201
|
S Bezryadina A, C Preece D, Chen JC, Chen Z. Optical disassembly of cellular clusters by tunable 'tug-of-war' tweezers. LIGHT, SCIENCE & APPLICATIONS 2016; 5. [PMID: 27818838 PMCID: PMC5091843 DOI: 10.1038/lsa.2016.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here we design and demonstrate 'tug-of-war' optical tweezers that can facilitate the assessment of cell-cell adhesion-a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such 'tug-of-war' tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications.
Collapse
Affiliation(s)
- Anna S Bezryadina
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA
| | - Daryl C Preece
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph C Chen
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Zhigang Chen
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physical Institute and School of Physics, Nankai University, Tianjin 300457, China
| |
Collapse
|
202
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
203
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
204
|
Pagliai FA, Gonzalez CF, Lorca GL. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus. Front Microbiol 2015; 6:1314. [PMID: 26635775 PMCID: PMC4658428 DOI: 10.3389/fmicb.2015.01314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| |
Collapse
|
205
|
|
206
|
Remigi P, Zhu J, Young JPW, Masson-Boivin C. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends Microbiol 2015; 24:63-75. [PMID: 26612499 DOI: 10.1016/j.tim.2015.10.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait.
Collapse
Affiliation(s)
- Philippe Remigi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France; New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| |
Collapse
|
207
|
Wetzel ME, Olsen GJ, Chakravartty V, Farrand SK. The repABC Plasmids with Quorum-Regulated Transfer Systems in Members of the Rhizobiales Divide into Two Structurally and Separately Evolving Groups. Genome Biol Evol 2015; 7:3337-57. [PMID: 26590210 PMCID: PMC4700958 DOI: 10.1093/gbe/evv227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from those coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. We conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.
Collapse
Affiliation(s)
- Margaret E Wetzel
- Department of Microbiology, University of Illinois at Urbana-Champaign
| | - Gary J Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | | | - Stephen K Farrand
- Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
208
|
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 2015; 198:521-35. [PMID: 26574513 DOI: 10.1128/jb.00795-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3',5'-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG(0)) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3',5'-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of an S. meliloti strain unable to produce cdG (cdG(0)) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility of S. meliloti and uncovered a single-domain PilZ protein as regulator of motility.
Collapse
|
209
|
Unraveling the universe of small RNA regulators in the legume symbiont Sinorhizobium meliloti. Symbiosis 2015. [DOI: 10.1007/s13199-015-0345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
210
|
Galardini M, Brilli M, Spini G, Rossi M, Roncaglia B, Bani A, Chiancianesi M, Moretto M, Engelen K, Bacci G, Pini F, Biondi EG, Bazzicalupo M, Mengoni A. Evolution of Intra-specific Regulatory Networks in a Multipartite Bacterial Genome. PLoS Comput Biol 2015; 11:e1004478. [PMID: 26340565 PMCID: PMC4560400 DOI: 10.1371/journal.pcbi.1004478] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/24/2015] [Indexed: 11/21/2022] Open
Abstract
Reconstruction of the regulatory network is an important step in understanding how organisms control the expression of gene products and therefore phenotypes. Recent studies have pointed out the importance of regulatory network plasticity in bacterial adaptation and evolution. The evolution of such networks within and outside the species boundary is however still obscure. Sinorhizobium meliloti is an ideal species for such study, having three large replicons, many genomes available and a significant knowledge of its transcription factors (TF). Each replicon has a specific functional and evolutionary mark; which might also emerge from the analysis of their regulatory signatures. Here we have studied the plasticity of the regulatory network within and outside the S. meliloti species, looking for the presence of 41 TFs binding motifs in 51 strains and 5 related rhizobial species. We have detected a preference of several TFs for one of the three replicons, and the function of regulated genes was found to be in accordance with the overall replicon functional signature: house-keeping functions for the chromosome, metabolism for the chromid, symbiosis for the megaplasmid. This therefore suggests a replicon-specific wiring of the regulatory network in the S. meliloti species. At the same time a significant part of the predicted regulatory network is shared between the chromosome and the chromid, thus adding an additional layer by which the chromid integrates itself in the core genome. Furthermore, the regulatory network distance was found to be correlated with both promoter regions and accessory genome evolution inside the species, indicating that both pangenome compartments are involved in the regulatory network evolution. We also observed that genes which are not included in the species regulatory network are more likely to belong to the accessory genome, indicating that regulatory interactions should also be considered to predict gene conservation in bacterial pangenomes. The influence of transcriptional regulatory networks on the evolution of bacterial pangenomes has not yet been elucidated, even though the role of transcriptional regulation is widely recognized. Using the model symbiont Sinorhizobium meliloti we have predicted the regulatory targets of 41 transcription factors in 51 strains and 5 other rhizobial species, showing a correlation between regulon diversity and pangenome evolution, through upstream sequence diversity and accessory genome composition. We have also shown that genes not wired to the regulatory network are more likely to belong to the accessory genome, thus suggesting that inclusion in the regulatory circuits may be an indicator of gene conservation. We have also highlighted a series of transcription factors that preferentially regulate genes belonging to one of the three replicons of this species, indicating the presence of replicon-specific regulatory modules, with peculiar functional signatures. At the same time the chromid shares a significant part of the regulatory network with the chromosome, indicating an additional way by which this replicon integrates itself in the pangenome.
Collapse
Affiliation(s)
- Marco Galardini
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Brilli
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Giulia Spini
- Dipartimento di Biotecnologie Agrarie, Sezione di Microbiologia, University of Florence, Florence, Italy
| | - Matteo Rossi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessia Bani
- Department of Biology, University of Florence, Florence, Italy
| | | | - Marco Moretto
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CRA-RPS), Rome, Italy
| | - Francesco Pini
- Interdisciplinary Research Institute USR3078, CNRS-Universit Lille Nord de France, Villeneuve d’Ascq, France
| | - Emanuele G. Biondi
- Interdisciplinary Research Institute USR3078, CNRS-Universit Lille Nord de France, Villeneuve d’Ascq, France
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
211
|
Trampari E, Stevenson CEM, Little RH, Wilhelm T, Lawson DM, Malone JG. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem 2015; 290:24470-83. [PMID: 26265469 PMCID: PMC4591828 DOI: 10.1074/jbc.m115.661439] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.
Collapse
Affiliation(s)
| | - Clare E M Stevenson
- the Biological Chemistry Department, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Thomas Wilhelm
- the Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom, and
| | - David M Lawson
- the Biological Chemistry Department, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jacob G Malone
- From the Molecular Microbiology Department and the School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
212
|
Vinardell JM, Acosta-Jurado S, Zehner S, Göttfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Pérez-Montaño F, Schneiker-Bekel S, Serranía J, Szczepanowski R, Buendía AM, Lloret J, Bonilla I, Pühler A, Ruiz-Sainz JE, Weidner S. The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:811-24. [PMID: 25675256 DOI: 10.1094/mpmi-12-14-0397-fi] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.
Collapse
Affiliation(s)
- José-María Vinardell
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Sebastián Acosta-Jurado
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Susanne Zehner
- 2 Technische Universität Dresden, Institut für Genetik, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Michael Göttfert
- 2 Technische Universität Dresden, Institut für Genetik, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Anke Becker
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Irene Baena
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Jochem Blom
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Juan Carlos Crespo-Rivas
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Alexander Goesmann
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Sebastian Jaenicke
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Elizaveta Krol
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Matthew McIntosh
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Isabel Margaret
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Susanne Schneiker-Bekel
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Javier Serranía
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Rafael Szczepanowski
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Ana-María Buendía
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Javier Lloret
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Ildefonso Bonilla
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Alfred Pühler
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - José-Enrique Ruiz-Sainz
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Stefan Weidner
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| |
Collapse
|
213
|
Weigold P, Ruecker A, Jochmann M, Osorio Barajas XL, Lege S, Zwiener C, Kappler A, Behrens S. Formation of chloroform and tetrachloroethene by Sinorhizobium meliloti strain 1021. Lett Appl Microbiol 2015; 61:346-53. [PMID: 26119060 DOI: 10.1111/lam.12462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/08/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED The mechanisms and organisms involved in the natural formation of volatile organohalogen compounds (VOX) are largely unknown. We provide evidence that the common and widespread soil bacterium Sinorhizobium meliloti strain 1021 is capable of producing up to 3338·6 ± 327·8 ng l(-1) headspace volume of chloroform (CHCl3 ) and 807·8 ± 13·5 ng l(-1) headspace volume of tetrachloroethene (C2 Cl4 ) within 1 h when grown in soil extract medium. Biotic VOX formation has been suggested to be linked to the activity of halogenating enzymes such as haloperoxidases. We tested if the observed VOX formation by S. meliloti can be attributed to one of its chloroperoxidases (Smc01944) that is highly expressed in the presence of H2 O2. However, addition of 10 mmol l(-1) H2 O2 to the S. meliloti cultures decreased VOX formation by 52% for chloroform and 25% for tetrachloroethene, while viable cell numbers decreased by 23%. Interestingly, smc01944 gene expression increased 450-fold. The quantification of extracellular chlorination activity in cell suspension experiments did not provide evidence for a role of S. meliloti chloroperoxidases in the observed VOX formation. This suggests that a momentarily unknown mechanism which requires no H2 O2 might be responsible for the VOX formation by S. meliloti. Regardless of the underlying mechanism our results suggest that the soil bacterium S. meliloti might be an important source of VOX in soils. SIGNIFICANCE AND IMPACT OF THE STUDY Volatile organohalogen compounds (VOX) strongly influence atmospheric chemistry and Earth's climate. Besides anthropogenic emissions they are naturally produced by either abiotic or biotic pathways in various environments. Particularly in soils, microbial processes drive the natural halogen cycle but the direct link to microbial VOX formation has not been studied in detail yet. In this study we provide evidence that the common and widespread soil bacterium Sinorhizobium meliloti strain 1021 forms chloroform and tetrachloroethene. The potential contribution of S. meliloti to soil VOX release could significantly influence soil and atmospheric chemistry.
Collapse
Affiliation(s)
- P Weigold
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - A Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - M Jochmann
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - X L Osorio Barajas
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - S Lege
- Environmental Analytical Chemistry, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - C Zwiener
- Environmental Analytical Chemistry, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - A Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - S Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany.,Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA.,BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
214
|
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M. Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region. SPRINGERPLUS 2015; 4:259. [PMID: 26090306 PMCID: PMC4468178 DOI: 10.1186/s40064-015-1062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022]
Abstract
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti has been widely studied due to its ability to improve crop yields through direct interactions with leguminous plants. S. meliloti AK21 is a wild type strain that forms nodules on Medicago plants in saline and drought conditions in the Aral Sea Region. The aim of this work was to establish the genetic similarities and differences between S. meliloti AK21 and the reference strain S. meliloti 1021. Comparative genome hybridization with the model reference strain S. meliloti 1021 yielded 365 variable genes, grouped into 11 regions in the three main replicons in S. meliloti AK21. The most extensive regions of variability were found in the symbiotic plasmid pSymA, which also contained the largest number of orthologous and polymorphic sequences identified by suppression subtractive hybridization. This procedure identified a large number of divergent sequences and others without homology in the databases, the further investigation of which could provide new insight into the alternative metabolic pathways present in S. meliloti AK21. We identified a plasmid replication module from the repABC replicon family, together with plasmid mobilization-related genes (traG and a VirB9-like protein), which suggest that this indigenous isolate harbors an accessory plasmid. Furthermore, the transcriptomic profiles reflected differences in gene content and regulation between S. meliloti AK21 and S. meliloti 1021 (ExpR and PhoB regulons), but provided evidence for an as yet unknown, alternative mechanism involving activation of the cbb3 terminal oxidase. Finally, phenotypic microarrays characterization revealed a greater versatility of substrate use and chemical degradation than for S. meliloti 1021.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - José Antonio López-Contreras
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Manuel Fernández-López
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
215
|
Roumiantseva ML, Muntyan VS. Root nodule bacteria Sinorhizobium meliloti: Tolerance to salinity and bacterial genetic determinants. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715030170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
216
|
A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet 2015; 11:e1005153. [PMID: 25923724 PMCID: PMC4414408 DOI: 10.1371/journal.pgen.1005153] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/18/2015] [Indexed: 01/22/2023] Open
Abstract
Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. Microorganisms frequently encounter adverse conditions unfavorable for cell proliferation. They have evolved diverse mechanisms, including transcriptional control and targeted protein degradation, to adjust cell cycle progression in response to environmental cues. Non-coding RNAs are widespread regulators of various cellular processes in all domains of life. In prokaryotes, trans-encoded small non-coding RNAs (trans-sRNAs) contribute to a rapid cellular response to changing environments, but so far have not been directly related to cell cycle regulation. Here, we report the first example of a trans-sRNA (EcpR1) with two experimentally confirmed targets in the core of cell cycle regulation and demonstrate that in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti the regulatory mechanism involves base-pairing of this sRNA with the dnaA and gcrA mRNAs. Most trans-sRNAs are restricted to closely related species, but the stress-induced EcpR1 is broadly conserved in the order of Rhizobiales suggesting an evolutionary advantage conferred by ecpR1. It broadens the functional diversity of prokaryotic sRNAs and adds a new regulatory level to the mechanisms that contribute to interlinking stress responses with the cell cycle machinery.
Collapse
|
217
|
Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 2015; 96:1042-52. [PMID: 25732202 DOI: 10.1111/mmi.12988] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 11/29/2022]
Abstract
Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate [MSMA or MAs(V)] and antimicrobial growth promoter roxarsone [Rox(V)], as well as to phenylarsenite [PhAs(III), also called phenylarsine oxide or PAO]. Pseudomonas putida has two chromosomally encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
218
|
Berrabah F, Ratet P, Gourion B. Multiple steps control immunity during the intracellular accommodation of rhizobia. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1977-85. [PMID: 25682610 PMCID: PMC4378630 DOI: 10.1093/jxb/eru545] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of these organs. Some factors influencing rhizobium maintenance within the plant cells have been previously identified, such as the M. truncatula NCR peptides whose toxic effects are reduced by the bacterial protein BacA. In addition, DNF2, SymCRK, and RSD are M. truncatula genes required to avoid rhizobial death within the symbiotic cells. DNF2 and SymCRK are essential to prevent defence-like reactions in nodules after bacteria internalization into the symbiotic cells. Herein, we used a combination of genetics, histology and molecular biology approaches to investigate the relationship between the factors preventing bacterial death in the nodule cells. We show that the RSD gene is also required to repress plant defences in nodules. Upon inoculation with the bacA mutant, defence responses are observed only in the dnf2 mutant and not in the symCRK and rsd mutants. In addition, our data suggest that lack of nitrogen fixation by the bacterial partner triggers bacterial death in nodule cells after bacteroid differentiation. Together our data indicate that, after internalization, at least four independent mechanisms prevent bacterial death in the plant cell. These mechanisms involve successively: DNF2, BacA, SymCRK/RSD and bacterial ability to fix nitrogen.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
219
|
Wiech EM, Cheng HP, Singh SM. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis. Protein Sci 2015; 24:319-27. [PMID: 25492513 PMCID: PMC4353358 DOI: 10.1002/pro.2616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.
Collapse
Affiliation(s)
- Eliza M Wiech
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Department of Biology, Brooklyn College, The City University of New YorkBrooklyn, New York, 11210
| | - Hai-Ping Cheng
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Biological Sciences Department, Lehman College, The City University of New YorkBronx, New York, 10468
| | - Shaneen M Singh
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Department of Biology, Brooklyn College, The City University of New YorkBrooklyn, New York, 11210
| |
Collapse
|
220
|
Yu X, Zhang C, Yang L, Zhao L, Lin C, Liu Z, Mao Z. CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. BMC Microbiol 2015; 15:25. [PMID: 25880528 PMCID: PMC4327974 DOI: 10.1186/s12866-015-0356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Agrobacterium sp. ATCC31749 is an efficient curdlan producer at low pH and under nitrogen starvation. The helix-turn-helix transcriptional regulatory protein (crdR) essential for curdlan production has been analyzed, but whether crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC) is uncertain. To elucidate the molecular function of crdR in curdlan biosynthesis, we constructed a crdR knockout mutant along with pBQcrdR and pBQNcrdR vectors with crdR expression driven by a T5 promoter and crdR native promoter, respectively. Also, we constructed a pAG with the green fluorescent protein (GFP) gene driven by a curdlan biosynthetic operon promoter (crdP) to measure the effects of crdR expression on curdlan biosynthesis. Results Compared with wild-type (WT) strain biomass production, the biomass of the crdR knockout mutant was not significantly different in either exponential or stationary phases of growth. Mutant cells were non-capsulated and planktonic and produced significantly less curdlan. WT cells were curdlan-capsulated and aggregated in the stationery phase. pBQcrdR transformed to the WT strain had a 38% greater curdlan yield and pBQcrdR and pBQNcrdR transformed to the crdR mutant strain recovered 18% and 105% curdlan titers of the WT ATCC31749 strain, respectively. Consistent with its function of promoting curdlan biosynthesis, curdlan biosynthetic operon promoter (crdP) controlled GFP expression caused the transgenic strain to have higher GFP relative fluorescence in the WT strain, and no color change was observed with low GFP relative fluorescence in the crdR mutant strain as evidenced by fluorescent microscopy and spectrometric assay. q-RT-PCR revealed that crdR expression in the stationary phase was greater than in the exponential phase, and crdR overexpression in the WT strain increased crdA, crdS, and crdC expression. We also confirmed that purified crdR protein can specifically bind to the crd operon promoter region, and we inferred that crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC). Conclusions CrdR is a positive transcriptional regulator of the crd operon for promoting curdlan biosynthesis in ATCC31749. The potential binding region of crdR is located within the −98 bp fragment upstream from the crdA start codon Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0356-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqin Yu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Chao Zhang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Liping Yang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Lamei Zhao
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Chun Lin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Zhengjie Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Zichao Mao
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China. .,National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.
| |
Collapse
|
221
|
Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc Natl Acad Sci U S A 2015; 112:E757-65. [PMID: 25650430 DOI: 10.1073/pnas.1421748112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1 → 3)(1 → 4)-β-D-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic → 4)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1 → 3)(1 → 4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria.
Collapse
|
222
|
Schlüter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A. Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level. J Biotechnol 2015; 198:3-14. [PMID: 25661839 DOI: 10.1016/j.jbiotec.2015.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Phenotypic heterogeneity, defined as the unequal behavior of individuals in an isogenic population, is prevalent in microorganisms. It has a significant impact both on industrial bioprocesses and microbial ecology. We introduce a new versatile reporter system designed for simultaneous monitoring of the activities of three different promoters, where each promoter is fused to a dedicated fluorescent reporter gene (cerulean, mCherry, and mVenus). The compact 3.1 kb triple reporter cassette can either be carried on a replicating plasmid or integrated into the genome avoiding artifacts associated with variation in copy number of plasmid-borne reporter constructs. This construct was applied to monitor promoter activities related to quorum sensing (sinI promoter) and biosynthesis of the exopolysaccharide galactoglucan (wgeA promoter) at single cell level in colonies of the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti growing in a microfluidics system. The T5-promoter served as a constitutive and homogeneously active control promoter indicating cell viability. wgeA promoter activity was heterogeneous over the whole period of colony development, whereas sinI promoter activity passed through a phase of heterogeneity before becoming homogeneous at late stages. Although quorum sensing-dependent regulation is a major factor activating galactoglucan production, activities of both promoters did not correlate at single cell level. We developed a novel mathematical strategy for classification of the gene expression status in cell populations based on the increase in fluorescence over time in each individual. With respect to galactoglucan biosynthesis, cells in the population were classified into non-contributors, weak contributors, and strong contributors.
Collapse
Affiliation(s)
- Jan-Philip Schlüter
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter Czuppon
- Department of Mathematical Stochastics, Faculty of Mathematics and Physics, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Schauer
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter Pfaffelhuber
- Department of Mathematical Stochastics, Faculty of Mathematics and Physics, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Matthew McIntosh
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
223
|
diCenzo GC, Finan TM. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Genet Genomics 2015; 290:1345-56. [PMID: 25638282 DOI: 10.1007/s00438-015-0998-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/17/2015] [Indexed: 01/09/2023]
Abstract
Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10-15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
224
|
Kim K, Ryu BH, Kim SS, An DR, Ngo TD, Pandian R, Kim KK, Kim TD. Structural and biochemical characterization of a carbohydrate acetylesterase from Sinorhizobium meliloti 1021. FEBS Lett 2015; 589:117-122. [PMID: 25436419 DOI: 10.1016/j.febslet.2014.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022]
Abstract
In many microorganisms, carbohydrate acetylesterases remove the acetyl groups from various types of carbohydrates. Sm23 from Sinorhizobium meliloti is a putative member of carbohydrate esterase family 3 (CE3) in the CAZy classification system. Here, we determined the crystal structure of Sm23 at 1.75 Å resolution and investigated functional properties using biochemical methods. Furthermore, immobilized Sm23 exhibited improved stability compared with soluble Sm23, which can be used for the design of plant cell wall degrading-systems.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Sung Soo Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Deu Rae An
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| | - T Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea.
| |
Collapse
|
225
|
Biondi EG, Toro N, Bazzicalupo M, Martínez-Abarca F. Spread of the group II intron RmInt1 and its insertion sequence target sites in the plant endosymbiont Sinorhizobium meliloti. Mob Genet Elements 2014; 1:2-7. [PMID: 22016840 DOI: 10.4161/mge.1.1.15316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
RmInt1 is a mobile group II intron from Sinorhizobium meliloti that is exceptionally abundant in this bacterial species. We compared the presence of RmInt1 and two of its insertion sequence homing sites (ISRm2011-2 and ISRm10-2) in two phylogenetic clusters (I and II) identified by AFLP analysis in a collection of S. meliloti field isolates from Italy. Both clusters contained several copies of the ISRm2011-2 element, which is present at high copy number in almost all S. meliloti isolates. By contrast, isolates from cluster I harbored no copies of ISRm10-2 and only a truncated copy of RmInt1, despite the absence of constraints on intron mobility in this genetic background, whereas cluster II strains harbored several copies of this intron. The absence of ISRm10-2 from one of the strains of this cluster suggests that this element was acquired more recently than the other two elements. Furthermore, studies of insertional polymorphisms in cluster II strains revealed the acquisition of ISRm10-2 and subsequent retrohoming of RmInt1 to this homing site. These results highlight the role of intron homing sites (ISs) in facilitating intron dispersal and the dynamic and ongoing nature of the spread of the group II intron RmInt1 in S. meliloti.
Collapse
Affiliation(s)
- Emanuele G Biondi
- Department of Evolutionary Biology; University of Florence; Florence, Italy
| | | | | | | |
Collapse
|
226
|
Martínez-Rodríguez L, García-Rodríguez FM, Molina-Sánchez MD, Toro N, Martínez-Abarca F. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome. RNA Biol 2014; 11:1061-71. [PMID: 25482895 PMCID: PMC4615759 DOI: 10.4161/rna.32092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.
Collapse
Affiliation(s)
- Laura Martínez-Rodríguez
- a Grupo de Ecología Genética; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas ; Granada , Spain
| | | | | | | | | |
Collapse
|
227
|
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 2014; 10:e1004742. [PMID: 25340565 PMCID: PMC4207669 DOI: 10.1371/journal.pgen.1004742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 01/12/2023] Open
Abstract
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). Rhizobia are free-living bacteria of agricultural and environmental importance that form root-nodules on leguminous plants and provide these plants with fixed nitrogen. Many of the rhizobia have a multipartite genome, as do several plant and animal pathogens. All isolates of the alfalfa symbiont, Sinorhizobium meliloti, carry three large replicons, the chromosome (∼3.7 Mb), pSymA megaplasmid (∼1.4 Mb), and pSymB chromid (∼1.7 Mb). To gain insight into the role and evolutionary history of these replicons, we have ‘reversed evolution’ by constructing a S. meliloti strain consisting solely of the chromosome and lacking the pSymB chromid and pSymA megaplasmid. As the resulting strain was viable, we could perform a detailed phenotypic analysis and these data provided significant insight into the biology and metabolism of S. meliloti. The data lend direct experimental evidence in understanding the evolution and role of the multipartite genome. Specifically the large secondary replicons increase the organism's niche range, and this advantage offsets the metabolic burden of these replicons on the cell. Additionally, the single-chromosome strain offers a useful platform to facilitate future forward genetic approaches to understanding and manipulating the symbiosis and plant-microbe interactions.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
228
|
Complete Genome Sequence of the RmInt1 Group II Intronless Sinorhizobium meliloti Strain RMO17. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01001-14. [PMID: 25301650 PMCID: PMC4192382 DOI: 10.1128/genomea.01001-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the complete genome sequence of the RmInt1 group II intronless Sinorhizobium meliloti strain RMO17 isolated from Medicago orbicularis nodules from Spanish soil. The genome consists of 6.73 Mb distributed between a single chromosome and two megaplasmids (the chromid pSymB and pSymA).
Collapse
|
229
|
Teamtisong K, Songwattana P, Noisangiam R, Piromyou P, Boonkerd N, Tittabutr P, Minamisawa K, Nantagij A, Okazaki S, Abe M, Uchiumi T, Teaumroong N. Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range. Microbes Environ 2014; 29:370-6. [PMID: 25283477 PMCID: PMC4262360 DOI: 10.1264/jsme2.me14065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons.
Collapse
Affiliation(s)
- Kamonluck Teamtisong
- Center for Scientific and Technological Equipment, Suranaree University of Technology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Sánchez C, Itakura M, Okubo T, Matsumoto T, Yoshikawa H, Gotoh A, Hidaka M, Uchida T, Minamisawa K. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum. Environ Microbiol 2014; 16:3263-74. [PMID: 24947409 DOI: 10.1111/1462-2920.12546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/30/2022]
Abstract
The soybean endosymbiont Bradyrhizobium japonicum is able to scavenge the greenhouse gas N2O through the N2O reductase (Nos). In previous research, N2O emission from soybean rhizosphere was mitigated by B. japonicum Nos(++) strains (mutants with increased Nos activity). Here, we report the mechanism underlying the Nos(++) phenotype. Comparative analysis of Nos(++) mutant genomes showed that mutation of bll4572 resulted in Nos(++) phenotype. bll4572 encodes NasS, the nitrate (NO3(-))-sensor of the two-component NasST regulatory system. Transcriptional analyses of nosZ (encoding Nos) and other genes from the denitrification process in nasS and nasST mutants showed that, in the absence of NO3(-) , nasS mutation induces nosZ and nap (periplasmic nitrate reductase) via nasT. NO3(-) addition dissociated the NasS-NasT complex in vitro, suggesting the release of the activator NasT. Disruption of nasT led to a marked decrease in nosZ and nap transcription in cells incubated in the presence of NO3(-). Thus, although NasST is known to regulate the NO3(-)-mediated response of NO3(-) assimilation genes in bacteria, our results show that NasST regulates the NO3(-) -mediated response of nosZ and napE genes, from the dissimilatory denitrification pathway, in B. japonicum.
Collapse
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
López-Leal G, Tabche ML, Castillo-Ramírez S, Mendoza-Vargas A, Ramírez-Romero MA, Dávila G. RNA-Seq analysis of the multipartite genome of Rhizobium etli CE3 shows different replicon contributions under heat and saline shock. BMC Genomics 2014; 15:770. [PMID: 25201548 PMCID: PMC4167512 DOI: 10.1186/1471-2164-15-770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022] Open
Abstract
Background Regulation of transcription is essential for any organism and Rhizobium etli (a multi-replicon, nitrogen-fixing symbiotic bacterium) is no exception. This bacterium is commonly found in the rhizosphere (free-living) or inside of root-nodules of the common bean (Phaseolus vulgaris) in a symbiotic relationship. Abiotic stresses, such as high soil temperatures and salinity, compromise the genetic stability of R. etli and therefore its symbiotic interaction with P. vulgaris. However, it is still unclear which genes are up- or down-regulated to cope with these stress conditions. The aim of this study was to identify the genes and non-coding RNAs (ncRNAs) that are differentially expressed under heat and saline shock, as well as the promoter regions of the up-regulated loci. Results Analysing the heat and saline shock responses of R. etli CE3 through RNA-Seq, we identified 756 and 392 differentially expressed genes, respectively, and 106 were up-regulated under both conditions. Notably, the set of genes over-expressed under either condition was preferentially encoded on plasmids, although this observation was more significant for the heat shock response. In contrast, during either saline shock or heat shock, the down-regulated genes were principally chromosomally encoded. Our functional analysis shows that genes encoding chaperone proteins were up-regulated during the heat shock response, whereas genes involved in the metabolism of compatible solutes were up-regulated following saline shock. Furthermore, we identified thirteen and nine ncRNAs that were differentially expressed under heat and saline shock, respectively, as well as eleven ncRNAs that had not been previously identified. Finally, using an in silico analysis, we studied the promoter motifs in all of the non-coding regions associated with the genes and ncRNAs up-regulated under both conditions. Conclusions Our data suggest that the replicon contribution is different for different stress responses and that the heat shock response is more complex than the saline shock response. In general, this work exemplifies how strategies that not only consider differentially regulated genes but also regulatory elements of the stress response provide a more comprehensive view of bacterial gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-770) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gamaliel López-Leal
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos C,P 62210, México.
| | | | | | | | | | | |
Collapse
|
232
|
Remigi P, Capela D, Clerissi C, Tasse L, Torchet R, Bouchez O, Batut J, Cruveiller S, Rocha EPC, Masson-Boivin C. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer. PLoS Biol 2014; 12:e1001942. [PMID: 25181317 PMCID: PMC4151985 DOI: 10.1371/journal.pbio.1001942] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022] Open
Abstract
Stress-responsive error-prone DNA polymerase genes transferred along with key symbiotic genes ease the evolution of a soil bacterium into a legume endosymbiont by accelerating adaptation of the recipient bacterial genome to its new plant host. Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT. Horizontal gene transfer has an extraordinary impact on microbe evolution and diversification, by allowing exploration of new niches such as higher organisms. This is the case for rhizobia, a group of phylogenetically diverse bacteria that form a nitrogen-fixing symbiotic relationship with most leguminous plants. While these arose through horizontal transfer of symbiotic plasmids, this in itself is usually unproductive, and full expression of the acquired traits needs subsequent remodeling of the genome to ensure the ecological success of the transfer. Here we uncover a mechanism that accelerates the evolution of a soil bacterium into a legume symbiont. We show that key symbiotic genes are co-transferred with genes encoding stress-responsive error-prone DNA polymerases that transiently elevate the mutation rate in the recipient genome. This burst in genetic diversity accelerates the symbiotic evolution process under selection pressure from the host plant. A more widespread involvement of plasmid mutagenesis cassettes in rhizobium evolution is supported by their overrepresentation in rhizobia-containing lineages. Our findings provide evidence for the role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait and predict that co-transfer of complex phenotypic traits with mutagenesis determinants might help successful horizontal gene transfer.
Collapse
Affiliation(s)
- Philippe Remigi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Delphine Capela
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Camille Clerissi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Léna Tasse
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Rachel Torchet
- CNRS-UMR 8030 and Commissariat à l'Energie Atomique CEA/DSV/IG/Genoscope LABGeM, Evry, France
| | - Olivier Bouchez
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France; GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
| | - Jacques Batut
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Stéphane Cruveiller
- CNRS-UMR 8030 and Commissariat à l'Energie Atomique CEA/DSV/IG/Genoscope LABGeM, Evry, France
| | - Eduardo P C Rocha
- CNRS UMR3525, Paris, France; Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| |
Collapse
|
233
|
Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P, Wen J, Jean V, Mysore KS, Gourion B, Ratet P. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. THE NEW PHYTOLOGIST 2014; 203:1305-1314. [PMID: 24916161 DOI: 10.1111/nph.12881] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/30/2014] [Indexed: 05/11/2023]
Abstract
Rhizobia and legumes establish symbiotic interactions leading to the production of root nodules, in which bacteria fix atmospheric nitrogen for the plant's benefit. This symbiosis is efficient because of the high rhizobia population within nodules. Here, we investigated how legumes accommodate such bacterial colonization. We used a reverse genetic approach to identify a Medicago truncatula gene, SymCRK, which encodes a cysteine-rich receptor-like kinase that is required for rhizobia maintenance within the plant cells, and performed detailed phenotypic analyses of the corresponding mutant. The Medicago truncatula symCRK mutant developed nonfunctional and necrotic nodules. A nonarginine asparate (nonRD) motif, typical of receptors involved in innate immunity, is present in the SymCRK kinase domain. Similar to the dnf2 mutant, bacteroid differentiation defect, defense-like reactions and early senescence were observed in the symCRK nodules. However, the dnf2 and symCRK nodules differ by their degree of colonization, which is higher in symCRK. Furthermore, in contrast to dnf2, symCRK is not a conditional mutant. These results suggest that in M. truncatula at least two genes are involved in the symbiotic control of immunity. Furthermore, phenotype differences between the two mutants suggest that two distinct molecular mechanisms control suppression of plant immunity during nodulation.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Marie Bourcy
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Alexis Eschstruth
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Anne Cayrel
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Ibtissem Guefrachi
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Peter Mergaert
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Viviane Jean
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Benjamin Gourion
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Pascal Ratet
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| |
Collapse
|
234
|
Donnarumma F, Bazzicalupo M, Blažinkov M, Mengoni A, Sikora S, Babić KH. Biogeography of Sinorhizobium meliloti nodulating alfalfa in different Croatian regions. Res Microbiol 2014; 165:508-16. [DOI: 10.1016/j.resmic.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/11/2014] [Indexed: 11/16/2022]
|
235
|
Marchetti M, Jauneau A, Capela D, Remigi P, Gris C, Batut J, Masson-Boivin C. Shaping bacterial symbiosis with legumes by experimental evolution. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:956-964. [PMID: 25105803 DOI: 10.1094/mpmi-03-14-0083-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitrogen-fixing symbionts of legumes have appeared after the emergence of legumes on earth, approximately 70 to 130 million years ago. Since then, symbiotic proficiency has spread to distant genera of α- and β-proteobacteria, via horizontal transfer of essential symbiotic genes and subsequent recipient genome remodeling under plant selection pressure. To tentatively replay rhizobium evolution in laboratory conditions, we previously transferred the symbiotic plasmid of the Mimosa symbiont Cupriavidus taiwanensis in the plant pathogen Ralstonia solanacearum, and selected spontaneous nodulating variants of the chimeric Ralstonia sp. using Mimosa pudica as a trap. Here, we pursued the evolution experiment by submitting two of the rhizobial drafts to serial ex planta-in planta (M. pudica) passages that may mimic alternating of saprophytic and symbiotic lives of rhizobia. Phenotyping 16 cycle-evolved clones showed strong and parallel evolution of several symbiotic traits (i.e., nodulation competitiveness, intracellular infection, and bacteroid persistence). Simultaneously, plant defense reactions decreased within nodules, suggesting that the expression of symbiotic competence requires the capacity to limit plant immunity. Nitrogen fixation was not acquired in the frame of this evolutionarily short experiment, likely due to the still poor persistence of final clones within nodules compared with the reference rhizobium C. taiwanensis. Our results highlight the potential of experimental evolution in improving symbiotic proficiency and for the elucidation of relationship between symbiotic capacities and elicitation of immune responses.
Collapse
|
236
|
Larrainzar E, Gil-Quintana E, Seminario A, Arrese-Igor C, González EM. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis. Front Microbiol 2014; 5:447. [PMID: 25221545 PMCID: PMC4145349 DOI: 10.3389/fmicb.2014.00447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/05/2014] [Indexed: 12/22/2022] Open
Abstract
The symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume–Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed. However, little is known about the physiological mechanisms behind the higher symbiotic efficiency of S. medicae WSM419. In the present study, we inoculated M. truncatula Jemalong A17 with either S. medicae WSM419 or S. meliloti 2011 and compared plant growth, photosynthesis, N2-fixation rates, and plant nodule carbon and nitrogen metabolic activities in the two systems. M. truncatula plants in symbiosis with S. medicae showed increased biomass and photosynthesis rates per plant. Plants grown in symbiosis with S. medicae WSM419 also showed higher N2-fixation rates, which were correlated with a larger nodule biomass, while nodule number was similar in both systems. In terms of plant nodule metabolism, M. truncatula–S. medicae WSM419 nodules showed increased sucrose-catabolic activity, mostly associated with sucrose synthase, accompanied by a reduced starch content, whereas nitrogen-assimilation activities were comparable to those measured in nodules infected with S. meliloti 2011. Taken together, these results suggest that S. medicae WSM419 is able to enhance plant carbon catabolism in M. truncatula nodules, which allows for the maintaining of high symbiotic N2-fixation rates, better growth and improved general plant performance.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Erena Gil-Quintana
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Amaia Seminario
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Cesar Arrese-Igor
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Esther M González
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| |
Collapse
|
237
|
Becker A, Overlöper A, Schlüter JP, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E. Riboregulation in plant-associated α-proteobacteria. RNA Biol 2014; 11:550-62. [PMID: 25003187 DOI: 10.4161/rna.29625] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The symbiotic α-rhizobia Sinorhizobium meliloti, Bradyrhizobium japonicum, Rhizobium etli and the related plant pathogen Agrobacterium tumefaciens are important model organisms for studying plant-microbe interactions. These metabolically versatile soil bacteria are characterized by complex lifestyles and large genomes. Here we summarize the recent knowledge on their small non-coding RNAs (sRNAs) including conservation, function, and interaction of the sRNAs with the RNA chaperone Hfq. In each of these organisms, an inventory of hundreds of cis- and trans-encoded sRNAs with regulatory potential was uncovered by high-throughput approaches and used for the construction of 39 sRNA family models. Genome-wide analyses of hfq mutants and co-immunoprecipitation with tagged Hfq revealed a major impact of the RNA chaperone on the physiology of plant-associated α-proteobacteria including symbiosis and virulence. Highly conserved members of the SmelC411 family are the AbcR sRNAs, which predominantly regulate ABC transport systems. AbcR1 of A. tumefaciens controls the uptake of the plant-generated signaling molecule GABA and is a central regulator of nutrient uptake systems. It has similar functions in S. meliloti and the human pathogen Brucella abortus. As RNA degradation is an important process in RNA-based gene regulation, a short overview on ribonucleases in plant-associated α-proteobacteria concludes this review.
Collapse
Affiliation(s)
- Anke Becker
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | | | - Jan-Philip Schlüter
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Jan Reinkensmeier
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | - Marta Robledo
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Robert Giegerich
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | | | | |
Collapse
|
238
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
239
|
Pel MJC, van Dijken AJH, Bardoel BW, Seidl MF, van der Ent S, van Strijp JAG, Pieterse CMJ. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:603-10. [PMID: 24654978 DOI: 10.1094/mpmi-02-14-0032-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.
Collapse
|
240
|
Commichau FM, Alzinger A, Sande R, Bretzel W, Meyer FM, Chevreux B, Wyss M, Hohmann HP, Prágai Z. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metab Eng 2014; 25:38-49. [PMID: 24972371 DOI: 10.1016/j.ymben.2014.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5'-phosphates. Pyridoxal 5'-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5'-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis.
Collapse
Affiliation(s)
- Fabian M Commichau
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland; Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Ariane Alzinger
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Rafael Sande
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Werner Bretzel
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Frederik M Meyer
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Bastien Chevreux
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Markus Wyss
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Hans-Peter Hohmann
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Zoltán Prágai
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland.
| |
Collapse
|
241
|
Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis. Appl Environ Microbiol 2014; 80:5265-73. [PMID: 24951786 DOI: 10.1128/aem.01393-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.
Collapse
|
242
|
Reeve W, Ballard R, Drew E, Tian R, Bräu L, Goodwin L, Huntemann M, Han J, Tatiparthi R, Chen A, Mavrommatis K, Markowitz V, Palaniappan K, Ivanova N, Pati A, Woyke T, Kyrpides N. Genome sequence of the Medicago-nodulating Ensifer meliloti commercial inoculant strain RRI128. Stand Genomic Sci 2014; 9:602-13. [PMID: 25197447 PMCID: PMC4149011 DOI: 10.4056/sigs.4929626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ensifer meliloti strain RRI128 is an aerobic, motile, Gram-negative, non-spore-forming rod. RRI128 was isolated from a nodule recovered from the roots of barrel medic (Medicago truncatula) grown in the greenhouse and inoculated with soil collected from Victoria, Australia. The strain is used in commercial inoculants in Australia. RRI128 nodulates and forms an effective symbiosis with a diverse range of lucerne cultivars (Medicago sativa) and several species of annual medic (M. truncatula, Medicago littoralis and Medicago tornata), but forms an ineffective symbiosis with Medicago polymorpha. Here we describe the features of E. meliloti strain RRI128, together with genome sequence information and annotation. The 6,900,273 bp draft genome is arranged into 156 scaffolds of 157 contigs, contains 6,683 protein-coding genes and 87 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Ross Ballard
- South Australian Research and Development Institute, Urrbrae, South Australia, Australia
| | - Elizabeth Drew
- South Australian Research and Development Institute, Urrbrae, South Australia, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | | | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Konstantinos Mavrommatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|
243
|
Reeve W, Ballard R, Howieson J, Drew E, Tian R, Bräu L, Munk C, Davenport K, Chain P, Goodwin L, Pagani I, Huntemann M, Mavrommatis K, Pati A, Markowitz V, Ivanova N, Woyke T, Kyrpides N. Genome sequence of Ensifer medicae strain WSM1115; an acid-tolerant Medicago-nodulating microsymbiont from Samothraki, Greece. Stand Genomic Sci 2014; 9:514-26. [PMID: 25197437 PMCID: PMC4148968 DOI: 10.4056/sigs.4938652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ensifer medicae strain WSM1115 forms effective nitrogen fixing symbioses with a range of annual Medicago species and is used in commercial inoculants in Australia. WSM1115 is an aerobic, motile, Gram-negative, non-spore-forming rod. It was isolated from a nodule recovered from the root of burr medic (Medicago polymorpha) collected on the Greek Island of Samothraki. WSM1115 has a broad host range for nodulation and N2 fixation capacity within the genus Medicago, although this does not extend to all medic species. WSM1115 is considered saprophytically competent in moderately acid soils (pH(CaCl2) 5.0), but it has failed to persist at field sites where soil salinity exceeded 10 ECe (dS/m). Here we describe the features of E. medicae strain WSM1115, together with genome sequence information and its annotation. The 6,861,065 bp high-quality-draft genome is arranged into 7 scaffolds of 28 contigs, contains 6,789 protein-coding genes and 83 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Ross Ballard
- South Australian Research and Development Institute, Urrbrae, South Australia, Australia
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Elizabeth Drew
- South Australian Research and Development Institute, Urrbrae, South Australia, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Christine Munk
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Karen Davenport
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Ioanna Pagani
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Konstantinos Mavrommatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|
244
|
Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules. Appl Environ Microbiol 2014; 80:4286-93. [PMID: 24814784 DOI: 10.1128/aem.00597-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the dose-response effects of endogenous indole-3-acetic acid (IAA) on Medicago plant growth and dry weight production, we increased the synthesis of IAA in both free-living and symbiosis-stage rhizobial bacteroids during Rhizobium-legume symbiosis. For this purpose, site-directed mutagenesis was applied to modify an 85-bp promoter sequence, driving the expression of iaaM and tms2 genes for IAA biosynthesis. A positive correlation was found between the higher expression of IAA biosynthetic genes in free-living bacteria and the increased production of IAA under both free-living and symbiotic conditions. Plants nodulated by RD65 and RD66 strains, synthetizing the highest IAA concentration, showed a significant (up to 73%) increase in the shoot fresh weight and upregulation of nitrogenase gene, nifH, compared to plants nodulated by the wild-type strain. When these plants were analyzed by confocal microscopy, using an anti-IAA antibody, the strongest signal was observed in bacteroids of Medicago sativa RD66 (Ms-RD66) plants, even when they were located in the senescent nodule zone. We show here a simple system to modulate endogenous IAA biosynthesis in bacteria nodulating legumes suitable to investigate which is the maximum level of IAA biosynthesis, resulting in the maximal increase of plant growth.
Collapse
|
245
|
Epstein B, Sadowsky MJ, Tiffin P. Selection on horizontally transferred and duplicated genes in sinorhizobium (ensifer), the root-nodule symbionts of medicago. Genome Biol Evol 2014; 6:1199-209. [PMID: 24803571 PMCID: PMC4040998 DOI: 10.1093/gbe/evu090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Structural variation, including variation in gene copy number and presence or absence of genes, is a widespread and important source of genomic variation. We used whole-genome DNA sequences from 48 strains of Sinorhizobium (recently renamed Ensifer), including 20 strains of Sinorhizobium meliloti and 12 strains of S. medicae that were the focus of the analyses, to study the fitness effects of new structural variants created by duplication and horizontal gene transfer. We find that derived duplicated and horizontally transferred (HT) genes segregate at lower frequency than synonymous and nonsynonymous nucleotide variants in S. meliloti and S. medicae. Furthermore, the relative frequencies of different types of variants are more similar in S. medicae than in S. meliloti, the species with the larger effective population size. These results are consistent with the hypothesis that most duplications and HT genes have deleterious effects. Diversity of duplications, as measured by segregating duplicated genes per gene, is greater than nucleotide diversity, consistent with a high rate of duplication. Our results suggest that the vast majority of structural variants found among closely related bacterial strains are short-lived and unlikely to be involved in species-wide adaptation.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant Biology, University of MinnesotaSchool of Biological Sciences, Washington State University
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of MinnesotaBioTechnology Institute, Saint Paul, MN
| | - Peter Tiffin
- Department of Plant Biology, University of Minnesota
| |
Collapse
|
246
|
Yurgel SN, Rice J, Domreis E, Lynch J, Sa N, Qamar Z, Rajamani S, Gao M, Roje S, Bauer WD. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:437-445. [PMID: 24405035 DOI: 10.1094/mpmi-11-13-0338-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.
Collapse
|
247
|
Nallu S, Silverstein KAT, Zhou P, Young ND, VandenBosch KA. Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:697-705. [PMID: 24635121 PMCID: PMC4282536 DOI: 10.1111/tpj.12506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 05/07/2023]
Abstract
The nodule cysteine-rich (NCR) groups of defensin-like (DEFL) genes are one of the largest gene families expressed in the nodules of some legume plants. They have only been observed in the inverted repeat loss clade (IRLC) of legumes, which includes the model legume Medicago truncatula. NCRs are reported to play an important role in plant-microbe interactions. To understand their diversity we analyzed their expression and sequence polymorphisms among four accessions of M. truncatula. A significant expression and nucleotide variation was observed among the genes. We then used 26 accessions to estimate the selection pressures shaping evolution among the accessions by calculating the nucleotide diversity at non-synonymous and synonymous sites in the coding region. The mature peptides of the orthologous NCRs had signatures of both purifying and diversifying selection pressures, unlike the seed DEFLs, which predominantly exhibited purifying selection. The expression, sequence variation and apparent diversifying selection in NCRs within the Medicago species indicates rapid and recent evolution, and suggests that this family of genes is actively evolving to adapt to different environments and is acquiring new functions.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- * For correspondence (e-mail )
| | - Kevin A T Silverstein
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- ‡ Present address: Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peng Zhou
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Nevin D Young
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Kathryn A VandenBosch
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- § Present address: College of Agricultural and Life Sciences, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
248
|
Fagen JR, Leonard MT, Coyle JF, McCullough CM, Davis-Richardson AG, Davis MJ, Triplett EW. Liberibacter crescens gen. nov., sp. nov., the first cultured member of the genus Liberibacter. Int J Syst Evol Microbiol 2014; 64:2461-2466. [PMID: 24786353 DOI: 10.1099/ijs.0.063255-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-stain-negative, rod-shaped bacterial isolate BT-1(T) is the closest relative to the genus 'Candidatus Liberibacter' cultured to date. BT-1(T) was recovered from the phloem sap of a defoliating mountain papaya in Puerto Rico. The BT-1(T) 16S rRNA gene sequence showed that strain BT-1(T) is most closely related to members of the genus 'Ca. Liberibacter' sharing 94.7% 16S rRNA gene sequence similarity with 'Ca. Liberibacter americanus' and 'Ca. Liberibacter asiaticus'. Additionally, average nucleotide identity, 16S rRNA gene sequences and conserved protein sequences supported inclusion of the previously described species of the genus 'Ca. Liberibacter' in a genus with BT-1(T). The prominent fatty acids of isolate BT-1(T) were C18 : 1ω7c (77.2%), C16 : 0 OH (4.8%), C18 : 0 (4.4%) and C16 : 0 (3.5%). Both physiological and genomic characteristics support the creation of the genus Liberibacter, as well as the novel species Liberibacter crescens gen. nov., sp. nov. with type strain BT-1(T) ( = ATCC BAA-2481(T) = DSM 26877(T)).
Collapse
Affiliation(s)
- Jennie R Fagen
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Michael T Leonard
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Janelle F Coyle
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Connor M McCullough
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Austin G Davis-Richardson
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Michael J Davis
- Plant Pathology Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
249
|
Biswas B, Gresshoff PM. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int J Mol Sci 2014; 15:7380-97. [PMID: 24786096 PMCID: PMC4057678 DOI: 10.3390/ijms15057380] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022] Open
Abstract
With the ever-increasing population of the world (expected to reach 9.6 billion by 2050), and altered life style, comes an increased demand for food, fuel and fiber. However, scarcity of land, water and energy accompanied by climate change means that to produce enough to meet the demands is getting increasingly challenging. Today we must use every avenue from science and technology available to address these challenges. The natural process of symbiotic nitrogen fixation, whereby plants such as legumes fix atmospheric nitrogen gas to ammonia, usable by plants can have a substantial impact as it is found in nature, has low environmental and economic costs and is broadly established. Here we look at the importance of symbiotic nitrogen fixation in the production of biofuel feedstocks; how this process can address major challenges, how improving nitrogen fixation is essential, and what we can do about it.
Collapse
Affiliation(s)
- Bandana Biswas
- Centre for Integrative Legume Research (CILR), the University of Queensland, St Lucia Brisbane, QLD 4072, Australia.
| | - Peter M Gresshoff
- Centre for Integrative Legume Research (CILR), the University of Queensland, St Lucia Brisbane, QLD 4072, Australia.
| |
Collapse
|
250
|
Pagliai FA, Gardner CL, Bojilova L, Sarnegrim A, Tamayo C, Potts AH, Teplitski M, Folimonova SY, Gonzalez CF, Lorca GL. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance. PLoS Pathog 2014; 10:e1004101. [PMID: 24763829 PMCID: PMC3999280 DOI: 10.1371/journal.ppat.1004101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/18/2014] [Indexed: 02/02/2023] Open
Abstract
The causal agent of Huanglongbing disease, ‘Candidatus Liberibacter asiaticus’, is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from ‘Ca. L. asiaticus’ involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of ‘Ca. Liberibacter asiaticus’, using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease. The rapid expansion of Huanglongbing disease (HLB) has caused a severe crisis in the citrus industry, with no solution visible in the near future. The causative agent, ‘Candidatus Liberibacter asiaticus’, is an unculturable bacterium under common laboratory conditions, which has made it difficult to gain understanding of this pathogen. Here we used a biochemical approach to identify new chemicals that could be used for the treatment of this devastating disease. These chemicals target a specific transcription factor (LdtR) in ‘Ca. Liberibacter asiaticus’. When bound to LdtR, the chemicals inactivate the protein, which disrupts a cell wall remodeling process that is critical for survival of the pathogen when exposed to osmotic stress (i.e. within the phloem of a citrus tree). Several model strains were used to confirm that the newly identified transcription factor (LdtR) and its regulated genes (ldtR and ldtP) confer tolerance to osmotic stress. The results presented in this study provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease.
Collapse
Affiliation(s)
- Fernando A. Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Christopher L. Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Lora Bojilova
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Amanda Sarnegrim
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Cheila Tamayo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Anastasia H. Potts
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Max Teplitski
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
- Soil and Water Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Claudio F. Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (CFG); (GLL)
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (CFG); (GLL)
| |
Collapse
|