes in the carbohydrate ring proton region indicating that gene cassette products may decorate host cell polysaccharide via the addition or removal of functional groups. Conclusions/Significance From this study, it was concluded that deletion of gene cassettes had a subtle effect on bacterial metabolism but altered host surface polysaccharide. Deletion (and most likely rearrangement and acquisition) of gene cassettes may provide the bacterium with a mechanism to alter its surface properties, thus impacting on phenotypes such as biofilm formation. Biofilm formation was shown to be altered in one of the deletion mutants used in this study. Reworking surface properties may provide an advantage to the bacterium’s interactions with organisms such as bacteriophage, protozoan grazers or crustaceans.
Collapse
Affiliation(s)
- Rita A. Rapa
- The ithree Institute, University of Technology, Sydney, Australia
| | - Ronald Shimmon
- Chemical Technology and Forensic Science, University of Technology, Sydney, Australia
| | | | - H. W. Stokes
- The ithree Institute, University of Technology, Sydney, Australia
| | - Maurizio Labbate
- The ithree Institute, University of Technology, Sydney, Australia
- * E-mail:
| |
Collapse
|
225
|
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:345-60. [PMID: 23396083 DOI: 10.1016/j.scitotenv.2013.01.032] [Citation(s) in RCA: 1325] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.
Collapse
Affiliation(s)
- L Rizzo
- Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
The novel CTX-M-116 β-lactamase gene discovered in Proteus mirabilis is composed of parts of the CTX-M-22 and CTX-M-23 genes. Antimicrob Agents Chemother 2013; 57:1552-5. [PMID: 23318795 DOI: 10.1128/aac.01471-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The novel β-lactamase gene bla(CTX-M-116) was identified in a Proteus mirabilis nosocomial isolate recovered from the urine of a patient in Moscow in 2005. DNA sequence analysis showed bla(CTX-M-116) to be a hybrid gene consisting of 5' bla(CTX-M-23) (nucleotides 1 to 278) and 3' bla(CTX-M-22) (nucleotides 286 to 876) moieties separated by an intervening putative site of recombination (GTTAAAT). A retrospective analysis of available bla(CTX-M) genes in the GenBank database revealed 19 bla(CTX-M) genes that display the same hybrid structure.
Collapse
|
227
|
Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 2012; 7:e51017. [PMID: 23226451 PMCID: PMC3511404 DOI: 10.1371/journal.pone.0051017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
With the increasing frequency of antibiotic resistance and the decreasing frequency of new antibiotics entering the market, interest has returned to developing bacteriophage as a therapeutic agent. Acceptance of phage therapy, however, is limited by the unknown pharmacodynamics of a replicating agent, as well as the potential for the evolution of resistant bacteria. One way to overcome some of these limitations is to incorporate phage and antibiotics into a dual therapy regimen; however, this increases the complexity of the pharmacodynamics. The aim of this study is to develop an experimental system to evaluate the pharmacodynamics of dual phage-drug therapy. A continuous culture system for Staphylococcus aureus is used to simulate the pharmacokinetics of periodic antibiotic dosing alone and in combination with lytic phage. A computer model representation of the system allows further evaluation of the conditions governing the observed pharmacodynamics. The results of this experimental/modeling approach suggest that dual therapy can be more efficacious than single therapies, particularly if there is an overlap in the physiological pathways targeted by the individual agents. In this case, treatment with gentamicin induces a population of cells with a strong aggregation phenotype. These aggregators also have an increased ability to form biofilm, which is a well-known, non-genetic mechanism of drug resistance. However, the aggregators are also more susceptible than the parental strain to the action of the phage. Thus, dual treatment with gentamicin and phage resulted in lower final cell densities than either treatment alone. Unlike in the phage-only treatment, phage-resistant isolates were not detected in the dual treatment.
Collapse
|
228
|
Abstract
The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization.
Collapse
|
229
|
FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother 2012; 57:410-6. [PMID: 23114762 DOI: 10.1128/aac.01953-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired metallo-β-lactamases (MBLs) are resistance determinants of increasing clinical importance in Gram-negative bacterial pathogens, which confer a broad-spectrum β-lactam resistance, including carbapenems. Several such enzymes have been described since the 1990s. In the present study, a novel acquired MBL, named FIM-1, was identified and characterized. The bla(FIM-1) gene was cloned from a multidrug-resistant Pseudomonas aeruginosa clinical isolate (FI-14/157) cultured from a patient with a vascular graft infection in Florence, Italy. The isolate belonged in the sequence type 235 epidemic clonal lineage. The FIM-1 enzyme is a member of subclass B1 and, among acquired MBLs, exhibited the highest similarity (ca. 40% amino acid identity) with NDM-type enzymes. In P. aeruginosa FI-14/157, the bla(FIM-1) gene was apparently inserted into the chromosome and associated with ISCR19-like elements that were likely involved in the capture and mobilization of this MBL gene. Transfer experiments of the bla(FIM-1) gene to an Escherichia coli strain or another P. aeruginosa strain by conjugation or electrotransformation were not successful. The FIM-1 protein was produced in E. coli and purified by two chromatography steps. Analysis of the kinetic parameters, carried out with the purified enzyme, revealed that FIM-1 has a broad substrate specificity, with a preference for penicillins (except the 6α-methoxy derivative temocillin) and carbapenems. Aztreonam was not hydrolyzed. Detection of this novel type of acquired MBL in a P. aeruginosa clinical isolate underscores the increasing diversity of such enzymes that can be encountered in the clinical setting.
Collapse
|
230
|
Complete deletion of the ramR gene in an in vitro-selected mutant of Klebsiella pneumoniae overexpressing the AcrAB efflux pump. Antimicrob Agents Chemother 2012; 57:672-3. [PMID: 23089760 DOI: 10.1128/aac.01410-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
231
|
Drieux L, Decre D, Frangeul L, Arlet G, Jarlier V, Sougakoff W. Complete nucleotide sequence of the large conjugative pTC2 multireplicon plasmid encoding the VIM-1 metallo- -lactamase. J Antimicrob Chemother 2012; 68:97-100. [DOI: 10.1093/jac/dks367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
232
|
He L, Partridge SR, Yang X, Hou J, Deng Y, Yao Q, Zeng Z, Chen Z, Liu JH. Complete nucleotide sequence of pHN7A8, an F33:A-:B- type epidemic plasmid carrying blaCTX-M-65, fosA3 and rmtB from China. J Antimicrob Chemother 2012; 68:46-50. [PMID: 22984205 DOI: 10.1093/jac/dks369] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a representative self-transmissible multidrug resistance plasmid pHN7A8 isolated from an Escherichia coli from a dog in China, classified as F33:A-:B- by replicon sequence typing and carrying the bla(TEM-1b), bla(CTX-M-65), fosA3 and rmtB genes conferring resistance to penicillins, cephalosporins, fosfomycin and aminoglycosides, respectively. METHODS pHN7A8 was sequenced using a whole-genome shotgun approach and the sequence analysed by comparison with reference plasmids. RESULTS pHN7A8 is a circular molecule of 76 878 bp. bla(CTX-M-65), fosA3 and rmtB are found in known contexts, interspersed with different mobile elements including ISEcp1, IS1, Tn2, IS1294, IS903 and four copies of IS26. This multiresistance region has only a single nucleotide difference from that of pXZ, an F2:A-:B- plasmid isolated from poultry in China. The pHN7A8 backbone carries genes encoding addiction and partitioning systems that promote plasmid maintenance and has a similar organization to pXZ, as well as IncFII plasmids such as R100, pC15-1a/pEK516 and pHK23, isolated in Japan, Canada/the UK and China, respectively, but with varying levels of identity, suggesting recombination. CONCLUSIONS pHN7A8 is a chimera that may have resulted from the acquisition, by recombination in the plasmid backbone, of the multiresistance region found in pXZ. This region appears to have evolved from the resistance determinant R100 through the stepwise integration of multiple antimicrobial resistance determinants from different sources by the actions of mobile elements and recombination. The successful dissemination of this multidrug resistance plasmid presents further challenges for the prevention and treatment of Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Liangying He
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, SCAU, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Mokracka J, Oszyńska A, Kaznowski A. Increased frequency of integrons and β-lactamase-coding genes among extraintestinal Escherichia coli isolated with a 7-year interval. Antonie Van Leeuwenhoek 2012; 103:163-74. [PMID: 22945863 PMCID: PMC3528966 DOI: 10.1007/s10482-012-9797-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
Abstract
We analyzed the level of antimicrobial resistance, and the presence of integrons and β-lactamase-coding genes in 69 clinically relevant Escherichia coli strains originating from extraintestinal infections isolated in 1999–2001 and 2008–2010. Comparison of the two groups showed significant differences in drug resistance frequency, and the presence of integron and β-lactamase-coding genes. The frequency of resistance to all antimicrobials beside imipenem, streptomycin, piperacillin/tazobactam, and sulfamethoxazole increased significantly, especially towards aminoglycosides, β-lactams and fluoroquinolones. Similarly, we noticed an increase in the number of strains with integrons from 31.6 to 80.7 %. The presence of integrase genes was associated with elevated frequency of resistance to each antimicrobial tested besides imipenem, piperacillin/tazobactam and ceftazidime. The presence of integrons was also associated with multidrug resistance phenotype. The genetic content of integrons comprised genes determining resistance toward aminoglycosides, sulfonamides and trimethoprim. Moreover, we noticed a significant increase in the frequency of blaCTX-M β-lactamases, with appearance of blaCTX-M-15 variant and newer plasmid-encoded β-lactamases like CMY-15 and DHA. The emergence of strains resistant to several classes of antimicrobials and carrying integrons, ESBL and AmpC β-lactamase-coding genes may predict the spread of isolates with limited treatment options.
Collapse
Affiliation(s)
- Joanna Mokracka
- Faculty of Biology, Department of Microbiology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland.
| | | | | |
Collapse
|
234
|
pEl1573 Carrying blaIMP-4, from Sydney, Australia, is closely related to other IncL/M plasmids. Antimicrob Agents Chemother 2012; 56:6029-32. [PMID: 22926566 DOI: 10.1128/aac.01189-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete sequencing of pEl1573, a representative IncL/M plasmid carrying bla(IMP-4) from Sydney, Australia, revealed an ∼60-kb backbone almost identical to those of IncL/M plasmids pCTX-M3, from Poland, and pCTX-M360, from China, and less closely related to pNDM-HK, pOXA-48a, and pEL60, suggesting different lineages. The ∼28-kb Tn2-derived multiresistance region in pEl1573 is inserted in the same location as those in pCTX-M3 and pNDM-HK and shares some of the same components but has undergone rearrangements.
Collapse
|
235
|
Shen Z, Lei H. Expression of hBD-2 induced by 23-valent pneumococcal polysaccharide vaccine, Haemophilus influenzae type b vaccine and split influenza virus vaccine. Mol Med Rep 2012; 6:733-8. [PMID: 22842707 DOI: 10.3892/mmr.2012.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/18/2012] [Indexed: 11/05/2022] Open
Abstract
Human β-defensin-2 (hBD-2) is an antimicrobial peptide with high activity and broad spectrum activity. hBD-2 expression may be highly elevated by microorganisms and inflammation. We reported that the majority of common vaccines used, including 23-valent pneumococcal polysaccharide vaccine, Haemophilus influenzae type b vaccine and split influenza virus vaccine, could induce the expression of hBD-2 in epithelial cells. Among them, the 23-valent pneumococcal polysaccharide vaccine was effective at a lower concentration (0.5 µg/ml), while Haemophilus influenzae type b vaccine and split influenza virus vaccine were effective at the concentration of 1 µg/ml. However, bacteriostatic experiments revealed that the split influenza virus vaccine was capable of inducing the highest antimicrobial activity. The medium of the 23-valent pneumococcal polysaccharide vaccine treatment group had a higher antimicrobial activity than the medium of the Haemophilus influenzae type b vaccine treatment group. The transcriptional regulator of hBD-2, that is, the NF-κB subunit, had a high level of activity, while the normal epithelial cells showed barely detectable activity, indicating that these vaccines have potential for clinical application.
Collapse
Affiliation(s)
- Zhenwei Shen
- Department of Intensive Care Unit, Eastern Hospital, Tongji University, Shanghai 200120, PR China
| | | |
Collapse
|
236
|
Doublet B, Boyd D, Douard G, Praud K, Cloeckaert A, Mulvey MR. Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969. J Antimicrob Chemother 2012; 67:2354-60. [PMID: 22773739 DOI: 10.1093/jac/dks251] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from a clinical Klebsiella pneumoniae strain that was isolated from a urinary tract infection in 1969 in a French hospital and compare it with those of contemporary emerging IncA/C plasmids. METHODS The plasmid was purified and sequenced using a 454 sequencing approach. After draft assembly, additional PCRs and walking reads were performed for gap closure. Sequence comparisons and multiple alignments with other IncA/C plasmids were done using the BLAST algorithm and CLUSTAL W, respectively. RESULTS Plasmid pR55 (170 810 bp) revealed a shared plasmid backbone (>99% nucleotide identity) with current members of the IncA/C(2) multidrug resistance plasmid family that are widely disseminating antibiotic resistance genes. Nevertheless, two specific multidrug resistance gene arrays probably acquired from other genetic elements were identified inserted at conserved hotspot insertion sites in the IncA/C backbone. A novel transposon named Tn6187 showed an atypical mixed transposon configuration composed of two mercury resistance operons and two transposition modules that are related to Tn21 and Tn1696, respectively, and an In0-type integron. CONCLUSIONS IncA/C(2) multidrug resistance plasmids have a broad host range and have been implicated in the dissemination of antibiotic resistance among Enterobacteriaceae from humans and animals. This typical IncA/C(2) genetic scaffold appears to carry various multidrug resistance gene arrays and is now also a successful vehicle for spreading AmpC-like cephalosporinase and metallo-β-lactamase genes, such as bla(CMY) and bla(NDM), respectively.
Collapse
Affiliation(s)
- Benoît Doublet
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
237
|
Siefert JL, Souza V, Eguiarte L, Olmedo-Alvarez G. Microbial stowaways: inimitable survivors or hopeless pioneers? ASTROBIOLOGY 2012; 12:710-715. [PMID: 22920519 DOI: 10.1089/ast.2012.0833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The resiliency of prokaryotic life has provided colonization across the globe and in the recesses of Earth's most extreme environments. Horizontal gene transfer provides access to a global bank of genetic resources that creates diversity and allows real-time adaptive potential to the clonal prokaryotic world. We assess the likelihood that this Earth-based strategy could provide survival and adaptive potential, in the case of microbial stowaways off Earth.
Collapse
Affiliation(s)
- Janet L Siefert
- Department of Statistics, Rice University, Houston, Texas, USA.
| | | | | | | |
Collapse
|
238
|
Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. INFECTION GENETICS AND EVOLUTION 2012; 12:883-93. [DOI: 10.1016/j.meegid.2012.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 02/01/2023]
|
239
|
Huttner B, Jones M, Rubin MA, Neuhauser MM, Gundlapalli A, Samore M. Drugs of last resort? The use of polymyxins and tigecycline at US Veterans Affairs medical centers, 2005-2010. PLoS One 2012; 7:e36649. [PMID: 22615789 PMCID: PMC3353942 DOI: 10.1371/journal.pone.0036649] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant (MDR) and carbapenem-resistant (CR) Gram-negative pathogens are becoming increasingly prevalent around the globe. Polymyxins and tigecycline are among the few antibiotics available to treat infections with these bacteria but little is known about the frequency of their use. We therefore aimed to estimate the parenteral use of these two drugs in Veterans Affairs medical centers (VAMCs) and to describe the pathogens associated with their administration. For this purpose we retrospectively analyzed barcode medication administration data of parenteral administrations of polymyxins and tigecycline in 127 acute-care VAMCs between October 2005 and September 2010. Overall, polymyxin and tigecycline use were relatively low at 0.8 days of therapy (DOT)/1000 patient days (PD) and 1.6 DOT/1000PD, respectively. Use varied widely across facilities, but increased overall during the study period. Eight facilities accounted for three-quarters of all polymyxin use. The same statistic for tigecycline use was twenty-six VAMCs. There were 1,081 MDR or CR isolates during 747 hospitalizations associated with polymyxin use (1.4/hospitalization). For tigecycline these number were slightly lower: 671 MDR or CR isolates during 500 hospitalizations (1.3/hospitalization) (p = 0.06). An ecological correlation between the two antibiotics and combined CR and MDR Gram-negative isolates per 1000PD during the study period was also observed (Pearson’s correlation coefficient r = 0.55 polymyxin, r = 0.19 tigecycline). In summary, while polymyxin and tigecycline use is low in most VAMCs, there has been an increase over the study period. Polymyxin use in particular is associated with the presence of MDR Gram-negative pathogens and may be useful as a surveillance measure in the future.
Collapse
Affiliation(s)
- Benedikt Huttner
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah, United States of America
| | - Makoto Jones
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Michael A. Rubin
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah, United States of America
| | - Melinda M. Neuhauser
- Department of Veterans Affairs Pharmacy Benefit Management Services, Hines, Illinois, United States of America
| | - Adi Gundlapalli
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew Samore
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
240
|
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012; 18:263-72. [PMID: 22480775 DOI: 10.1016/j.molmed.2012.03.003] [Citation(s) in RCA: 711] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
The current worldwide emergence of resistance to the powerful antibiotic carbapenem in Enterobacteriaceae constitutes an important growing public health threat. Sporadic outbreaks or endemic situations with enterobacterial isolates not susceptible to carbapenems are now reported not only in hospital settings but also in the community. Acquired class A (KPC), class B (IMP, VIM, NDM), or class D (OXA-48, OXA-181) carbapenemases, are the most important determinants sustaining resistance to carbapenems. The corresponding genes are mostly plasmid-located and associated with various mobile genetic structures (insertion sequences, integrons, transposons), further enhancing their spread. This review summarizes the current knowledge on carbapenem resistance in Enterobacteriaceae, including activity, distribution, clinical impact, and possible novel antibiotic pathways.
Collapse
Affiliation(s)
- Patrice Nordmann
- Service de Bactériologie-Virologie, INSERM U914 Emerging Resistance to Antibiotic, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris Sud, K.-Bicêtre, 94275 Le Kremlin-Bicêtre Cedex, France.
| | | | | |
Collapse
|
241
|
pJIE137 carrying blaCTX-M-62 is closely related to p271A carrying blaNDM-1. Antimicrob Agents Chemother 2012; 56:2166-8. [PMID: 22252811 DOI: 10.1128/aac.05796-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Complete sequencing of pJIE137 revealed a backbone closely related to p271A, encoding a novel RepA protein but with a similar organization and up to ∼70% nucleotide identity to IncN plasmids. A region in pJIE137 resembling the IncN CUP regulon is mostly missing from p271A, presumably due to recombination. The class 1 In/Tn and ISEcp1-bla(CTX-M-62) transposition unit in pJIE137 and a putative transposon carrying bla(NDM-1) in p271A are inserted in different locations in the plasmid backbone.
Collapse
|
242
|
Koczura R, Mokracka J, Jabłońska L, Gozdecka E, Kubek M, Kaznowski A. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:680-5. [PMID: 22119028 DOI: 10.1016/j.scitotenv.2011.10.036] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 05/08/2023]
Abstract
The presence and persistence of antibiotic resistant bacteria in the environment is thought to be a growing threat to public health. The route of the spread of multiresistant bacteria from human communities to aquatic environment may lead through wastewater treatment plants that release treated wastewater to a water reservoir. In this study we used multiplex PCR assay to determine the frequency of integron presence in Escherichia coli isolates cultured from wastewater treatment plant (WWTP) (integrons were detected in 11% of E. coli isolates), river water upstream (6%) and downstream (14%) the discharge of WWTP, and clinical specimens (56%). Antimicrobial resistance of the integron-positive isolates, determined by disk diffusion method, varied between E. coli of different origin. Isolates from the downstream river, compared to those cultured from upstream river, were more frequently resistant to kanamycin, cephalotin, co-trimoxazole, trimethoprim, and fluoroquinolones. Moreover, they displayed broader resistance ranges, expressed as the number of classes of antimicrobials to which they were resistant. The results may suggest that WWTP effluent contributes to increased frequency of integron-positive E. coli isolates in the river downstream the WWTP and to their elevated resistance level.
Collapse
Affiliation(s)
- Ryszard Koczura
- Department of Microbiology, Faculty of Biology, A Mickiewicz University, 61-614 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
243
|
Tsafnat G, Copty J, Partridge SR. RAC: Repository of Antibiotic resistance Cassettes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar054. [PMID: 22140215 PMCID: PMC3229207 DOI: 10.1093/database/bar054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Antibiotic resistance in bacteria is often due to acquisition of resistance genes associated with different mobile genetic elements. In Gram-negative bacteria, many resistance genes are found as part of small mobile genetic elements called gene cassettes, generally found integrated into larger elements called integrons. Integrons carrying antibiotic resistance gene cassettes are often associated with mobile elements and here are designated ‘mobile resistance integrons’ (MRIs). More than one cassette can be inserted in the same integron to create arrays that contribute to the spread of multi-resistance. In many sequences in databases such as GenBank, only the genes within cassettes, rather than whole cassettes, are annotated and the same gene/cassette may be given different names in different entries, hampering analysis. We have developed the Repository of Antibiotic resistance Cassettes (RAC) website to provide an archive of gene cassettes that includes alternative gene names from multiple nomenclature systems and allows the community to contribute new cassettes. RAC also offers an additional function that allows users to submit sequences containing cassettes or arrays for annotation using the automatic annotation system Attacca. Attacca recognizes features (gene cassettes, integron regions) and identifies cassette arrays as patterns of features and can also distinguish minor cassette variants that may encode different resistance phenotypes (aacA4 cassettes and bla cassettes-encoding β-lactamases). Gaps in annotations are manually reviewed and those found to correspond to novel cassettes are assigned unique names. While there are other websites dedicated to integrons or antibiotic resistance genes, none includes a complete list of antibiotic resistance gene cassettes in MRI or offers consistent annotation and appropriate naming of all of these cassettes in submitted sequences. RAC thus provides a unique resource for researchers, which should reduce confusion and improve the quality of annotations of gene cassettes in integrons associated with antibiotic resistance. Database URL:http://www2.chi.unsw.edu.au/rac.
Collapse
Affiliation(s)
- Guy Tsafnat
- Centre for Health Informatics, Australian Institute of Health Innovation, University of New South Wales, Australia.
| | | | | |
Collapse
|
244
|
Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob Agents Chemother 2011; 55:4971-8. [PMID: 21859935 DOI: 10.1128/aac.00025-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTX-M-15 now appears to be the dominant extended-spectrum β-lactamase worldwide, and a number of different factors may contribute to this success. These include associations between bla(CTX-M-15) and particular plasmids (IncF) and/or strains, such as Escherichia coli ST131, as well as the genetic contexts in which this gene is found. We previously identified bla(CTX-M-15) as the dominant ESBL gene in the western Sydney area, Australia, and found that it was carried mainly on IncF or IncI1 plasmids. Here, we have mapped the multiresistance regions of the 11 conjugative plasmids with one or more IncF replicons obtained from that survey and conducted a limited comparison of plasmid backbones. Two plasmids with only an IncFII replicon appear to be very similar to the published plasmids pC15-1a and pEK516. The remaining nine plasmids, with multiple IncF replicons, have multiresistance regions related to those of pC15-1a and pEK516, but eight contain additional modules previously found in resistance plasmids from different geographic locations that carry a variety of different resistance genes. Differences between the multiresistance regions are largely due to IS26-mediated deletions, insertions, and/or rearrangements, which can explain the observed variable associations between bla(CTX-M-15) and certain other resistance genes. We found no evidence of independent movement of bla(CTX-M-15) or of a large multiresistance region between different plasmid backbones. Instead, homologous recombination between common components, such as IS26 and Tn2, appeared to be more important in creating new multiresistance regions, and this may be coupled with recombination in plasmid backbones to reassort multiple IncF replicons as well as components of multiresistance regions.
Collapse
|