201
|
Phillips-Jones MK, Harding SE. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev 2018; 10:347-362. [PMID: 29525835 PMCID: PMC5899746 DOI: 10.1007/s12551-018-0404-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics-the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex 'nanomachines' that drive survival of bacterial cells in antibiotic environments.
Collapse
Affiliation(s)
- Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Loughborough, Leicestershire, UK.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Loughborough, Leicestershire, UK
| |
Collapse
|
202
|
Nguyen KV, Nguyen TV, Nguyen HTT, Le DV. Mutations in the gyrA, parC, and mexR genes provide functional insights into the fluoroquinolone-resistant Pseudomonas aeruginosa isolated in Vietnam. Infect Drug Resist 2018. [PMID: 29535543 PMCID: PMC5836672 DOI: 10.2147/idr.s147581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Pseudomonas aeruginosa has many mechanisms of resistance to fluoroquinolones. The main mechanism is to change the effect of two enzymes that open the DNA helix - the enzyme DNA gyrase (gyrA) and the topoisomerase IV (parC). In addition, mutations that render the MexAB-oprM pump (mexR) dysfunctional, leading to its overexpression, also enhance resistance to fluoroquinolones. In this study, we aim to detect point mutations of gyrA, parC, and mexR genes that are predicted to be associated with fluoroquinolone resistance in 141 fluoroquinolone-resistant clinical isolates of P. aeruginosa isolated in Vietnam during 2013-2016. Methods We tested minimum inhibitory concentrations (MICs) of fluoroquinolone antibiotics in 141 clinical isolates of P. aeruginosa using the VITEK 2 Compact System, followed by PCR assay, to detect and clone the fluoroquinolone resistance-determining region (FRDR) of gyrA, parC, and mexR. Point mutations were analyzed through Sanger sequencing, and the correlation between genetic mutations and phenotypic resistance of 141 clinical isolates was undertaken. Results Fluoroquinolone-resistant substitution mutations such as Ile for Thr83 and Met for Thr133 in gyrA, Leu for Ser87 in parC, and Val for Glu126 in the repressor of mexR were mainly detected. Comparative analytical data indicated that amino acid alterations within the gyrA and parC genes are highly associated with resistance to ciprofloxacin (CIP) and levofloxacin (LEV) in the isolates, whereas alterations in the efflux regulatory mexR gene are not highly consistent with resistance in these isolates. Moreover, fluoroquinolone-resistant clinical isolates of P. aeruginosa were mainly isolated from pus and sputum specimens. Conclusion In clinical isolates of P. aeruginosa, a high correlation was observed between MICs of CIP and LEV and alterations in gyrA and parC genes. However, mutations occurring in mexR did not highly correlate with the antibiotic resistance of the bacterium.
Collapse
Affiliation(s)
- Kinh Van Nguyen
- Clinical Laboratories, National Hospital for Tropical Diseases.,Infectious Department, Hanoi Medical University
| | - Trung Vu Nguyen
- Clinical Laboratories, National Hospital for Tropical Diseases.,Microbiology Department, Hanoi Medical University
| | | | - Duyet Van Le
- Clinical Laboratories, National Hospital for Tropical Diseases
| |
Collapse
|
203
|
Song Q, Xu Z, Gao H, Zhang D. Overview of the development of quinolone resistance in Salmonella species in China, 2005-2016. Infect Drug Resist 2018. [PMID: 29520157 PMCID: PMC5833789 DOI: 10.2147/idr.s157460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Several factors contribute to the complexity of quinolone resistance in Salmonella, including >2000 different Salmonella serotypes, a variety of hosts for Salmonella, and wide use of quinolones in human beings and animals. We thus aimed to obtain an overview of the development of quinolone resistance and relevant molecular mechanisms of such a resistance in Salmonella species. Materials and methods A total of 1,776 Salmonella isolates were collected in Ningbo, China, between 2005 and 2016. Antimicrobial susceptibility to quinolone and relevant genetic mechanisms in these isolates were retrospectively analyzed. Results The ratio for ciprofloxacin (CIP) resistant:reduced CIP susceptible:CIP susceptible was 26:522:1,228. CIP resistance was found in nine of 51 serotypes: Derby, London, Kentucky, Indiana, Corvallis, Rissen, Hadar, Typhimurium, and Agona. Of 26 CIP-resistant isolates, all were concurrently resistant to ampicillin and 21 were also concurrently resistant to cefotaxime and produced extended-spectrum β-lactamase (ESBL). The minimal inhibitory concentration values were at three levels: 2–4 μg/mL (serotypes except for Kentucky and Indiana), 16 μg/mL (one Kentucky isolate), and >32 μg/mL (Indiana isolates). As with the three most common serotypes, Salmonella Typhi showed quickly increased prevalence of reduced CIP susceptibility in recent years, Salmonella Enteritidis remained at a high prevalence of reduced CIP susceptibility throughout the study period, and several isolates of Salmonella Typhimurium were resistant to CIP. Transferable plasmid-mediated quinolone resistance gene qnrB was only found in all CIP-resistant isolates. In contrast, gyrA mutations were often found in reduced CIP-susceptible isolates and were not necessarily found in all CIP-resistant isolates. Conclusion We conclude that in Salmonella, there exists a high prevalence of reduced CIP susceptibility and a low prevalence of CIP resistance, which focuses on several serotypes. Our study also demonstrates that, rather than gyrA mutations, qnrB is the most common indicator for CIP resistance.
Collapse
Affiliation(s)
- Qifa Song
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Zhaojun Xu
- Intensive Care Unit, Ningbo No. 2 Hospital, Zhejiang, China
| | - Hong Gao
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Danyang Zhang
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang, China
| |
Collapse
|
204
|
The Mutations of Topoisomerase Genes and Their Effect on Resistance to Fluoroquinolones in Extended-Spectrum β-Lactamase-Producing Escherichia coli. Jundishapur J Nat Pharm Prod 2018. [DOI: 10.5812/jjnpp.57964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
205
|
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2018; 41:252-275. [PMID: 28521338 DOI: 10.1093/femsre/fux013] [Citation(s) in RCA: 734] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/28/2017] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen affecting humans and a major source for hospital infections associated with high morbidity and mortality due to limited treatment options. We summarize the wide resistome of this pathogen, which encompasses plentiful chromosomal and plasmid-encoded antibiotic resistance genes (ARGs). Under antibiotic selective pressure, K. pneumoniae continuously accumulates ARGs, by de novo mutations, and via acquisition of plasmids and transferable genetic elements, leading to extremely drug resistant (XDR) strains harboring a 'super resistome'. In the last two decades, numerous high-risk (HiR) MDR and XDR K. pneumoniae sequence types have emerged showing superior ability to cause multicontinent outbreaks, and continuous global dissemination. The data highlight the complex evolution of MDR and XDR K. pneumoniae, involving transfer and spread of ARGs, and epidemic plasmids in highly disseminating successful clones. With the worldwide catastrophe of antibiotic resistance and the urgent need to identify the main pathogens that pose a threat on the future of infectious diseases, further studies are warranted to determine the epidemic traits and plasmid acquisition in K. pneumoniae. There is a need for future genomic and translational studies to decipher specific targets in HiR clones to design targeted prevention and treatment.
Collapse
Affiliation(s)
- Shiri Navon-Venezia
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Kira Kondratyeva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Alessandra Carattoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
206
|
Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 2018; 40:437-463. [PMID: 28201713 DOI: 10.1093/femsre/fuw005] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is one of the most-studied microorganisms worldwide but its characteristics are continually changing. Extraintestinal E. coli infections, such as urinary tract infections and neonatal sepsis, represent a huge public health problem. They are caused mainly by specialized extraintestinal pathogenic E. coli (ExPEC) strains that can innocuously colonize human hosts but can also cause disease upon entering a normally sterile body site. The virulence capability of such strains is determined by a combination of distinctive accessory traits, called virulence factors, in conjunction with their distinctive phylogenetic background. It is conceivable that by developing interventions against the most successful ExPEC lineages or their key virulence/colonization factors the associated burden of disease and health care costs could foreseeably be reduced in the future. On the other hand, one important problem worldwide is the increase of antimicrobial resistance shown by bacteria. As underscored in the last WHO global report, within a wide range of infectious agents including E. coli, antimicrobial resistance has reached an extremely worrisome situation that ‘threatens the achievements of modern medicine’. In the present review, an update of the knowledge about the pathogenicity, antimicrobial resistance and clinical aspects of this ‘old friend’ was presented.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - E Sáez-López
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - J R Johnson
- VA Medical Center, Minneapolis, MN, USA, and University of Minnesota, Minneapolis, MN, USA
| | - U Römling
- Karolinska Institute, Stockholm, Sweden
| | - U Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - C G Giske
- Karolinska Institute, Stockholm, Sweden
| | - T Naas
- Hôpital de Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - A Carattoli
- Department of infectious, parasitic and immune-mediated diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Martínez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona, Spain
| | - J Bosch
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - P Retamar
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - F Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - S M Soto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
207
|
Schröder UC, Kirchhoff J, Hübner U, Mayer G, Glaser U, Henkel T, Pfister W, Fritzsche W, Popp J, Neugebauer U. On-chip spectroscopic assessment of microbial susceptibility to antibiotics within 3.5 hours. JOURNAL OF BIOPHOTONICS 2017; 10:1547-1557. [PMID: 28464521 DOI: 10.1002/jbio.201600316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
In times of rising antibiotic resistances, there is a high need for fast, sensitive and specific methods to determine antibiotic susceptibilities of bacterial pathogens. Here, we present an integrated microfluidic device in which bacteria from diluted suspensions are captured in well-defined regions using on-chip dielectrophoresis and further analyzed in a label-free and non-destructive manner using Raman spectroscopy. Minimal sample preparation and automated sample processing ensure safe handling of infectious material with minimal hands-on time for the operator. Clinical applicability of the presented device is demonstrated by antibiotic susceptibility testing of Escherichia coli towards the commonly prescribed second generation fluoroquinolone ciprofloxacin. Ciprofloxacin resistant E. coli were differentiated from sensitive E. coli with high accuracy within roughly three hours total analysis time paving the way for future point-of-care devices. Spectral changes leading to the discrimination between sensitive and resistant bacteria are in excellent agreement with expected metabolic changes in the bacteria due to the mode of action of the drug. The robustness of the method was confirmed with experiments involving different chip devices with different designs, both electrode as well as microfluidics design, and material. Furthermore, general applicability was demonstrated with different operators over an extended time period of half a year.
Collapse
Affiliation(s)
- Ulrich-Christian Schröder
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Johanna Kirchhoff
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Günter Mayer
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Uwe Glaser
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Thomas Henkel
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Wolfgang Pfister
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, Jena, Germany
- InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Jena, Germany
| |
Collapse
|
208
|
Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2017; 72:3016-3024. [PMID: 28962020 PMCID: PMC5890708 DOI: 10.1093/jac/dkx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To determine whether the spectrum of mutations in marR in ciprofloxacin-resistant clinical isolates of Escherichia coli shows evidence of selection bias, either to reduce fitness costs, or to increase drug resistance. MarR is a repressor protein that regulates, via MarA, expression of the Mar regulon, including the multidrug efflux pump AcrAB-TolC. METHODS Isogenic strains carrying 36 different marR alleles identified in resistant clinical isolates, or selected for resistance in vitro, were constructed. Drug susceptibility and relative fitness in growth competition assays were measured for all strains. The expression level of marA, and of various efflux pump components, as a function of specific mutations in marR, was measured by qPCR. RESULTS The spectrum of genetic alterations in marR in clinical isolates is strongly biased against inactivating mutations. In general, the alleles found in clinical isolates conferred a lower level of resistance and imposed a lower growth fitness cost than mutations selected in vitro. The level of expression of MarA correlated well with the MIC of ciprofloxacin. This supports the functional connection between mutations in marR and reduced susceptibility to ciprofloxacin. CONCLUSIONS Mutations in marR selected in ciprofloxacin-resistant clinical isolates are strongly biased against inactivating mutations. Selection favours mutant alleles that have the lowest fitness costs, even though these cause only modest reductions in drug susceptibility. This suggests that selection for high relative fitness is more important than selection for increased resistance in determining which alleles of marR will be selected in resistant clinical isolates.
Collapse
Affiliation(s)
- Lisa Praski Alzrigat
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| |
Collapse
|
209
|
|
210
|
Wu Y, Seyedsayamdost MR. Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis. Cell Chem Biol 2017; 24:1437-1444.e3. [PMID: 29033316 DOI: 10.1016/j.chembiol.2017.08.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Microbial natural products are genetically encoded by dedicated biosynthetic gene clusters (BGCs). A given BGC usually produces a family of related compounds that share a core but contain variable substituents. Though common, the reasons underlying this divergent biosynthesis are in general unknown. Herein, we have addressed this issue using the hydroxyalkylquinoline (HAQ) family of natural products synthesized by Burkholderia thailandensis. Investigations into the detailed functions of two analogs show that they act synergistically in inhibiting bacterial growth. One analog is a nanomolar inhibitor of pyrimidine biosynthesis and at the same time disrupts the proton motive force. A second analog inhibits the cytochrome bc1 complex as well as pyrimidine biogenesis. These results provide a functional rationale for the divergent nature of HAQs. They imply that synergy and target promiscuity are driving forces for the evolution of tailoring enzymes that diversify the products of the HAQ biosynthetic pathway.
Collapse
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
211
|
Duque E, Daddaoua A, Cordero BF, De la Torre J, Antonia Molina-Henares M, Ramos JL. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:581-588. [PMID: 28799718 DOI: 10.1111/1758-2229.12576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar KM values, the Vmax of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively.
Collapse
Affiliation(s)
- Estrella Duque
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Baldo F Cordero
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Jesús De la Torre
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | | | - Juan-Luis Ramos
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
212
|
Drug development against tuberculosis: Past, present and future. ACTA ACUST UNITED AC 2017; 64:252-275. [DOI: 10.1016/j.ijtb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
|
213
|
Tetrazole-Based trans-Translation Inhibitors Kill Bacillus anthracis Spores To Protect Host Cells. Antimicrob Agents Chemother 2017; 61:AAC.01199-17. [PMID: 28760903 DOI: 10.1128/aac.01199-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, remains a significant threat to humans, including potential use in bioterrorism and biowarfare. The capacity to engineer strains with increased pathogenicity coupled with the ease of disseminating lethal doses of B. anthracis spores makes it necessary to identify chemical agents that target and kill spores. Here, we demonstrate that a tetrazole-based trans-translation inhibitor, KKL-55, is bactericidal against vegetative cells of B. anthracis in culture. Using a fluorescent analog, we show that this class of compounds colocalizes with developing endospores and bind purified spores in vitro KKL-55 was effective against spores at concentrations close to its MIC for vegetative cells. Spore germination was inhibited at 1.2× MIC, and spores were killed at 2× MIC. In contrast, ciprofloxacin killed germinants at concentrations close to its MIC but did not prevent germination even at 32× MIC. Because toxins are released by germinants, macrophages infected by B. anthracis spores are killed early in the germination process. At ≥2× MIC, KKL-55 protected macrophages from death after infection with B. anthracis spores. Ciprofloxacin required concentrations of ≥8× MIC to exhibit a similar effect. Taken together, these data indicate that KKL-55 and related tetrazoles are good lead candidates for therapeutics targeting B. anthracis spores and suggest that there is an early requirement for trans-translation in germinating spores.
Collapse
|
214
|
Qin T, Qian H, Fan W, Ma P, Zhou L, Dong C, Gu B, Huo X. Newest data on fluoroquinolone resistance mechanism of Shigella flexneri isolates in Jiangsu Province of China. Antimicrob Resist Infect Control 2017; 6:97. [PMID: 28932390 PMCID: PMC5605986 DOI: 10.1186/s13756-017-0249-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background To determine the prevalence, antimicrobial susceptibility patterns and related presence of mutations in quinolone resistance-determining region (QRDR) genes and plasmid-mediated quinolone resistance (PMQR) among Shigella flexneri isolates obtained from Jiangsu Province, China. Methods A total of 400 Shigella flexneri clinical isolates collected during 2012–2015 were identified by biochemical and serological methods, and the antimicrobial susceptibility pattern was evaluated using the disc-diffusion method. PCR and DNA sequencing were accomplished to identify mutations in gyrA, gyrB, parC and parE, and the presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA and aac(6′)-Ib-cr genes were also detected. Results Of all the Shigella flexneri, 75.8% were resistant to nalidixic acid, and 37.0% were categorized as norfloxacin resistant. Overall, 75.5% of isolates possessed gyrA mutations (Ser83Leu, Asp87Gly/Asn and His211Tyr), while 84.3% had parC mutations (Ser80Ile, Ala81Pho, Gln91His and Ser129Pro). The most prevalent point mutations in gyrA and parC were Ser83Leu (75.5%, 302/400) and Ser80Ile (74.5%, 298/400), relatively. Besides, the Gln517Arg alternation in gyrB was detected in 13 S. flexneri isolates and no mutations were identified in parE. PMQR determinations of qnrB, qnrS and aac(6′)-Ib-cr were detected among 16 strains (4.0%). Conclusions The results presented here show that fluoroquinolone resistance in these clinical isolates result from mutations in chromosome, besides, despite the low prevalence of PMQR determinants in Jiangsu, it is essential to continue surveillance PMQR determinants in this area.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Huimin Qian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Wenting Fan
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004 China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China.,Medical Technology School, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lu Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Chen Dong
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Bing Gu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China.,Medical Technology School, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| |
Collapse
|
215
|
Immunogenicity and antimicrobial effectiveness of Pseudomonas aeruginosa specific bacteriophage in a human lung in vitro model. Appl Microbiol Biotechnol 2017; 101:7977-7985. [PMID: 28914348 DOI: 10.1007/s00253-017-8504-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023]
Abstract
The rise of antibiotic resistant bacteria is posing a serious threat to human health. For example, resistant strains of Pseudomonas aeruginosa have resulted in untreatable and potentially lethal infections in both cystic fibrosis and immunocompromised patients. Due to the growing need for alternative treatment options, bacteriophage, or phage, therapy is gaining considerable attention. While previous studies have demonstrated the effectiveness of phage in combating persistent bacterial infections, there is currently a lack of knowledge regarding the host immunological response following phage exposure. In the present study, the bioresponses of an enhanced in vitro model were characterized following exposure to either DMS3 or PEV2, P. aeruginosa targeting phages. Results demonstrated a PEV2-dependent increase in IL-6 and TNF-α production, but no changes associated with DMS3 exposure. Additionally, following the establishment of an in vitro infection model, DMS3 was found to successfully protect mammalian lung cells from P. aeruginosa. Taken together, the biocompatibility and antibacterial effectiveness distinguish DMS3 bacteriophage as a strong candidate for phage therapy. However, as DMS3 is pilin dependent and bacterial receptor expression varies significantly, this work highlights the necessity of generating phage cocktails.
Collapse
|
216
|
Li J, Hao H, Cheng G, Liu C, Ahmed S, Shabbir MAB, Hussain HI, Dai M, Yuan Z. Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin. Front Microbiol 2017; 8:1711. [PMID: 28943868 PMCID: PMC5596078 DOI: 10.3389/fmicb.2017.01711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Fluoroquinolones (FQs) are important antibiotics used for treatment of Salmonella infection in poultry in many countries. However, oral administration of fluoroquinolones may affect the composition and abundance of a number of bacterial taxa in the chicken intestine. Using 16S rRNA gene sequencing, the microbial shifts in the gut of Salmonella infected chickens in response to enrofloxacin treatments at different dosages (0, 0.1, 4, and 100 mg/kg b.w.) were quantitatively evaluated. The results showed that the shedding levels of Salmonella were significantly reduced in the high dosage group as demonstrated by both the culturing method and 16S rRNA sequencing method. The average values of diversity indices were higher in the control group than in the three medicated groups. Non-metric multidimensional scaling (NMDS) analysis results showed that the microbial community of high dosage group was clearly separated from the other three groups. In total, 25 genera were significantly enriched (including 6 abundant genera: Lactococcus, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Acinetobacter) and 23 genera were significantly reduced in the medicated groups than in the control group for the treatment period, but these bacterial taxa recovered to normal levels after therapy withdrawal. Additionally, 5 genera were significantly reduced in both treatment and withdrawal periods (e.g., Blautia and Anaerotruncus) and 23 genera (e.g., Enterobacter and Clostridium) were significantly decreased only in the withdrawal period, indicating that these genera might be the potential targets for the fluoroquinolones antimicrobial effects. Specially, Enterococcus was significantly reduced under high dosage of enrofloxacin treatment, while significantly enriched in the withdrawal period, which was presumably due to the resistance selection. Predicted microbial functions associated with genetic information processing were significantly decreased in the high dosage group. Overall, enrofloxacin at a dosage of 100 mg/kg b.w. significantly altered the microbial community membership and structure, and microbial functions in the chicken intestine during the medication. This study fully investigates the chicken intestinal microbiota in response to enrofloxacin treatment and identifies potential targets against which the fluoroquinolones may have potent antimicrobial effects. These results provide insights into the effects of the usage of enrofloxacin on chicken and will aid in the prudent and rational use of antibiotics in poultry industry.
Collapse
Affiliation(s)
- Jun Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Chunbei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad A B Shabbir
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Hafiz I Hussain
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
217
|
Burckhardt BC, Henjakovic M, Hagos Y, Burckhardt G. Differential Interaction of Dantrolene, Glafenine, Nalidixic Acid, and Prazosin with Human Organic Anion Transporters 1 and 3. J Pharmacol Exp Ther 2017; 362:450-458. [PMID: 28630284 DOI: 10.1124/jpet.117.241406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022] Open
Abstract
In renal proximal tubule cells, the organic anion transporters 1 and 3 (OAT1 and OAT3) in the basolateral membrane and the multidrug resistance-associated protein 4 (MRP4) in the apical membrane share substrates and co-operate in renal drug secretion. We hypothesized that recently identified MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin also interact with human OAT1 and/or OAT3 stably transfected in human embryonic kidney 293 cells. These four drugs were tested as possible inhibitors of p-[3H]aminohippurate (PAH) and [14C]glutarate uptake by OAT1, and of [3H]estrone-3-sulfate (ES) uptake by OAT3. In addition, we explored whether these drugs decrease the equilibrium distribution of radiolabeled PAH, glutarate, or ES, an approach intended to indirectly suggest drug/substrate exchange through OAT1 and OAT3. With OAT3, a dose-dependent inhibition of [3H]ES uptake and a downward shift in [3H]ES equilibrium were observed, indicating that all four drugs bind to OAT3 and may possibly be translocated. In contrast, the interaction with OAT1 was more complex. With [14C]glutarate as substrate, all four drugs inhibited uptake but only glafenine and nalidixic acid shifted glutarate equilibrium. Using [3H]PAH as a substrate of OAT1, nalidixic acid inhibited but dantrolene, glafenine, and prazosin stimulated uptake. Nalidixic acid decreased equilibrium content of [3H]PAH, suggesting that it may possibly be exchanged by OAT1. Taken together, OAT1 and OAT3 interact with the MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin, indicating overlapping specificities. At OAT1, more than one binding site must be assumed to explain substrate and drug-dependent stimulation and inhibition of transport activity.
Collapse
Affiliation(s)
- Birgitta C Burckhardt
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| | - Maja Henjakovic
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| | - Yohannes Hagos
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| | - Gerhard Burckhardt
- Center of Physiology and Pathophysiology, University Medical Center Goettingen, Goettingen, Germany (B.C.B, M.H., Y.H., G.B.); Department I of Internal Medicine, University Medical Center Cologne, Cologne, Germany (M.H.); and PortaCellTec Biosciences GmbH, Goettingen, Germany (Y.H.)
| |
Collapse
|
218
|
Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 2017; 66:551-559. [DOI: 10.1099/jmm.0.000475] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Susana Correia
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Portugal
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Portugal
| | - Patrícia Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Portugal
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne (UCA), UMR Microbiologie Environnement Digestif et Santé (MEDiS), Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, France
- Plate-Forme d’Exploration du Métabolisme composante protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, France
| | - José Luis Capelo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
- ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica Campus, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Portugal
- UCIBIO-REQUIMTE, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
219
|
Molecular characterization of antimicrobial susceptibility of Salmonella isolates: First identification of a plasmid carrying qnrD or oqxAB in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:214-223. [DOI: 10.1016/j.jmii.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
|
220
|
Functional Characterization of the DNA Gyrases in Fluoroquinolone-Resistant Mutants of Francisella novicida. Antimicrob Agents Chemother 2017; 61:AAC.02277-16. [PMID: 28167561 DOI: 10.1128/aac.02277-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is a major health concern in the treatment of tularemia. Because DNA gyrase has been described as the main target of these compounds, our aim was to clarify the contributions of both GyrA and GyrB mutations found in Francisella novicida clones highly resistant to FQs. Wild-type and mutated GyrA and GyrB subunits were overexpressed so that the in vitro FQ sensitivity of functional reconstituted complexes could be evaluated. The data obtained were compared to the MICs of FQs against bacterial clones harboring the same mutations and were further validated through complementation experiments and structural modeling. Whole-genome sequencing of highly FQ-resistant lineages was also done. Supercoiling and DNA cleavage assays demonstrated that GyrA D87 is a hot spot FQ resistance target in F. novicida and pointed out the role of the GyrA P43H substitution in resistance acquisition. An unusual feature of FQ resistance acquisition in F. novicida is that the first-step mutation occurs in GyrB, with direct or indirect consequences for FQ sensitivity. Insertion of P466 into GyrB leads to a 50% inhibitory concentration (IC50) comparable to that observed for a mutant gyrase carrying the GyrA D87Y substitution, while the D487E-ΔK488 mutation, while not active on its own, contributes to the high level of resistance that occurs following acquisition of the GyrA D87G substitution in double GyrA/GyrB mutants. The involvement of other putative targets is discussed, including that of a ParE mutation that was found to arise in the very late stage of antibiotic exposure. This study provides the first characterization of the molecular mechanisms responsible for FQ resistance in Francisella.
Collapse
|
221
|
Abdi-Hachesoo B, Asasi K, Sharifiyazdi H. Farm-level evaluation of enrofloxacin resistance in Escherichia coli isolated from broiler chickens during a rearing period. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2402-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
222
|
Rubinstein E, Lagacé-Wiens P. Quinolones. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
223
|
Elbehery AHA, Leak DJ, Siam R. Novel thermostable antibiotic resistance enzymes from the Atlantis II Deep Red Sea brine pool. Microb Biotechnol 2016; 10:189-202. [PMID: 28004885 PMCID: PMC5270753 DOI: 10.1111/1751-7915.12468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/29/2016] [Accepted: 11/03/2016] [Indexed: 11/29/2022] Open
Abstract
The advent of metagenomics has greatly facilitated the discovery of enzymes with useful biochemical characteristics for industrial and biomedical applications, from environmental niches. In this study, we used sequence-based metagenomics to identify two antibiotic resistance enzymes from the secluded, lower convective layer of Atlantis II Deep Red Sea brine pool (68°C, ~2200 m depth and 250‰ salinity). We assembled > 4 000 000 metagenomic reads, producing 43 555 contigs. Open reading frames (ORFs) called from these contigs were aligned to polypeptides from the Comprehensive Antibiotic Resistance Database using BLASTX. Two ORFs were selected for further analysis. The ORFs putatively coded for 3'-aminoglycoside phosphotransferase [APH(3')] and a class A beta-lactamase (ABL). Both genes were cloned, expressed and characterized for activity and thermal stability. Both enzymes were active in vitro, while only APH(3') was active in vivo. Interestingly, APH(3') proved to be thermostable (Tm = 61.7°C and ~40% residual activity after 30 min of incubation at 65°C). On the other hand, ABL was not as thermostable, with a Tm = 43.3°C. In conclusion, we have discovered two novel AR enzymes with potential application as thermophilic selection markers.
Collapse
Affiliation(s)
- Ali H A Elbehery
- Graduate Program of Biotechnology, The American University in Cairo, Cairo, Egypt.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David J Leak
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Rania Siam
- Graduate Program of Biotechnology, The American University in Cairo, Cairo, Egypt.,Biology Department and YJ-Science and Technology Research Center, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
224
|
Saleh NM, Mabrouk MI, Salem-Bekhit MM, Hafez EH. Challenge of Moringa peregrina Forssk as an antimicrobial agent against multi-drug-resistant Salmonella sp. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1262750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Neveen M. Saleh
- Microbiology Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mona I. Mabrouk
- Microbiology Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Faculty of Pharmacy, Microbiology and Immunology Department, Al-Azhar University, Cairo, Egypt
| | - Ekbal H. Hafez
- Microbiology Department, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
225
|
Veiga H, G Pinho M. Staphylococcus aureus requires at least one FtsK/SpoIIIE protein for correct chromosome segregation. Mol Microbiol 2016; 103:504-517. [PMID: 27886417 DOI: 10.1111/mmi.13572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Faithful coordination between bacterial cell division and chromosome segregation in rod-shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C-terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.
Collapse
Affiliation(s)
- Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
226
|
Mehla K, Ramana J. Travelers' Diarrhea-Associated Enterotoxigenic Escherichia coli gyrA Mutants and Quinolone Antibiotic Affinity: A Molecular Dynamics Simulation and Residue Interaction Network Analysis. ACTA ACUST UNITED AC 2016; 20:635-644. [DOI: 10.1089/omi.2016.0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kusum Mehla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
227
|
Rusu A, Hancu G, Tóth G, Vancea S, Toma F, Mare AD, Man A, Niţulescu GM, Uivarosi V. New silver complexes with levofloxacin: Synthesis, characterization and microbiological studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
228
|
Albornoz E, Lucero C, Romero G, Quiroga MP, Rapoport M, Guerriero L, Andres P, Rodriguez C, Galas M, Centrón D, Corso A, Petroni A. Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Clinical Enterobacteria from Argentina. Microb Drug Resist 2016; 23:177-187. [PMID: 27728774 DOI: 10.1089/mdr.2016.0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This first nationwide study was conducted to analyze the prevalence of plasmid-mediated quinolone resistance (PMQR) genes in phenotypically unselected (consecutive) clinical enterobacteria. We studied 1,058 isolates that had been consecutively collected in 66 hospitals of the WHONET-Argentina Resistance Surveillance Network. Overall, 26% of isolates were nonsusceptible to at least one of the three quinolones tested (nalidixic acid, ciprofloxacin, and levofloxacin). The overall prevalence of PMQR genes was 8.1% (4.6% for aac(6')-Ib-cr; 3.9% for qnr genes; and 0.4% for oqxA and oqxB, which were not previously reported in enterobacteria other than Klebsiella spp. from Argentina). The PMQR prevalence was highly variable among the enterobacterial species or when the different genes were considered. The prevalent PMQR genes were located in class 1 integrons [qnrB2, qnrB10, and aac(6')-Ib-cr]; in the ColE1-type plasmid pPAB19-1 or Tn2012-like transposons (qnrB19); and in Tn6238 or bracketed by IS26 and blaOXA-1 [aac(6')-Ib-cr]. The mutations associated with quinolone resistance that were located in the quinolone resistance-determining region (QRDR mutations) of gyrA, parC, and gyrB were also investigated. The occurrence of QRDR mutations was significantly associated with the presence of PMQR genes: At least one QRDR mutation was present in 82% of the PMQR-harboring isolates but in only 23% of those without PMQR genes (p < 0.0001, Fisher's Test). To the best of our knowledge, this is the first report on the prevalence of PMQR genes in consecutive clinical enterobacteria where all the genes currently known have been screened.
Collapse
Affiliation(s)
- Ezequiel Albornoz
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Celeste Lucero
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Genara Romero
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- 2 Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Rapoport
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonor Guerriero
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Andres
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Cecilia Rodriguez
- 2 Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Galas
- 3 Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- 2 Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Corso
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Petroni
- 1 Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
229
|
Qin T, Bi R, Fan W, Kang H, Ma P, Gu B. Novel mutations in quinolone resistance-determining regions of gyrA, gyrB, parC and parE in Shigella flexneri clinical isolates from eastern Chinese populations between 2001 and 2011. Eur J Clin Microbiol Infect Dis 2016; 35:2037-2045. [PMID: 27620866 DOI: 10.1007/s10096-016-2761-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the prevalence of fluoroquinolone resistance and mechanisms of selected fluoroquinolone resistance in Shigella flexneri isolates. A total of 624 S. flexneri strains isolated between 2001 and 2011 in Jiangsu Province of China were analysed for their fluoroquinolone susceptibility. The quinolone resistance-determining region of gyrA, gyrB, parC and parE were amplified and sequenced. In general, 90.5 % of S. flexneri exhibited resistance to nalidixic acid. The mean norfloxacin resistance rate was 22.4 % during the 11 years from 2001 to 2011 (6.4 % from 2001 to 2005 and 36.8 % from 2006 to 2011). Sequencing of gyrA, gyrB, parC and parE genes of all S. flexneri isolates showed that the mutation rate was as high as 93.9 %. In addition, 91.8 % and 92.3 % of S. flexneri harboured mutations in gyrA and parC, respectively. About 35.2 % of S. flexneri isolates susceptible to nalidixic acid contained mutations. Meanwhile, mutations were detected in 91.2 % of norfloxacin-susceptible strains, and almost all S. flexneri isolates resistant to fluoroquinolone contained mutations. To the best of our knowledge, this is the first study reporting the occurrence of point mutations Asn57Lys and His80Pro in gyrA and Ala85Thr, Asp111His and Ser129Pro in parC. Emerging fluoroquinolone resistance with a significantly high mutation rate of the gyrA and parC genes in S. flexneri in Jiangsu Province deserves attention, and monitoring antibiotic susceptibility is important for the effective management of S. flexneri infections.
Collapse
Affiliation(s)
- T Qin
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - R Bi
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - W Fan
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - H Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - P Ma
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - B Gu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
230
|
Schoepp NG, Khorosheva EM, Schlappi TS, Curtis MS, Humphries RM, Hindler JA, Ismagilov RF. Digital Quantification of DNA Replication and Chromosome Segregation Enables Determination of Antimicrobial Susceptibility after only 15 Minutes of Antibiotic Exposure. Angew Chem Int Ed Engl 2016; 55:9557-61. [PMID: 27357747 PMCID: PMC5215780 DOI: 10.1002/anie.201602763] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Rapid antimicrobial susceptibility testing (AST) would decrease misuse and overuse of antibiotics. The "holy grail" of AST is a phenotype-based test that can be performed within a doctor visit. Such a test requires the ability to determine a pathogen's susceptibility after only a short antibiotic exposure. Herein, digital PCR (dPCR) was employed to test whether measuring DNA replication of the target pathogen through digital single-molecule counting would shorten the required time of antibiotic exposure. Partitioning bacterial chromosomal DNA into many small volumes during dPCR enabled AST results after short exposure times by 1) precise quantification and 2) a measurement of how antibiotics affect the states of macromolecular assembly of bacterial chromosomes. This digital AST (dAST) determined susceptibility of clinical isolates from urinary tract infections (UTIs) after 15 min of exposure for all four antibiotic classes relevant to UTIs. This work lays the foundation to develop a rapid, point-of-care AST and strengthen global antibiotic stewardship.
Collapse
Affiliation(s)
- Nathan G Schoepp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Eugenia M Khorosheva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Travis S Schlappi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Matthew S Curtis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Romney M Humphries
- Pathology and Laboratory Medicine, University of California, Los Angeles, 10888 Le Conte Avenue, Brentwood Annex, Los Angeles, CA, 90095, USA
| | - Janet A Hindler
- Pathology and Laboratory Medicine, University of California, Los Angeles, 10888 Le Conte Avenue, Brentwood Annex, Los Angeles, CA, 90095, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
| |
Collapse
|
231
|
Yang Q, Zhao M, Wang KY, Wang J, He Y, Wang EL, Liu T, Chen DF, Lai W. Multidrug-Resistant Aeromonas veronii Recovered from Channel Catfish (Ictalurus punctatus) in China: Prevalence and Mechanisms of Fluoroquinolone Resistance. Microb Drug Resist 2016; 23:473-479. [PMID: 27483342 DOI: 10.1089/mdr.2015.0296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To emphasize the importance of the appropriate use of antibiotics in aquaculture systems, the prevalence of resistance to 25 antimicrobials was investigated in 42 Aeromonas veronii strains isolated from farm-raised channel catfish in China in 2006-2012. All experiments were based on minimal inhibitory concentrations (MICs), and susceptibility was assessed according to the Clinical and Laboratory Standards Institute. Some isolates displayed antibiotic resistance to the latest-generation fluoroquinolones (i.e., ciprofloxacin, levofloxacin, and norfloxacin) in vitro. Therefore, we screened for genes conferring resistance to fluoroquinolones and performed conjugation experiments to establish the resistance mechanisms. The antibiotic resistance rates were 14.29-21.42% to three kinds of fluoroquinolones: ciprofloxacin, levofloxacin, and norfloxacin. Among the 42 strains isolated, 15 carried the qnrS2 gene. The MICs of the fluoroquinolones in transconjugants with qnrS2 were more than fourfold higher compared with the recipient. Among the fluoroquinolone-resistant A. veronii strains, eight had point mutations in both gyrA codon 83 (Ser83→Ile83) and parC codon 87 (Ser87→Ile87). However, five isolates with point mutations in parC codon 52 remained susceptible to the three fluoroquinolones. In conclusion, the mechanisms of fluoroquinolone resistance in A. veronii isolates may be related to mutations in gyrA codon 83 and parC codon 87 and the presence of the qnrS2 gene.
Collapse
Affiliation(s)
- Qian Yang
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Min Zhao
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Kai-Yu Wang
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Jun Wang
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Yang He
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Er-Long Wang
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Tao Liu
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - De-Fang Chen
- 2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China .,3 Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Weimin Lai
- 1 Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, People's Republic of China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, People's Republic of China
| |
Collapse
|
232
|
Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, Catena F, Coccolini F, Abu-Zidan FM, Coimbra R, Moore EE, Moore FA, Maier RV, De Waele JJ, Kirkpatrick AW, Griffiths EA, Eckmann C, Brink AJ, Mazuski JE, May AK, Sawyer RG, Mertz D, Montravers P, Kumar A, Roberts JA, Vincent JL, Watkins RR, Lowman W, Spellberg B, Abbott IJ, Adesunkanmi AK, Al-Dahir S, Al-Hasan MN, Agresta F, Althani AA, Ansari S, Ansumana R, Augustin G, Bala M, Balogh ZJ, Baraket O, Bhangu A, Beltrán MA, Bernhard M, Biffl WL, Boermeester MA, Brecher SM, Cherry-Bukowiec JR, Buyne OR, Cainzos MA, Cairns KA, Camacho-Ortiz A, Chandy SJ, Che Jusoh A, Chichom-Mefire A, Colijn C, Corcione F, Cui Y, Curcio D, Delibegovic S, Demetrashvili Z, De Simone B, Dhingra S, Diaz JJ, Di Carlo I, Dillip A, Di Saverio S, Doyle MP, Dorj G, Dogjani A, Dupont H, Eachempati SR, Enani MA, Egiev VN, Elmangory MM, Ferrada P, Fitchett JR, Fraga GP, Guessennd N, Giamarellou H, Ghnnam W, Gkiokas G, Goldberg SR, Gomes CA, Gomi H, Guzmán-Blanco M, Haque M, Hansen S, Hecker A, Heizmann WR, Herzog T, Hodonou AM, Hong SK, Kafka-Ritsch R, Kaplan LJ, Kapoor G, Karamarkovic A, Kees MG, Kenig J, Kiguba R, et alSartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, Catena F, Coccolini F, Abu-Zidan FM, Coimbra R, Moore EE, Moore FA, Maier RV, De Waele JJ, Kirkpatrick AW, Griffiths EA, Eckmann C, Brink AJ, Mazuski JE, May AK, Sawyer RG, Mertz D, Montravers P, Kumar A, Roberts JA, Vincent JL, Watkins RR, Lowman W, Spellberg B, Abbott IJ, Adesunkanmi AK, Al-Dahir S, Al-Hasan MN, Agresta F, Althani AA, Ansari S, Ansumana R, Augustin G, Bala M, Balogh ZJ, Baraket O, Bhangu A, Beltrán MA, Bernhard M, Biffl WL, Boermeester MA, Brecher SM, Cherry-Bukowiec JR, Buyne OR, Cainzos MA, Cairns KA, Camacho-Ortiz A, Chandy SJ, Che Jusoh A, Chichom-Mefire A, Colijn C, Corcione F, Cui Y, Curcio D, Delibegovic S, Demetrashvili Z, De Simone B, Dhingra S, Diaz JJ, Di Carlo I, Dillip A, Di Saverio S, Doyle MP, Dorj G, Dogjani A, Dupont H, Eachempati SR, Enani MA, Egiev VN, Elmangory MM, Ferrada P, Fitchett JR, Fraga GP, Guessennd N, Giamarellou H, Ghnnam W, Gkiokas G, Goldberg SR, Gomes CA, Gomi H, Guzmán-Blanco M, Haque M, Hansen S, Hecker A, Heizmann WR, Herzog T, Hodonou AM, Hong SK, Kafka-Ritsch R, Kaplan LJ, Kapoor G, Karamarkovic A, Kees MG, Kenig J, Kiguba R, Kim PK, Kluger Y, Khokha V, Koike K, Kok KYY, Kong V, Knox MC, Inaba K, Isik A, Iskandar K, Ivatury RR, Labbate M, Labricciosa FM, Laterre PF, Latifi R, Lee JG, Lee YR, Leone M, Leppaniemi A, Li Y, Liang SY, Loho T, Maegele M, Malama S, Marei HE, Martin-Loeches I, Marwah S, Massele A, McFarlane M, Melo RB, Negoi I, Nicolau DP, Nord CE, Ofori-Asenso R, Omari AH, Ordonez CA, Ouadii M, Pereira Júnior GA, Piazza D, Pupelis G, Rawson TM, Rems M, Rizoli S, Rocha C, Sakakhushev B, Sanchez-Garcia M, Sato N, Segovia Lohse HA, Sganga G, Siribumrungwong B, Shelat VG, Soreide K, Soto R, Talving P, Tilsed JV, Timsit JF, Trueba G, Trung NT, Ulrych J, van Goor H, Vereczkei A, Vohra RS, Wani I, Uhl W, Xiao Y, Yuan KC, Zachariah SK, Zahar JR, Zakrison TL, Corcione A, Melotti RM, Viscoli C, Viale P. Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA). World J Emerg Surg 2016; 11:33. [PMID: 27429642 PMCID: PMC4946132 DOI: 10.1186/s13017-016-0089-y] [Show More Authors] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
Collapse
Affiliation(s)
- Massimo Sartelli
- />Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Dieter G. Weber
- />Department of Trauma Surgery, Royal Perth Hospital, Perth, Australia
| | - Etienne Ruppé
- />Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Matteo Bassetti
- />Infectious Diseases Division, Santa Maria Misericordia University Hospital, Udine, Italy
| | - Brian J. Wright
- />Department of Emergency Medicine and Surgery, Stony Brook University School of Medicine, Stony Brook, NY USA
| | - Luca Ansaloni
- />General Surgery Department, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Fausto Catena
- />Department of General, Maggiore Hospital, Parma, Italy
| | | | - Fikri M. Abu-Zidan
- />Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Raul Coimbra
- />Department of Surgery, UC San Diego Medical Center, San Diego, USA
| | - Ernest E. Moore
- />Department of Surgery, University of Colorado, Denver Health Medical Center, Denver, CO USA
| | - Frederick A. Moore
- />Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL USA
| | - Ronald V. Maier
- />Department of Surgery, University of Washington, Seattle, WA USA
| | - Jan J. De Waele
- />Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andrew W. Kirkpatrick
- />General, Acute Care, and Trauma Surgery, Foothills Medical Centre, Calgary, AB Canada
| | - Ewen A. Griffiths
- />General and Upper GI Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Christian Eckmann
- />Department of General, Visceral, and Thoracic Surgery, Klinikum Peine, Academic Hospital of Medical University Hannover, Peine, Germany
| | - Adrian J. Brink
- />Department of Clinical microbiology, Ampath National Laboratory Services, Milpark Hospital, Johannesburg, South Africa
| | - John E. Mazuski
- />Department of Surgery, School of Medicine, Washington University in Saint Louis, Missouri, USA
| | - Addison K. May
- />Departments of Surgery and Anesthesiology, Division of Trauma and Surgical Critical Care, Vanderbilt University Medical Center, Nashville, TN USA
| | - Rob G. Sawyer
- />Department of Surgery, University of Virginia Health System, Charlottesville, VA USA
| | - Dominik Mertz
- />Departments of Medicine, Clinical Epidemiology and Biostatistics, and Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Philippe Montravers
- />Département d’Anesthésie-Réanimation, CHU Bichat Claude-Bernard-HUPNVS, Assistance Publique-Hôpitaux de Paris, University Denis Diderot, Paris, France
| | - Anand Kumar
- />Section of Critical Care Medicine and Section of Infectious Diseases, Department of Medicine, Medical Microbiology and Pharmacology/Therapeutics, University of Manitoba, Winnipeg, MB Canada
| | - Jason A. Roberts
- />Australia Pharmacy Department, Royal Brisbane and Womens’ Hospital; Burns, Trauma, and Critical Care Research Centre, Australia School of Pharmacy, The University of Queensland, Brisbane, QLD Australia
| | - Jean-Louis Vincent
- />Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Richard R. Watkins
- />Department of Internal Medicine, Division of Infectious Diseases, Akron General Medical Center, Northeast Ohio Medical University, Akron, OH USA
| | - Warren Lowman
- />Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Brad Spellberg
- />Division of Infectious Diseases, Los Angeles County-University of Southern California (USC) Medical Center, Keck School of Medicine at USC, Los Angeles, CA USA
| | - Iain J. Abbott
- />Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC Australia
| | | | - Sara Al-Dahir
- />Division of Clinical and Administrative Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA USA
| | - Majdi N. Al-Hasan
- />Department of Medicine, Division of Infectious Diseases, University of South Carolina School of Medicine, Columbia, SC USA
| | | | | | - Shamshul Ansari
- />Department of Microbiology, Chitwan Medical College, and Department of Environmental and Preventive Medicine, Oita University, Oita, Japan
| | - Rashid Ansumana
- />Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, University of Liverpool, and Mercy Hospital Research Laboratory, Njala University, Bo, Sierra Leone
| | - Goran Augustin
- />Department of Surgery, University Hospital Center, Zagreb, Croatia
| | - Miklosh Bala
- />Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Zsolt J. Balogh
- />Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW Australia
| | | | - Aneel Bhangu
- />Academic Department of Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Marcelo A. Beltrán
- />Department of General Surgery, Hospital San Juan de Dios de La Serena, La Serena, Chile
| | | | - Walter L. Biffl
- />Department of Surgery, University of Colorado, Denver, CO USA
| | | | - Stephen M. Brecher
- />Department of Pathology and Laboratory Medicine, VA Boston HealthCare System, and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
| | - Jill R. Cherry-Bukowiec
- />Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Otmar R. Buyne
- />Department of Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Miguel A. Cainzos
- />Department of Surgery, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Kelly A. Cairns
- />Pharmacy Department, Alfred Health, Melbourne, VIC Australia
| | - Adrian Camacho-Ortiz
- />Hospital Epidemiology and Infectious Diseases, Hospital Universitario Dr Jose Eleuterio Gonzalez, Monterrey, Mexico
| | - Sujith J. Chandy
- />Department of Pharmacology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala India
| | - Asri Che Jusoh
- />Department of General Surgery, Kuala Krai Hospital, Kuala Krai, Kelantan Malaysia
| | - Alain Chichom-Mefire
- />Department of Surgery and Obstetrics/Gynaecology, Regional Hospital, Limbe, Cameroon
| | - Caroline Colijn
- />Department of Mathematics, Imperial College London, London, UK
| | - Francesco Corcione
- />Department of Laparoscopic and Robotic Surgery, Colli-Monaldi Hospital, Naples, Italy
| | - Yunfeng Cui
- />Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Daniel Curcio
- />Infectología Institucional SRL, Hospital Municipal Chivilcoy, Buenos Aires, Argentina
| | - Samir Delibegovic
- />Department of Surgery, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Zaza Demetrashvili
- />Department General Surgery, Kipshidze Central University Hospital, Tbilisi, Georgia
| | | | - Sameer Dhingra
- />School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Uriah Butler Highway, Champ Fleurs, Trinidad and Tobago
| | - José J. Diaz
- />Division of Acute Care Surgery, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD USA
| | - Isidoro Di Carlo
- />Department of Surgical Sciences, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Angel Dillip
- />Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Michael P. Doyle
- />Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA USA
| | - Gereltuya Dorj
- />School of Pharmacy and Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Agron Dogjani
- />Department of Surgery, University Hospital of Trauma, Tirana, Albania
| | - Hervé Dupont
- />Département d’Anesthésie-Réanimation, CHU Amiens-Picardie, and INSERM U1088, Université de Picardie Jules Verne, Amiens, France
| | - Soumitra R. Eachempati
- />Department of Surgery, Division of Burn, Critical Care, and Trauma Surgery (K.P.S., S.R.E.), Weill Cornell Medical College/New York-Presbyterian Hospital, New York, USA
| | - Mushira Abdulaziz Enani
- />Department of Medicine, Infectious Disease Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Valery N. Egiev
- />Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mutasim M. Elmangory
- />Sudan National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Paula Ferrada
- />Department of Surgery, Virginia Commonwealth University, Richmond, VA USA
| | - Joseph R. Fitchett
- />Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Gustavo P. Fraga
- />Division of Trauma Surgery, Department of Surgery, School of Medical Sciences, University of Campinas (Unicamp), Campinas, SP Brazil
| | | | - Helen Giamarellou
- />6th Department of Internal Medicine, Hygeia General Hospital, Athens, Greece
| | - Wagih Ghnnam
- />Department of General Surgery, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - George Gkiokas
- />2nd Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Carlos Augusto Gomes
- />Department of Surgery, Hospital Universitário Terezinha de Jesus, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Juiz de Fora, Brazil
| | - Harumi Gomi
- />Center for Global Health, Mito Kyodo General Hospital, University of Tsukuba, Mito, Ibaraki Japan
| | - Manuel Guzmán-Blanco
- />Hospital Privado Centro Médico de Caracas and Hospital Vargas de Caracas, Caracas, Venezuela
| | - Mainul Haque
- />Unit of Pharmacology, Faculty of Medicine and Defense Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Sonja Hansen
- />Institute of Hygiene, Charité-Universitätsmedizin Berlin, Hindenburgdamm 27, 12203 Berlin, Germany
| | - Andreas Hecker
- />Department of General and Thoracic Surgery, University Hospital Giessen, Giessen, Germany
| | | | - Torsten Herzog
- />Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Adrien Montcho Hodonou
- />Department of Surgery, Faculté de médecine, Université de Parakou, BP 123 Parakou, Bénin
| | - Suk-Kyung Hong
- />Division of Trauma and Surgical Critical Care, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Reinhold Kafka-Ritsch
- />Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Lewis J. Kaplan
- />Department of Surgery Philadelphia VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Garima Kapoor
- />Department of Microbiology, Gandhi Medical College, Bhopal, India
| | | | - Martin G. Kees
- />Department of Anesthesiology and Intensive Care, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jakub Kenig
- />3rd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Ronald Kiguba
- />Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Peter K. Kim
- />Department of Surgery, Albert Einstein College of Medicine and Jacobi Medical Center, Bronx, NY USA
| | - Yoram Kluger
- />Department of General Surgery, Division of Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Vladimir Khokha
- />Department of Emergency Surgery, City Hospital, Mozyr, Belarus
| | - Kaoru Koike
- />Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenneth Y. Y. Kok
- />Department of Surgery, The Brunei Cancer Centre, Jerudong Park, Brunei
| | - Victory Kong
- />Department of Surgery, Edendale Hospital, Pietermaritzburg, South Africa
| | - Matthew C. Knox
- />School of Medicine, Western Sydney University, Campbelltown, NSW Australia
| | - Kenji Inaba
- />Division of Acute Care Surgery and Surgical Critical Care, Department of Surgery, Los Angeles County and University of Southern California Medical Center, University of Southern California, Los Angeles, CA USA
| | - Arda Isik
- />Department of General Surgery, Erzincan University, Faculty of Medicine, Erzincan, Turkey
| | - Katia Iskandar
- />Department of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Rao R. Ivatury
- />Department of Surgery, Virginia Commonwealth University, Richmond, VA USA
| | - Maurizio Labbate
- />School of Life Science and The ithree Institute, University of Technology, Sydney, NSW Australia
| | - Francesco M. Labricciosa
- />Department of Biomedical Sciences and Public Health, Unit of Hygiene, Preventive Medicine and Public Health, UNIVMP, Ancona, Italy
| | - Pierre-François Laterre
- />Department of Critical Care Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Rifat Latifi
- />Department of Surgery, Division of Trauma, University of Arizona, Tucson, AZ USA
| | - Jae Gil Lee
- />Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Ran Lee
- />Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX USA
| | - Marc Leone
- />Department of Anaesthesiology and Critical Care, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Aix Marseille Université, Marseille, France
| | - Ari Leppaniemi
- />Abdominal Center, University Hospital Meilahti, Helsinki, Finland
| | - Yousheng Li
- />Department of Surgery, Inling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Stephen Y. Liang
- />Division of Infectious Diseases, Division of Emergency Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Tonny Loho
- />Division of Infectious Diseases, Department of Clinical Pathology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Marc Maegele
- />Department for Traumatology and Orthopedic Surgery, Cologne Merheim Medical Center (CMMC), University of Witten/Herdecke (UW/H), Cologne, Germany
| | - Sydney Malama
- />Health Research Program, Institute of Economic and Social Research, University of Zambia, Lusaka, Zambia
| | - Hany E. Marei
- />Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ignacio Martin-Loeches
- />Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust-HRB Clinical Research, Department of Clinical Medicine, Trinity Centre for Health Sciences, St James’ University Hospital, Dublin, Ireland
| | - Sanjay Marwah
- />Department of Surgery, Post-Graduate Institute of Medical Sciences, Rohtak, India
| | - Amos Massele
- />Department of Clinical Pharmacology, School of Medicine, University of Botswana, Gaborone, Botswana
| | - Michael McFarlane
- />Department of Surgery, Radiology, University Hospital of the West Indies, Kingston, Jamaica
| | - Renato Bessa Melo
- />General Surgery Department, Centro Hospitalar de São João, Porto, Portugal
| | - Ionut Negoi
- />Department of Surgery, Emergency Hospital of Bucharest, Bucharest, Romania
| | - David P. Nicolau
- />Center of Anti-Infective Research and Development, Hartford, CT USA
| | - Carl Erik Nord
- />Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | - Carlos A. Ordonez
- />Department of Surgery and Critical Care, Universidad del Valle, Fundación Valle del Lili, Cali, Colombia
| | - Mouaqit Ouadii
- />Department of Surgery, Hassan II University Hospital, Medical School of Fez, Sidi Mohamed Benabdellah University, Fez, Morocco
| | | | - Diego Piazza
- />Division of Surgery, Vittorio Emanuele Hospital, Catania, Italy
| | - Guntars Pupelis
- />Department of General and Emergency Surgery, Riga East University Hospital ‘Gailezers’, Riga, Latvia
| | - Timothy Miles Rawson
- />National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, UK
| | - Miran Rems
- />Department of General Surgery, Jesenice General Hospital, Jesenice, Slovenia
| | - Sandro Rizoli
- />Trauma and Acute Care Service, St Michael’s Hospital, University of Toronto, Toronto, Canada
| | - Claudio Rocha
- />U.S. Naval Medical Research Unit N° 6, Callao, Peru
| | - Boris Sakakhushev
- />General Surgery Department, Medical University, University Hospital St George, Plovdiv, Bulgaria
| | | | - Norio Sato
- />Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Helmut A. Segovia Lohse
- />II Cátedra de Clínica Quirúrgica, Hospital de Clínicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Gabriele Sganga
- />Department of Surgery, Catholic University of Sacred Heart, Policlinico A Gemelli, Rome, Italy
| | - Boonying Siribumrungwong
- />Department of Surgery, Faculty of Medicine, Thammasat University Hospital, Thammasat University, Pathum Thani, Thailand
| | - Vishal G. Shelat
- />Department of General Surgery, Tan Tock Seng Hospital, Tan Tock Seng, Singapore
| | - Kjetil Soreide
- />Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rodolfo Soto
- />Department of Emergency Surgery and Critical Care, Centro Medico Imbanaco, Cali, Colombia
| | - Peep Talving
- />Department of Surgery, North Estonia Medical Center, Tallinn, Estonia
| | - Jonathan V. Tilsed
- />Surgery Health Care Group, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
| | | | - Gabriel Trueba
- />Institute of Microbiology, Biological and Environmental Sciences College, University San Francisco de Quito, Quito, Ecuador
| | - Ngo Tat Trung
- />Department of Molecular Biology, Tran Hung Dao Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam
| | - Jan Ulrych
- />1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, General University Hospital, Prague, Czech Republic
| | - Harry van Goor
- />Department of Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andras Vereczkei
- />Department of Surgery, Medical School University of Pécs, Pécs, Hungary
| | - Ravinder S. Vohra
- />Nottingham Oesophago-Gastric Unit, Nottingham University Hospitals, Nottingham, UK
| | - Imtiaz Wani
- />Department of Surgery, Sheri-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Waldemar Uhl
- />Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Yonghong Xiao
- />State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affilliated Hospital, Zhejiang University, Zhejiang, China
| | - Kuo-Ching Yuan
- />Trauma and Emergency Surgery Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | | | - Jean-Ralph Zahar
- />Infection Control Unit, Angers University, CHU d’Angers, Angers, France
| | - Tanya L. Zakrison
- />Division of Trauma and Surgical Critical Care, DeWitt Daughtry Family Department of Surgry, University of Miami, Miami, FL USA
| | - Antonio Corcione
- />Anesthesia and Intensive Care Unit, AORN dei Colli Vincenzo Monaldi Hospital, Naples, Italy
| | - Rita M. Melotti
- />Anesthesiology and Intensive Care Unit, Sant’Orsola University Hospital, Bologna, Italy
| | - Claudio Viscoli
- />Infectious Diseases Unit, University of Genoa (DISSAL) and IRCCS San Martino-IST, Genoa, Italy
| | - Perluigi Viale
- />Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’ Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
233
|
Heinzl GA, Huang W, Yu W, Giardina BJ, Zhou Y, MacKerell AD, Wilks A, Xue F. Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of Pseudomonas aeruginosa. J Med Chem 2016; 59:6929-42. [PMID: 27353344 DOI: 10.1021/acs.jmedchem.6b00757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New therapeutic targets are required to combat multidrug resistant infections, such as the iron-regulated heme oxygenase (HemO) of Pseudomonas aeruginosa, due to links between iron and virulence and dependence on heme as an iron source during infection. Herein we report the synthesis and activity of a series of iminoguanidine-based inhibitors of HemO. Compound 23 showed a binding affinity of 5.7 μM and an MIC50 of 52.3 μg/mL against P. aeruginosa PAO1. An in cellulo activity assay was developed by coupling HemO activity to a biliverdin-IXα-dependent infrared fluorescent protein, in which compound 23 showed an EC50 of 11.3 μM. The compounds showed increased activity against clinical isolates of P. aeruginosa, further confirming the target pathway. This class of inhibitors acts by binding to an allosteric site; the novel binding site is proposed in silico and supported by saturation transfer difference (STD) NMR as well as by hydrogen exchange mass spectrometry (HXMS).
Collapse
Affiliation(s)
- Geoffrey A Heinzl
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Weiliang Huang
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Wenbo Yu
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Bennett J Giardina
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Yue Zhou
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Angela Wilks
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| |
Collapse
|
234
|
Hwang IY, Koh E, Kim HR, Yew WS, Chang MW. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist Updat 2016; 27:59-71. [DOI: 10.1016/j.drup.2016.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
|
235
|
Schoepp NG, Khorosheva EM, Schlappi TS, Curtis MS, Humphries RM, Hindler JA, Ismagilov RF. Digital Quantification of DNA Replication and Chromosome Segregation Enables Determination of Antimicrobial Susceptibility after only 15 Minutes of Antibiotic Exposure. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nathan G. Schoepp
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Eugenia M. Khorosheva
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Travis S. Schlappi
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Matthew S. Curtis
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Romney M. Humphries
- Pathology and Laboratory Medicine; University of California, Los Angeles; 10888 Le Conte Avenue, Brentwood Annex Los Angeles CA 90095 USA
| | - Janet A. Hindler
- Pathology and Laboratory Medicine; University of California, Los Angeles; 10888 Le Conte Avenue, Brentwood Annex Los Angeles CA 90095 USA
| | - Rustem F. Ismagilov
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. Pasadena CA 91125 USA
| |
Collapse
|
236
|
Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Usui M, Tamura Y, Kimura Y, Miyamoto T, Tsuyuki Y, Ohki A, Kataoka Y. Phenotypic and Molecular Characterization of Antimicrobial Resistance in Klebsiella spp. Isolates from Companion Animals in Japan: Clonal Dissemination of Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Front Microbiol 2016; 7:1021. [PMID: 27446056 PMCID: PMC4925667 DOI: 10.3389/fmicb.2016.01021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
The emergence of antimicrobial resistance in Klebsiella spp., including resistance to extended-spectrum cephalosporins (ESC) and fluoroquinolones, is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance in a total of 103 Klebsiella spp. isolates, consisting of Klebsiella pneumoniae complex (KP, n = 89) and K. oxytoca (KO, n = 14) from clinical specimens of dogs and cats in Japan. Furthermore, we characterized the resistance mechanisms, including extended-spectrum β-lactamase (ESBL), plasmid-mediated AmpC β-lactamase (PABL), and plasmid-mediated quinolone resistance (PMQR); and assessed genetic relatedness of ESC-resistant Klebsiella spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated that resistance rates to ampicillin, cephalothin, enrofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole, cefotaxime, gentamicin, tetracycline, chloramphenicol, amoxicillin-clavulanic acid, and cefmetazole were 98.1, 37.9, 37.9, 35.9, 35.0, 34.0, 31.1, 30.1, 28.2, 14.6, and 6.8%, respectively. Phenotypic testing detected ESBLs and/or AmpC β-lactamases in 31 of 89 (34.8%) KP isolates, but not in KO isolates. Resistances to 5 of the 12 antimicrobials tested, as well as the three PMQRs [qnrB, qnrS, and aac(6′)-Ib-cr], were detected significantly more frequently in ESBL-producing KP, than in non-ESBL-producing KP and KO. The most frequent ESBL was CTX-M-15 (n = 13), followed by CTX-M-14 (n = 7), CTX-M-55 (n = 6), SHV-2 (n = 5), CTX-M-2 (n = 2), and CTX-M-3 (n = 2). Based on the rpoB phylogeny, all ESBL-producing strains were identified as K. pneumoniae, except for one CTX-M-14-producing strain, which was identified as K. quasipneumoniae. All of AmpC β-lactamase positive isolates (n = 6) harbored DHA-1, one of the PABLs. Based on MLST and PFGE analysis, ST15 KP clones producing CTX-M-2, CTX-M-15, CTX-M-55, and/or SHV-2, as well as KP clones of ST1844-CTX-M-55, ST655-CTX-M-14, and ST307-CTX-M-15, were detected in one or several hospitals. Surprisingly, specific clones were detected in different patients at an interval of many months. These results suggest that multidrug-resistant ESBL-producing KP were clonally disseminated among companion animals via not only direct but also indirect transmission. This is the first report on large-scale monitoring of antimicrobial-resistant Klebsiella spp. isolates from companion animals in Japan.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University Tottori, Japan
| | - Takae Shimizu
- Department of Veterinary Internal Medicine, Tottori University Tottori, Japan
| | - Yujiro Mukai
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University Tokyo, Japan
| | - Ken Kuwajima
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University Tokyo, Japan
| | - Tomomi Sato
- Laboratory of Food Microbiology and Food Safety, Rakuno Gakuen University Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Rakuno Gakuen University Hokkaido, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Rakuno Gakuen University Hokkaido, Japan
| | - Yui Kimura
- Miyamoto Animal Hospital Yamaguchi, Japan
| | | | - Yuzo Tsuyuki
- Sanritsu Zelkova Veterinary Laboratory Kanagawa, Japan
| | | | - Yasushi Kataoka
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University Tokyo, Japan
| |
Collapse
|
237
|
Chernova O, Medvedeva E, Mouzykantov A, Baranova N, Chernov V. Mycoplasmas and Their Antibiotic Resistance: The Problems and Prospects in Controlling Infections. Acta Naturae 2016; 8:24-34. [PMID: 27437137 PMCID: PMC4947986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/25/2022] Open
Abstract
The present review discusses the problem of controlling mycoplasmas (class Mollicutes), the smallest of self-replicating prokaryotes, parasites of higher eukaryotes, and main contaminants of cell cultures and vaccines. Possible mechanisms for the rapid development of resistance to antimicrobial drugs in mycoplasmas have been analyzed. Omics technologies provide new opportunities for investigating the molecular basis of bacterial adaptation to stress factors and identifying resistomes, the total of all genes and their products contributing to antibiotic resistance in microbes. The data obtained using an integrated approach with post-genomics methods show that antibiotic resistance may be caused by more complex processes than has been believed heretofore. The development of antibiotic resistance in mycoplasmas is associated with essential changes in the genome, proteome, and secretome profiles, which involve many genes and proteins related to fundamental cellular processes and virulence.
Collapse
Affiliation(s)
- O.A. Chernova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Lobachevskogo Str., 2/31, 420111, Kazan, Russia
- Kazan (Volga Region) Federal University, Kremlevskaya Str., 18, 420008, Kazan, Russia
| | - E.S. Medvedeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Lobachevskogo Str., 2/31, 420111, Kazan, Russia
- Kazan (Volga Region) Federal University, Kremlevskaya Str., 18, 420008, Kazan, Russia
| | - A.A. Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Lobachevskogo Str., 2/31, 420111, Kazan, Russia
- Kazan (Volga Region) Federal University, Kremlevskaya Str., 18, 420008, Kazan, Russia
| | - N.B. Baranova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Lobachevskogo Str., 2/31, 420111, Kazan, Russia
- Kazan (Volga Region) Federal University, Kremlevskaya Str., 18, 420008, Kazan, Russia
| | - V.M. Chernov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Lobachevskogo Str., 2/31, 420111, Kazan, Russia
- Kazan (Volga Region) Federal University, Kremlevskaya Str., 18, 420008, Kazan, Russia
| |
Collapse
|
238
|
Wassermann T, Meinike Jørgensen K, Ivanyshyn K, Bjarnsholt T, Khademi SMH, Jelsbak L, Høiby N, Ciofu O. The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin. MICROBIOLOGY-SGM 2016; 162:865-875. [PMID: 26953154 DOI: 10.1099/mic.0.000273] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ciprofloxacin is a widely used antibiotic, in the class of quinolones, for treatment of Pseudomonas aeruginosa infections. The immediate response of P. aeruginosa to subinhibitory concentrations of ciprofloxacin has been investigated previously. However, the long-term phenotypic adaptation, which identifies the fitted phenotypes that have been selected during evolution with subinhibitory concentrations of ciprofloxacin, has not been studied. We chose an experimental evolution approach to investigate how exposure to subinhibitory concentrations of ciprofloxacin changes the evolution of P. aeruginosa populations compared to unexposed populations. Three replicate populations of P. aeruginosa PAO1 and its hypermutable mutant ΔmutS were cultured aerobically for approximately 940 generations by daily passages in LB medium with and without subinhibitory concentration of ciprofloxacin and aliquots of the bacterial populations were regularly sampled and kept at - 80 °C for further investigations. We investigate here phenotypic changes between the ancestor (50 colonies) and evolved populations (120 colonies/strain). Decreased protease activity and swimming motility, higher levels of quorum-sensing signal molecules and occurrence of mutator subpopulations were observed in the ciprofloxacin-exposed populations compared to the ancestor and control populations. Transcriptomic analysis showed downregulation of the type III secretion system in evolved populations compared to the ancestor population and upregulation of denitrification genes in ciprofloxacin-evolved populations. In conclusion, the presence of antibiotics at subinhibitory concentration in the environment affects bacterial evolution and further studies are needed to obtain insight into the dynamics of the phenotypes and the mechanisms involved.
Collapse
Affiliation(s)
- Tina Wassermann
- Department of Clinical Microbiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Karin Meinike Jørgensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Ivanyshyn
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S M Hossein Khademi
- Department of System Biology, Technical University of Denmark, Lyngby, Denmark
| | - Lars Jelsbak
- Department of System Biology, Technical University of Denmark, Lyngby, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
239
|
Mehla K, Ramana J. Structural signature of Ser83Leu and Asp87Asn mutations in DNA gyrase from enterotoxigenic Escherichia coli and impact on quinolone resistance. Gene 2016; 576:28-35. [DOI: 10.1016/j.gene.2015.09.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023]
|
240
|
Mutations That Enhance the Ciprofloxacin Resistance of Escherichia coli with qnrA1. Antimicrob Agents Chemother 2015; 60:1537-45. [PMID: 26711751 DOI: 10.1128/aac.02167-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023] Open
Abstract
Plasmid-mediated qnr genes provide only a modest decrease in quinolone susceptibility but facilitate the selection of higher-level resistance. In Escherichia coli strain J53 without qnr, ciprofloxacin resistance often involves mutations in the GyrA subunit of DNA gyrase. Mutations in gyrA were absent, however, when 43 mutants with decreased ciprofloxacin susceptibility were selected from J53(pMG252) with qnrA1. Instead, in 13 mutants, individual and whole-genome sequencing identified mutations in marR and soxR associated with increased expression of marA and soxS and, through them, increased expression of the AcrAB pump, which effluxes quinolones. Nine mutants had increased expression of the MdtE efflux pump, and six demonstrated increased expression of the ydhE pump gene. Many efflux mutants also had increased resistance to novobiocin, another pump substrate, but other mutants were novobiocin hypersusceptible. Mutations in rfaD and rfaE in the pathway for inner core lipopolysaccharide (LPS) biosynthesis were identified in five such strains. Many of the pump and LPS mutants had decreased expression of OmpF, the major porin channel for ciprofloxacin entry. Three mutants had increased expression of qnrA that persisted when pMG252 from these strains was outcrossed. gyrA mutations were also rare when mutants with decreased ciprofloxacin susceptibility were selected from E. coli J53 with aac(6')-Ib-cr or qepA. We suggest that multiple genes conferring low-level resistance contribute to enhanced ciprofloxacin resistance selected from an E. coli strain carrying qnrA1, aac(6')-Ib-cr, or qepA because these determinants decrease the effective ciprofloxacin concentration and allow more common but lower-resistance mutations than those in gyrA to predominate.
Collapse
|
241
|
Fàbrega A, Ballesté-Delpierre C, Vila J. Differential impact of ramRA mutations on both ramA transcription and decreased antimicrobial susceptibility in Salmonella Typhimurium. J Antimicrob Chemother 2015; 71:617-24. [PMID: 26679248 DOI: 10.1093/jac/dkv410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/03/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES This study was focused on analysing the heterogeneity of mutations occurring in the regulators of efflux-mediated MDR in Salmonella Typhimurium. Moreover, the impact of such mutations on impairing the transcription of ramA, acrB, tolC and acrF was also assessed as was the impact on the resistance or decreased susceptibility phenotype. METHODS Strains were selected in vitro under increasing ciprofloxacin concentrations. Etest and broth microdilution tests were used to determine the MICs of several unrelated compounds. Screening of mutations in the quinolone target genes and MDR regulators was performed. RT-PCR analysis was used to detect the levels of expression of acrB, tolC, ompF, acrF, emrB, acrR, ramA, soxS and marA. RESULTS All mutant strains showed increased MICs of most of the antimicrobials tested, with the exception of kanamycin. Mutations in the quinolone target genes did not occur in all the mutants, which all harboured mutations in the ramRA regulatory region. All the mutants overexpressed ramA, tolC and acrB (only tested in 60-wt derivatives), whereas differential results were seen for the remaining genes. CONCLUSIONS Mutations in the ramRA region related to resistance and/or decreased susceptibility to antimicrobials predominate in Salmonella. There is heterogeneity in the types of mutations, with deletions affecting RamR-binding sites having a greater impact on ramA expression and the MDR phenotype.
Collapse
Affiliation(s)
- Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
242
|
Ballesté-Delpierre C, Fàbrega A, Ferrer-Navarro M, Mathur R, Ghosh S, Vila J. Attenuation of in vitro host-pathogen interactions in quinolone-resistant Salmonella Typhi mutants. J Antimicrob Chemother 2015; 71:111-22. [PMID: 26446080 DOI: 10.1093/jac/dkv299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1β production and decreased NF-κB activation. CONCLUSIONS In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.
Collapse
Affiliation(s)
- Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Ramkumar Mathur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| |
Collapse
|
243
|
Paneth A, Stączek P, Plech T, Strzelczyk A, Dzitko K, Wujec M, Kuśmierz E, Kosikowska U, Grzegorczyk A, Paneth P. Biological evaluation and molecular modelling study of thiosemicarbazide derivatives as bacterial type IIA topoisomerases inhibitors. J Enzyme Inhib Med Chem 2015; 31:14-22. [PMID: 25792505 DOI: 10.3109/14756366.2014.1003214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present article, we describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile and molecular modelling evaluation. We found that one of the tested compounds, compound 7, significantly inhibits activity of Staphylococcus aureus DNA gyrase with an IC(50) below 15 μM. Besides, this compound displays antibacterial activity on reference Staphylococuss spp. and Enterococcus faecalis strains as well as clinical S. aureus isolates at non-cytotoxic concentrations in mammalian cells with MIC values ranging from 16 to 32 μg/mL thereby indicating, in some cases, equipotent or even more effective action than standard drugs such as vancomycin, ampicillin and nitrofurantoin. The computational studies showed that both molecular geometry and the electron density distribution have a great impact on antibacterial activity of thiosemicarbazide derivatives.
Collapse
Affiliation(s)
- Agata Paneth
- a Department of Organic Chemistry , Medical University of Lublin , Poland .,e Institute of Applied Radiation Chemistry, Lodz University of Technology , Poland
| | | | - Tomasz Plech
- a Department of Organic Chemistry , Medical University of Lublin , Poland
| | | | - Katarzyna Dzitko
- c Department of Immunoparasitology , University of Łódź , Poland
| | - Monika Wujec
- a Department of Organic Chemistry , Medical University of Lublin , Poland
| | - Edyta Kuśmierz
- a Department of Organic Chemistry , Medical University of Lublin , Poland
| | - Urszula Kosikowska
- d Department of Pharmaceutical Microbiology , Medical University of Lublin , Poland , and
| | - Agnieszka Grzegorczyk
- d Department of Pharmaceutical Microbiology , Medical University of Lublin , Poland , and
| | - Piotr Paneth
- e Institute of Applied Radiation Chemistry, Lodz University of Technology , Poland
| |
Collapse
|
244
|
Harada K, Sasaki A, Shimizu T. Effects of oral orbifloxacin on fecal coliforms in healthy cats: a pilot study. J Vet Med Sci 2015; 78:83-9. [PMID: 26311787 PMCID: PMC4751121 DOI: 10.1292/jvms.15-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1-2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, 4-101 Minami, Koyama-Cho, Tottori-Shi, Tottori 680-8553, Japan
| | | | | |
Collapse
|
245
|
Wasyl D. Prevalence and characterization of quinolone resistance mechanisms in commensal Escherichia coli isolated from slaughter animals in Poland, 2009-2012. Microb Drug Resist 2015; 20:544-9. [PMID: 25051094 DOI: 10.1089/mdr.2014.0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The background of quinolone resistance was characterized in ciprofloxacin-resistant commensal Escherichia coli selected out of 3,551 isolates from slaughtered animals in Poland between 2009 and 2012. Plasmid-mediated determinants were suspected in 6.2% of the study group, ranging from 1.1% in cattle to 9.7% in turkeys. Polymerase chain reaction and sequencing identified up to four quinolone resistance-determining substitutions in gyrA (Ser83, Asp87) and parC (Ala56, Ser80). Plasmid-mediated mechanisms were identified as qnrS1 (or qnrS3, n=70, including six isolates with chromosomal mutations), qnrB19 (or qnrB10, n=19), and qnrB17 (n=1). All tested isolates were negative for qnrA, qnrC, qnrD, qepA, and aac(6')-Ib-cr. Still, there were several E. coli suspected for both plasmid- and chromosome-mediated resistance with unrevealed genetic background of the phenomenon. Since all tested isolates showed diverse XbaI-PFGE profiles, chromosome-encoded quinolone resistance does not result from the spread of a single resistant clone, however, it is rather due to antimicrobial pressure leading to the selection of random gyr and par mutants. It also favors the selection and spread of plasmids carrying predominant qnr genes, since the same determinants were found in Salmonella, isolated from similar sources. The identification of carrier plasmids and mitigation of their spread might be essential for sustainable quinolone usage in animal husbandry and efficient protection of human health.
Collapse
Affiliation(s)
- Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute , Puławy, Poland
| |
Collapse
|
246
|
Wong A, Seguin K. Effects of genotype on rates of substitution during experimental evolution. Evolution 2015; 69:1772-85. [DOI: 10.1111/evo.12700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Alex Wong
- Department of Biology; Carleton University; Ottawa Ontario Canada
| | - Kimberley Seguin
- Department of Biology; Carleton University; Ottawa Ontario Canada
| |
Collapse
|
247
|
Bacci C, Galli L, de Martino M, Chiappini E. Fluoroquinolones in children: update of the literature. J Chemother 2015; 27:257-65. [DOI: 10.1179/1973947815y.0000000054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
248
|
Ardebili A, Lari AR, Beheshti M, Lari ER. Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015. [PMID: 26221488 PMCID: PMC4509960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES We investigated the contribution of gyrA and parC mutational mechanism in decreased ciprofloxacin susceptibility of Acinetobacter baumannii isolated from burn wound infections. MATERIALS AND METHODS Ciprofloxacin susceptibility of 50 A. baumannii isolates was evaluated by disk diffusion and agar dilution methods. PCR and sequencing were performed for detection of mutation in gyrA and parC genes. RESULTS The 44 and 4 isolates of A. baumannii exhibited full and intermediate-resistant to ciprofloxacin, respectively. Overall, the 42 isolates with double mutations of gyrA and parC genes showed a higher level of ciprofloxacin resistance than the 3 isolates with single mutations of gyrA or parC. CONCLUSION Simultaneous mutations in gyrA and parC genes are expected to play a major role in high-level fluoroquinolone resistance in A. baumannii; albeit a single mutation in DNA topoisomerase IV could occasionally be associated with intermediate-resistance to these antimicrobials.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolaziz Rastegar Lari
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,*Corresponding author: Abdolaziz Rastegar Lari. Department of Clinical Microbiology, Iran University of Medical Sciences, Tehran, Iran. Tel/Fax: +98-21-86703183;
| | - Maryam Beheshti
- Department of Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Rastegar Lari
- Department of Science and Environment, Faculty of Science, Technology and Communication, Luxembourg University and Faculty of Science and Environment University of Liege, Liege, Belgium
| |
Collapse
|
249
|
PEYMANI A, NASERPOUR FARIVAR T, NIKOOEI L, NAJAFIPOUR R, JAVADI A, PAHLEVAN A. Emergence of plasmid-mediated quinolone-resistant determinants in Klebsiella pneumoniae isolates from Tehran and Qazvin provinces, Iran. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2015; 56:E61-5. [PMID: 26789990 PMCID: PMC4718354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/01/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Plasmid-mediated quinolone resistance is an increasing clinical concern, globally. The major objective of the present study was to identify the qnr-encoding genes among the quinolone non-susceptible K. pneumoniae isolates obtained from two provinces in Iran. METHODS A total of 200 K. pneumoniae isolates were obtained from hospitals of Qazvin and Tehran, Iran. The identification of bacterial isolates was carried out by standard laboratory methods and API 20E strips. Susceptibility to quinolone compounds were examined by standard Kirby-Bauer disk diffusion method according to the CLSI guideline. PCR and sequencing were employed to detect qnrA, qnrB and qnrS-encoding genes. RESULTS Of 200 K. pneumoniae isolates, 124 (62%) were nonsusceptible to quinolone compounds among those 66 (53.2%) and 58 (46.8%) isolates showed high and low-level quinolone resistance rates, respectively. Out of 124 quinolone non-susceptible isolates, qnr-encoding genes were present in 49 (39.5%) isolates with qnrB1 (30.6%) as the most dominant gene followed by qnrB4 (9.7%), and qnrS1 (1.6%) either alone or in combination. CONCLUSIONS This study, for the first time, revealed the high appearance of qnrB1, qnrS1 and qnrB4 genes among the clinical isolates of K. pneumoniae in Iran. Therefore, the application of proper infection control measures and well-established antibiotic administration guideline should be strictly considered within our medical centers.
Collapse
Affiliation(s)
- A. PEYMANI
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - T. NASERPOUR FARIVAR
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - L. NIKOOEI
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - R. NAJAFIPOUR
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - A. JAVADI
- School of Allied Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - A.A. PAHLEVAN
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran;,Correspondence: Ali Asghar Pahlevan, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran Tel. +98 (28) 33324971- Fax +98(28)33324971 - E-mail:
| |
Collapse
|
250
|
Yahiaoui M, Robin F, Bakour R, Hamidi M, Bonnet R, Messai Y. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria. Microb Drug Resist 2015; 21:516-26. [PMID: 26430940 DOI: 10.1089/mdr.2015.0045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.
Collapse
Affiliation(s)
- Merzouk Yahiaoui
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| | - Frédéric Robin
- 2 CHU Clermont-Ferrand, Laboratoire de Bactériologie , Clermont-Ferrand, France .,3 Clermont Université, Université d'Auvergne , Evolution des Bactéries Pathogènes et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Rabah Bakour
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| | | | - Richard Bonnet
- 2 CHU Clermont-Ferrand, Laboratoire de Bactériologie , Clermont-Ferrand, France .,3 Clermont Université, Université d'Auvergne , Evolution des Bactéries Pathogènes et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Yamina Messai
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| |
Collapse
|