201
|
Abstract
The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physical properties of the chromatin fiber and specific molecular interactions as drivers of nuclear order.
Collapse
Affiliation(s)
- Christophe Zimmer
- Groupe Imagerie et Modélisation, Département Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
| | | |
Collapse
|
202
|
Kang J, Xu B, Yao Y, Lin W, Hennessy C, Fraser P, Feng J. A dynamical model reveals gene co-localizations in nucleus. PLoS Comput Biol 2011; 7:e1002094. [PMID: 21760760 PMCID: PMC3131386 DOI: 10.1371/journal.pcbi.1002094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/03/2011] [Indexed: 01/08/2023] Open
Abstract
Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes.
Collapse
Affiliation(s)
- Jing Kang
- Nuclear Dynamics Laboratory, The Babraham Institute, Cambridge, United Kingdom
- Centre for Scientific Computing, Warwick University, Coventry, United Kingdom
| | - Bing Xu
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Ye Yao
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Wei Lin
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Conor Hennessy
- Nuclear Dynamics Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Peter Fraser
- Nuclear Dynamics Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Jianfeng Feng
- Centre for Scientific Computing, Warwick University, Coventry, United Kingdom
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
203
|
Meister P, Mango SE, Gasser SM. Locking the genome: nuclear organization and cell fate. Curr Opin Genet Dev 2011; 21:167-74. [PMID: 21345665 PMCID: PMC4041333 DOI: 10.1016/j.gde.2011.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 01/12/2023]
Abstract
The differentiation of pluripotent or totipotent cells into various differentiated cell types is accompanied by a restriction of gene expression patterns, alteration in histone and DNA methylation, and changes in the gross nuclear organization of eu- and heterochromatic domains. Several recent studies have coupled genome-wide mapping of histone modifications with changes in gene expression. Other studies have examined changes in the subnuclear positioning of tissue-specific genes upon transcriptional induction or repression. Here we summarize intriguing correlations of the three phenomena, which suggest that in some cases causal relationships may exist.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | |
Collapse
|
204
|
Abstract
Nuclear organization is involved in numerous aspects of cellular function. In yeast, analysis of the nuclear position and dynamics of the silent and active mating-type loci has allowed to gain insight into the mechanisms involved in directing mating-type switching. The fluorescent repressor operator systems (FROS) have proven to be a powerful technique to tag DNA sequences to investigate chromosome position and dynamics in living cells. FROS rely on the transgenic expression of a bacterial repressor fused to a fluorescent protein which can bind to its respective operator DNA sequence integrated as multicopy tandem arrays at a specific genomic site. Different FROS exist which facilitate the tagging of up to three different loci simultaneously. This chapter describes detailed protocols for FROS usage and analysis in the yeast Saccharomyces cerevisiae.
Collapse
|
205
|
Gehlen LR, Nagai S, Shimada K, Meister P, Taddei A, Gasser SM. Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast. Curr Biol 2010; 21:25-33. [PMID: 21194950 DOI: 10.1016/j.cub.2010.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/10/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Asymmetric cell division drives the generation of differentiated cells and maintenance of stem cells. In budding yeast, autonomously replicating sequence (ARS) plasmids lacking centromere elements are asymmetrically segregated into the mother cell, where they are thought to contribute to cellular senescence. This phenomenon has been proposed to result from the active retention of plasmids through an interaction with nuclear pores. RESULTS To investigate the mother-daughter segregation bias of plasmids, we used live-cell imaging to follow the behavior of extrachromosomal DNA. We show that both an excised DNA ring and a centromere-deficient ARS plasmid move freely in the nucleoplasm yet show a strong segregation bias for the mother cell. Computational modeling shows that the geometrical shape of the dividing yeast nucleus and length of mitosis severely restrict the passive diffusion of episomes into daughter nuclei. Predictions based on simulated nuclear division were tested with mutants that extend the length of mitosis. Finally, explaining how various anchors can improve mitotic segregation, we show that plasmid partitioning is improved by tethering the plasmid to segregating structures, such as the nuclear envelope and telomeres. CONCLUSIONS The morphology and brevity of mitotic division in budding yeast impose physical constraints on the diffusion of material into the daughter, obviating the need for a retention mechanism to generate rejuvenated offspring.
Collapse
Affiliation(s)
- Lutz R Gehlen
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
206
|
Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M. Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 2010; 7:717-9. [DOI: 10.1038/nmeth.1489] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/30/2010] [Indexed: 11/09/2022]
|
207
|
Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E. Structural identity of telomeric complexes. FEBS Lett 2010; 584:3785-99. [PMID: 20696167 DOI: 10.1016/j.febslet.2010.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 02/01/2023]
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- University de Nice, Laboratory of Biology and Pathology of Genomes, UMR 6267 CNRS U998 INSERM, Faculté de Médecine, Nice, France
| | | | | | | | | |
Collapse
|
208
|
Abstract
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure.
Collapse
Affiliation(s)
- Angela Taddei
- UMR 218, Centre National de la Recherche Scientifique, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
209
|
|
210
|
Sáez-Vásquez J, Gadal O. Genome organization and function: a view from yeast and Arabidopsis. MOLECULAR PLANT 2010; 3:678-690. [PMID: 20601371 DOI: 10.1093/mp/ssq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent progress in understanding higher-order chromatin organization in the nucleus has been considerable. From single gene to chromosome territory, realistic biophysical models can now accurately predict some of the structural feature of cell nuclei. Despite growing evidence of a deterministic nuclear organization, the physiological consequence of spatial genome organization is still unclear. In the simple eukaryotic model, Saccharomyces cerevisiae, clear correlation between gene position and transcription has been established. In this review, we will focus on higher-order chromatin organization in yeast with respect to the nuclear envelope and nucleolus. In Arabidopsis thaliana, a model plant for which we have a complete genome sequence, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei seem to occur randomly. Since chromosomes containing nucleolar organizer regions associate more frequently to form a single nucleolar structure, as in yeast, the nucleolus seems to play a major role in organizing nuclear space. Recent findings have begun to elucidate how plant regulatory factors, such as chromatin remodeling or histone chaperones, affect the chromatin state of ribosomal DNA genes located in two distinct CT arrangements in the nucleus. The functional outcome of yeast nuclear organization allowed us to propose how nuclear organization might contribute to a novel type of epigenetic regulation: the spatial regulation of transcription.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- LGDP-UMR 5096 CNRS-IRD-Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|
211
|
Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM. G2 phase chromatin lacks determinants of replication timing. ACTA ACUST UNITED AC 2010; 189:967-80. [PMID: 20530209 PMCID: PMC2886351 DOI: 10.1083/jcb.201002002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin spatial organization helps establish the replication timing decision point at early G1. However, at G2, although retained, chromatin organization is no longer necessary or sufficient to maintain the replication timing program. DNA replication in all eukaryotes follows a defined replication timing program, the molecular mechanism of which remains elusive. Using a Xenopus laevis egg extract replication system, we previously demonstrated that replication timing is established during early G1 phase of the cell cycle (timing decision point [TDP]), which is coincident with the repositioning and anchorage of chromatin in the newly formed nucleus. In this study, we use this same system to show that G2 phase chromatin lacks determinants of replication timing but maintains the overall spatial organization of chromatin domains, and we confirm this finding by genome-wide analysis of rereplication in vivo. In contrast, chromatin from quiescent cells retains replication timing but exhibits disrupted spatial organization. These data support a model in which events at the TDP, facilitated by chromatin spatial organization, establish determinants of replication timing that persist independent of spatial organization until the process of chromatin replication during S phase erases those determinants.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
212
|
Duan Z, Andronescu M, Schutz K, Mcllwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast genome. Nature 2010; 465:363-7. [PMID: 20436457 PMCID: PMC2874121 DOI: 10.1038/nature08973] [Citation(s) in RCA: 724] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/01/2010] [Indexed: 01/14/2023]
Abstract
Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or 'factories' for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.
Collapse
Affiliation(s)
- Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Department of Medicine, University of Washington
| | | | - Kevin Schutz
- Graduate Program in Molecular and Cellular Biology, University of Washington
| | - Sean Mcllwain
- Department of Genome Sciences, University of Washington
| | - Yoo Jung Kim
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Department of Medicine, University of Washington
| | - Choli Lee
- Department of Genome Sciences, University of Washington
| | - Jay Shendure
- Department of Genome Sciences, University of Washington
| | - Stanley Fields
- Department of Medicine, University of Washington
- Department of Genome Sciences, University of Washington
- Howard Hughes Medical Institute
| | - C. Anthony Blau
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Department of Medicine, University of Washington
- Department of Genome Sciences, University of Washington
| | | |
Collapse
|
213
|
Abstract
The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional "higher order" levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study.
Collapse
|
214
|
Meister P, Gehlen LR, Varela E, Kalck V, Gasser SM. Visualizing yeast chromosomes and nuclear architecture. Methods Enzymol 2010; 470:535-67. [PMID: 20946824 DOI: 10.1016/s0076-6879(10)70021-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe here optimized protocols for tagging genomic DNA sequences with bacterial operator sites to enable visualization of specific loci in living budding yeast cells. Quantitative methods for the analysis of locus position relative to the nuclear center or nuclear pores, the analysis of chromatin dynamics and the relative position of tagged loci to other nuclear landmarks are described. Methods for accurate immunolocalization of nuclear proteins without loss of three-dimensional structure, in combination with fluorescence in situ hybridization, are also presented. These methods allow a robust analysis of subnuclear organization of both proteins and DNA in intact yeast cells.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
215
|
Brickner DG, Light W, Brickner JH. Quantitative localization of chromosomal loci by immunofluorescence. Methods Enzymol 2010; 470:569-80. [PMID: 20946825 DOI: 10.1016/s0076-6879(10)70022-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA within the yeast nucleus is spatially organized. Yeast telomeres cluster together at the nuclear periphery, centromeres cluster together near the spindle pole body, and both the rDNA repeats and tRNA genes cluster within the nucleolus. Furthermore, the localization of individual genes to subnuclear compartments can change with changes in transcriptional status. As such, yeast researchers interested in understanding nuclear events may need to determine the subnuclear localization of parts of the genome. This chapter describes a straightforward quantitative approach using immunofluorescence and confocal microscopy to localize chromosomal loci with respect to well characterized nuclear landmarks.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
216
|
Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc Natl Acad Sci U S A 2010; 107:2025-30. [PMID: 20080699 DOI: 10.1073/pnas.0914187107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physical interactions between distinct chromosomal genomic loci are important for genomic functions including recombination and gene expression, but the mechanisms by which these interactions occur remain obscure. Using telomeric association as a model system, we analyzed here the in vivo organization of chromosome ends of haploid yeast cells during interphase. We separately labeled most of the 32 subtelomeres and analyzed their positions both in nuclear space and relative to three representative reference subtelomeres by high-throughput 3D microscopy and image processing. We show that subtelomeres are positioned nonrandomly at the nuclear periphery, depending on the genomic size of their chromosome arm, centromere attachment to the microtubule organizing center (spindle pole body, SPB), and the volume of the nucleolus. The distance of subtelomeres to the SPB increases consistently with chromosome arm length up to approximately 300 kb; for larger arms the influence of chromosome arm length is weaker, but the effect of the nucleolar volume is stronger. Distances between pairs of subtelomeres also exhibit arm-length dependence and suggest, together with dynamic tracking experiments, that potential associations between subtelomeres are unexpectedly infrequent and transient. Our results suggest that interactions between subtelomeres are nonspecific and instead governed by physical constraints, including chromosome structure, attachment to the SPB, and nuclear crowding.
Collapse
|
217
|
Joshi RS, Piña B, Roca J. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes. EMBO J 2010; 29:740-8. [PMID: 20057354 PMCID: PMC2805846 DOI: 10.1038/emboj.2009.391] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/04/2009] [Indexed: 01/23/2023] Open
Abstract
How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin.
Collapse
Affiliation(s)
- Ricky S Joshi
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Instituto de Biologia Molecular de Barcelona-CSIC, Baldiri Reixac, Barcelona, Spain
| | | | | |
Collapse
|
218
|
Abstract
The expression patterns of many protein-coding genes are orchestrated in response to exogenous stimuli, as well as cell-type-specific developmental programs. In recent years, researchers have shown that dynamic chromatin movements and interactions in the nucleus play a crucial role in gene regulation. In this review, we highlight our current understanding of the organization of chromatin in the interphase nucleus and the impact of chromatin dynamics on gene expression. We also discuss the current state of knowledge with regard to the localization of active and inactive genes within the three-dimensional nuclear space. Furthermore, we address recent findings that demonstrate the movements of chromosomal regions and genomic loci in association with changes in transcriptional activity. Finally, we discuss the role of intra- and interchromosomal interactions in the control of coregulated genes.
Collapse
Affiliation(s)
| | - David L. Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| |
Collapse
|
219
|
Hajjoul H, Kocanova S, Lassadi I, Bystricky K, Bancaud A. Lab-on-Chip for fast 3D particle tracking in living cells. LAB ON A CHIP 2009; 9:3054-3058. [PMID: 19823719 DOI: 10.1039/b909016a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a novel Lab-on-Chip technology for 3D particle tracking in living cells based on V-shaped micro-mirrors, which are used to observe fluorescent specimens from multiple vantage points, providing simultaneous stereo-images that can be recombined for 3D reconstruction. Our technology can be readily used with standard fluorescence microscopes, and we apply it to study chromatin dynamics using yeast strains with one or two GFP-tagged gene loci. Using an Andor EMCCD camera, loci are followed in 3D with inter-frame intervals of up to 10 ms and with an error of 27 nm per axis, yielding quantitative information on their dynamics with exquisite temporal spatial resolution.
Collapse
Affiliation(s)
- Houssam Hajjoul
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
| | | | | | | | | |
Collapse
|
220
|
Elias MC, Nardelli SC, Schenkman S. Chromatin and nuclear organization in Trypanosoma cruzi. Future Microbiol 2009; 4:1065-74. [DOI: 10.2217/fmb.09.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.
Collapse
Affiliation(s)
| | - Sheila Cristina Nardelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| |
Collapse
|
221
|
Sexton T, Bantignies F, Cavalli G. Genomic interactions: Chromatin loops and gene meeting points in transcriptional regulation. Semin Cell Dev Biol 2009; 20:849-55. [DOI: 10.1016/j.semcdb.2009.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/17/2009] [Indexed: 12/17/2022]
|
222
|
Pliss A, Malyavantham K, Bhattacharya S, Zeitz M, Berezney R. Chromatin dynamics is correlated with replication timing. Chromosoma 2009; 118:459-70. [PMID: 19296120 PMCID: PMC2708920 DOI: 10.1007/s00412-009-0208-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 01/21/2023]
Abstract
Discrete chromatin domains (ChrD), containing an average of approximately 1 Mbp DNA, represent the basic structural units for the regulation of DNA organization and replication in situ. In this study, a bio-computational approach is employed to simultaneously measure the translational motion of large populations of ChrD in the cell nucleus of living cells. Both movement and configurational changes are strikingly higher in early S-phase replicating ChrD compared to those that replicate in mid and late S-phase. The chromatin dynamics was not sensitive to transcription inhibition by alpha-amanitin but was significantly reduced by actinomycin D treatment. Since a majority of active genes replicate in early S-phase, our results suggest a correlation between levels of chromatin dynamics and chromatin poised for active transcription. Analysis of ChrD colocalization with transcription sites and cDNA with ChrD and transcription sites further supports this proposal.
Collapse
Affiliation(s)
- Artem Pliss
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Kishore Malyavantham
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Sambit Bhattacharya
- Department of Mathematics and Computer Science, Fayetteville State University, Fayetteville, NC 28311 USA
| | - Michael Zeitz
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
223
|
Suissa M, Place C, Goillot E, Freyssingeas E. Evolution of the global internal dynamics of a living cell nucleus during interphase. Biophys J 2009; 97:453-61. [PMID: 19619459 DOI: 10.1016/j.bpj.2009.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/27/2022] Open
Abstract
Progress in cellular biology based on fluorescent microscopy techniques, shows that the spatial organization of the nucleus is dynamic. This dynamic is very complex and involves a multitude of phenomena that occur on very different time and size scales. Using an original light scattering experimental device, we investigated the global internal dynamics of the nucleus of a living cell according to the phases of the cell cycle. This dynamic presents two different and independent kinds of relaxation that are well separated in time and specific to the phase of the cell cycle.
Collapse
Affiliation(s)
- M Suissa
- Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | |
Collapse
|
224
|
Rodley CDM, Bertels F, Jones B, O'Sullivan JM. Global identification of yeast chromosome interactions using Genome conformation capture. Fungal Genet Biol 2009; 46:879-86. [PMID: 19628047 DOI: 10.1016/j.fgb.2009.07.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 12/17/2022]
Abstract
The association of chromosomes with each other and other nuclear components plays a critical role in nuclear organization and Genome function. Here, using a novel and generally applicable methodology (Genome conformation capture [GCC]), we reveal the network of chromosome interactions for the yeast Saccharomyces cerevisiae. Inter- and intra-chromosomal interactions are non-random and the number of interactions per open reading frame depends upon the dispensability of the gene product. Chromosomal interfaces are organized and provide evidence of folding within chromosomes. Interestingly, the genomic connections also involve the 2 microm plasmid and the mitochondrial genome. Mitochondrial interaction partners include genes of alpha-proteobacterial origin and the ribosomal DNA. Organization of the 2 microm plasmid aligns two inverted repeats (IR1 and IR2) and displays the stability locus on a prominent loop thus making it available for plasmid clustering. Our results form the first global map of chromosomal interactions in a eukaryotic nucleus and demonstrate the highly connected nature of the yeast genome. These results have significant implications for understanding eukaryotic genome organization.
Collapse
Affiliation(s)
- C D M Rodley
- Institute of Molecular Biosciences, Massey University, Private Bag 102 904, Albany, NSMC, Auckland, New Zealand
| | | | | | | |
Collapse
|
225
|
Hu Y, Kireev I, Plutz M, Ashourian N, Belmont AS. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. ACTA ACUST UNITED AC 2009; 185:87-100. [PMID: 19349581 PMCID: PMC2700507 DOI: 10.1083/jcb.200809196] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1-2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130-220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5-3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock-induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
226
|
Kortenhorst MSQ, Isharwal S, van Diest PJ, Chowdhury WH, Marlow C, Carducci MA, Rodriguez R, Veltri RW. Valproic acid causes dose- and time-dependent changes in nuclear structure in prostate cancer cells in vitro and in vivo. Mol Cancer Ther 2009; 8:802-8. [PMID: 19372553 PMCID: PMC2676893 DOI: 10.1158/1535-7163.mct-08-1076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone deacetylase inhibitors such as valproic acid (VPA) are promising anticancer agents that change the acetylation status of histones and loosen the chromatin structure. We assessed nuclear structure changes induced by VPA in prostate cancer LNCaP, CWR22R, DU145, and PC3 cell lines and xenografts and their potential use as a biomarker of treatment. In vitro tissue microarrays consisted of prostate cancer cell lines treated for 3, 7, or 14 days with 0, 0.6, or 1.2 mmol/L VPA. In vivo tissue microarrays consisted of cores from prostate cancer xenografts from nude mice treated for 30 days with 0.2% or 0.4% VPA in drinking water. Digital images of at least 200 Feulgen DNA-stained nuclei were captured using the Nikon CoolScope and nuclear alterations were measured. With a set of seven most frequently significant nuclear alterations (determined by univariate logistic regression analysis), control and VPA treatment nuclei were compared in vitro and in vivo. Depending on the cell line, area under the curve-receiver operating characteristics ranged between 0.6 and 0.9 and were dose- and time-dependent both in vitro and in vivo. Also, VPA treatment caused significant nuclear alterations in normal drug-filtering organs (liver and kidney tissue). In vitro and in vivo VPA treatment of prostate cancer cell lines results in significant dose- and time-dependent changes in nuclear structure. Further, VPA induces nuclear structural changes in normal liver and kidney tissue, which likely reflects a natural physiologic response. Therefore, nuclear structural alterations may serve as a biomarker for histone deacetylase inhibitor treatment.
Collapse
Affiliation(s)
- Madeleine S. Q. Kortenhorst
- Prostate Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, 1650 Orleans Street, Baltimore MD, 21231, USA
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Sumit Isharwal
- Brady Urological Institutes, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Wasim H. Chowdhury
- Brady Urological Institutes, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Cameron Marlow
- Brady Urological Institutes, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Michael A. Carducci
- Prostate Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, 1650 Orleans Street, Baltimore MD, 21231, USA
| | - Ronald Rodriguez
- Brady Urological Institutes, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Robert W. Veltri
- Brady Urological Institutes, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| |
Collapse
|
227
|
O'Sullivan JM, Sontam DM, Grierson R, Jones B. Repeated elements coordinate the spatial organization of the yeast genome. Yeast 2009; 26:125-38. [PMID: 19235779 DOI: 10.1002/yea.1657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The spatial organization of the chromosomes is crucial for gene expression and development. Inter- and intrachromosomal interactions form a crucial part of this epigenomic regulatory system. Here we use circular chromosome conformation capture-on-chip (4C) to identify interactions between repetitive and non-repetitive loci within the yeast genome. The interacting regions occur in non-randomly distributed clusters. Furthermore, the SIR2 histone deacetylase has opposing roles in the organization of the inter- or intrachromosomal interactions. These data establish a dynamic domain model for yeast genome organization. Moreover, they point to the repeated elements playing a central role in the dynamic organization of genome architecture.
Collapse
Affiliation(s)
- J M O'Sullivan
- Institute of Molecular Biosciences, Massey University, Albany, New Zealand.
| | | | | | | |
Collapse
|
228
|
Koszul R, Kameoka S, Weiner BM. Real-time imaging of meiotic chromosomes in Saccharomyces cerevisiae. Methods Mol Biol 2009; 558:81-9. [PMID: 19685320 DOI: 10.1007/978-1-60761-103-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Important information on cellular physiology can be obtained by directly observing living cells. The nucleus, and the chromatin within, is of particular interest to many researchers. Monitoring the behavior of specific DNA loci in the living cell is now commonly achieved through the insertion of binding sites for fluorescently tagged proteins at the sequence of interest (e.g. Ref 1). However, visualizing the behavior of full length chromosomes can only be achieved when they constitute discrete, relatively well individualized units. During meiotic mid-prophase, chromosomes of budding yeast are well-organized structures that present such characteristics, making them remarkably suited for visualization. Here we describe the optimized protocols and techniques that allow monitoring of chromosome behavior during meiotic prophase in budding yeast.
Collapse
Affiliation(s)
- Romain Koszul
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
229
|
Ebrahimi H, Donaldson AD. Release of yeast telomeres from the nuclear periphery is triggered by replication and maintained by suppression of Ku-mediated anchoring. Genes Dev 2008; 22:3363-74. [PMID: 19056887 PMCID: PMC2600766 DOI: 10.1101/gad.486208] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022]
Abstract
The perinuclear localization of Saccharomyces cerevisiae telomeres provides a useful model for studying mechanisms that control chromosome positioning. Telomeres tend to be localized at the nuclear periphery during early interphase, but following S phase they delocalize and remain randomly positioned within the nucleus. We investigated whether DNA replication causes telomere delocalization from the nuclear periphery. Using live-cell fluorescence microscopy, we show that delaying DNA replication causes a corresponding delay in the dislodgment of telomeres from the nuclear envelope, demonstrating that replication of individual telomeres causes their delocalization. Telomere delocalization is not simply the result of recruitment to a replication factory in the nuclear interior, since we found that telomeric DNA replication can occur either at the nuclear periphery or in the nuclear interior. The telomere-binding complex Ku is one of the factors that localizes telomeres to the nuclear envelope. Using a gene locus tethering assay, we show that Ku-mediated peripheral positioning is switched off after DNA replication. Based on these findings, we propose that DNA replication causes telomere delocalization by triggering stable repression of the Ku-mediated anchoring pathway. In addition to maintaining genetic information, DNA replication may therefore regulate subnuclear organization of chromatin.
Collapse
Affiliation(s)
- Hani Ebrahimi
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Anne D. Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| |
Collapse
|
230
|
Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol Cell Biol 2008; 29:835-48. [PMID: 19047366 DOI: 10.1128/mcb.01009-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the hypothesis that the highly selective recombination of an active mating type locus (MAT) with either HMLalpha or HMRa is facilitated by the spatial positioning of relevant sequences within the budding yeast (Saccharomyces cerevisiae) nucleus. However, both position relative to the nuclear envelope (NE) and the subnuclear mobility of fluorescently tagged MAT, HML, or HMR loci are largely identical in haploid a and alpha cells. Irrespective of mating type, the expressed MAT locus is highly mobile within the nuclear lumen, while silent loci move less and are found preferentially near the NE. The perinuclear positions of HMR and HML are strongly compromised in strains lacking the Silent information regulator, Sir4. However, HMLalpha, unlike HMRa and most telomeres, shows increased NE association in a strain lacking yeast Ku70 (yKu70). Intriguingly, we find that the yKu complex is associated with HML and HMR sequences in a mating-type-specific manner. Its abundance decreases at the HMLalpha donor locus and increases transiently at MATa following DSB induction. Our data suggest that mating-type-specific binding of yKu to HMLalpha creates a local chromatin structure competent for recombination, which cooperates with the recombination enhancer to direct donor choice for gene conversion of the MATa locus.
Collapse
|
231
|
Nagai S, Dubrana K, Tsai-Pflugfelder M, Davidson MB, Roberts TM, Brown GW, Varela E, Hediger F, Gasser SM, Krogan NJ. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 2008; 322:597-602. [PMID: 18948542 DOI: 10.1126/science.1162790] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.
Collapse
Affiliation(s)
- Shigeki Nagai
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
High-resolution statistical mapping reveals gene territories in live yeast. Nat Methods 2008; 5:1031-7. [PMID: 18978785 DOI: 10.1038/nmeth.1266] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/06/2008] [Indexed: 11/08/2022]
Abstract
The nonrandom positioning of genes inside eukaryotic cell nuclei is implicated in central nuclear functions. However, the spatial organization of the genome remains largely uncharted, owing to limited resolution of optical microscopy, paucity of nuclear landmarks and moderate cell sampling. We developed a computational imaging approach that creates high-resolution probabilistic maps of subnuclear domains occupied by individual loci in budding yeast through automated analysis of thousands of living cells. After validation, we applied the technique to genes involved in galactose metabolism and ribosome biogenesis. We found that genomic loci are confined to 'gene territories' much smaller than the nucleus, which can be remodeled during transcriptional activation, and that the nucleolus is an important landmark for gene positioning. The technique can be used to visualize and quantify territory positions relative to each other and to nuclear landmarks, and should advance studies of nuclear architecture and function.
Collapse
|
233
|
Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol 2008; 4:e1000153. [PMID: 18725929 PMCID: PMC2515109 DOI: 10.1371/journal.pcbi.1000153] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 07/10/2008] [Indexed: 12/19/2022] Open
Abstract
During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.
Collapse
Affiliation(s)
- Angelo Rosa
- Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany.
| | | |
Collapse
|
234
|
Abstract
Localization of genes to different parts of the nucleus has the potential to promote activation or silencing of transcription. Current evidence suggests that these effects are mediated by specific molecular interactions between genes and nuclear structures rather than by partitioning of the nucleus into discrete compartments. A growing body of data identifies the nuclear envelope as a major organizer of location-specific interactions for both silent and active genes.
Collapse
Affiliation(s)
- Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12ONN, UK. <>
| |
Collapse
|
235
|
Trinkle-Mulcahy L, Lamond AI. Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 2008; 582:1960-70. [PMID: 18442480 DOI: 10.1016/j.febslet.2008.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
Abstract
All eukaryotic cells enclose their genome within a dedicated, membrane-bound organelle termed the nucleus, which functions to partition gene transcription from sites of protein translation in the cytoplasm. Despite a great deal of research effort, basic questions about chromosome structure and gene expression mechanisms remain to be answered, including the relationship between the spatial organization of the genome and the transcription machinery. Powerful in vivo approaches are allowing researchers to test established in vitro concepts within the dynamic cellular environment, while genome-wide screens have enabled rapid high throughput analyses of both structural and functional parameters. In several cases, as highlighted here, this has turned up surprising results and has forced a re-evaluation of models for nuclear structure and gene regulation.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- Centre for Gene Regulation and Expression, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | | |
Collapse
|
236
|
Gudla PR, Nandy K, Collins J, Meaburn KJ, Misteli T, Lockett SJ. A high-throughput system for segmenting nuclei using multiscale techniques. Cytometry A 2008; 73:451-66. [PMID: 18338778 PMCID: PMC6320673 DOI: 10.1002/cyto.a.20550] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Automatic segmentation of cell nuclei is critical in several high-throughput cytometry applications whereas manual segmentation is laborious and irreproducible. One such emerging application is measuring the spatial organization (radial and relative distances) of fluorescence in situ hybridization (FISH) DNA sequences, where recent investigations strongly suggest a correlation between nonrandom arrangement of genes to carcinogenesis. Current automatic segmentation methods have varying performance in the presence of nonuniform illumination and clustering, and boundary accuracy is seldom assessed, which makes them suboptimal for this application. The authors propose a modular and model-based algorithm for extracting individual nuclei. It uses multiscale edge reconstruction for contrast stretching and edge enhancement as well as a multiscale entropy-based thresholding for handling nonuniform intensity variations. Nuclei are initially oversegmented and then merged based on area followed by automatic multistage classification into single nuclei and clustered nuclei. Estimation of input parameters and training of the classifiers is automatic. The algorithm was tested on 4,181 lymphoblast nuclei with varying degree of background nonuniformity and clustering. It extracted 3,515 individual nuclei and identified single nuclei and individual nuclei in clusters with 99.8 +/- 0.3% and 95.5 +/- 5.1% accuracy, respectively. Segmented boundaries of the individual nuclei were accurate when compared with manual segmentation with an average RMS deviation of 0.26 microm (approximately 2 pixels). The proposed segmentation method is efficient, robust, and accurate for segmenting individual nuclei from fluorescence images containing clustered and isolated nuclei. The algorithm allows complete automation and facilitates reproducible and unbiased spatial analysis of DNA sequences.
Collapse
Affiliation(s)
- Prabhakar R Gudla
- Image Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|
237
|
Abstract
In the budding yeast Saccharomyces cerevisiae, microtubule-organizing centers called spindle pole bodies (SPBs) are embedded in the nuclear envelope, which remains intact throughout the cell cycle (closed mitosis). Kinetochores are tethered to SPBs by microtubules during most of the cell cycle, including G1 and M phases; however, it has been a topic of debate whether microtubule interaction is constantly maintained or transiently disrupted during chromosome duplication. Here, we show that centromeres are detached from microtubules for 1-2 min and displaced away from a spindle pole in early S phase. These detachment and displacement events are caused by centromere DNA replication, which results in disassembly of kinetochores. Soon afterward, kinetochores are reassembled, leading to their recapture by microtubules. We also show how kinetochores are subsequently transported poleward by microtubules. Our study gives new insights into kinetochore-microtubule interaction and kinetochore duplication during S phase in a closed mitosis.
Collapse
|
238
|
Abstract
Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratorio de Electrónica Cuántica, Departamento de Física, Universidad de Buenos Aires, Pabellón I Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California at Irvine, Rockwell Engineering Center #204, Irvine, California 92697-2715
| |
Collapse
|
239
|
Schober H, Kalck V, Vega-Palas MA, Van Houwe G, Sage D, Unser M, Gartenberg MR, Gasser SM. Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res 2007; 18:261-71. [PMID: 18096749 DOI: 10.1101/gr.6687808] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 32 telomeres in the budding yeast genome cluster in three to seven perinuclear foci. Although individual telomeres and telomeric foci are in constant motion, preferential juxtaposition of some telomeres has been scored. To examine the principles that guide such long-range interactions, we differentially tagged pairs of chromosome ends and developed an automated three-dimensional measuring tool that determines distances between two telomeres. In yeast, all chromosomal ends terminate in TG(1-3) and middle repetitive elements, yet subgroups of telomeres also share extensive homology in subtelomeric coding domains. We find that up to 21 kb of >90% sequence identity does not promote telomere pairing in interphase cells. To test whether unique sequence elements, arm length, or chromosome territories influence juxtaposition, we reciprocally swapped terminal domains or entire chromosomal arms from one chromosome to another. We find that the distal 10 kb of Tel6R promotes interaction with Tel6L, yet only when the two telomeres are present on the same chromosome. By manipulating the length and sequence composition of the right arm of chr 5, we confirm that contact between telomeres on opposite chromatid arms of equal length is favored. These results can be explained by the polarized Rabl arrangement of yeast centromeres and telomeres, which promote to telomere pairing by allowing contact between chromosome arms of equal length in anaphase.
Collapse
Affiliation(s)
- Heiko Schober
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae. Chromosome Res 2007; 15:1033-50. [PMID: 18075778 PMCID: PMC2784495 DOI: 10.1007/s10577-007-1178-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 09/19/2007] [Accepted: 09/19/2007] [Indexed: 11/03/2022]
Abstract
Cells lacking telomerase cannot maintain their telomeres and undergo a telomere erosion phase leading to senescence and crisis in which most cells become nonviable. On rare occasions survivors emerge from these cultures that maintain their telomeres in alternative ways. The movement of five marked telomeres in Saccharomyces cerevisiae was followed in wild-type cells and through erosion, senescence/crisis and eventual survival in telomerase-negative (est2::HYG) yeast cells. It was found that during erosion, movements of telomeres in est2::HYG cells were indistinguishable from wild-type telomere movements. At senescence/crisis, however, most cells were in G(2) arrest and the nucleus and telomeres traversed back and forth across the bud neck, presumably until cell death. Type I survivors, using subtelomeric Y' amplification for telomere maintenance, continued to show this aberrant telomere movement. However, Type II survivors, maintaining telomeres by a sudden elongation of the telomere repeats, became indistinguishable from wild-type cells, consistent with growth properties of the two types of survivors. When telomere-associated proteins Sir2p, Sir3p and Rap1p were tagged, the same general trend was seen-Type I survivors retained the senescence/crisis state of protein localization, while Type II survivors were restored to wild type.
Collapse
|
241
|
Hattier T, Andrulis ED, Tartakoff AM. Immobility, inheritance and plasticity of shape of the yeast nucleus. BMC Cell Biol 2007; 8:47. [PMID: 17996101 PMCID: PMC2222239 DOI: 10.1186/1471-2121-8-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/09/2007] [Indexed: 01/11/2023] Open
Abstract
Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades") which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.
Collapse
Affiliation(s)
- Thomas Hattier
- Cell Biology Program, Case Western Reserve University, 10700 Euclid Avenue, Cleveland, OH, 44106 USA.
| | | | | |
Collapse
|
242
|
Abstract
The replication of the ends of linear chromosomes, or telomeres, poses unique problems, which must be solved to maintain genome integrity and to allow cell division to occur. Here, we describe and compare the timing and specific mechanisms that are required to initiate, control and coordinate synthesis of the leading and lagging strands at telomeres in yeasts, ciliates and mammals. Overall, it emerges that telomere replication relies on a strong synergy between the conventional replication machinery, telomere protection systems, DNA-damage-response pathways and chromosomal organization.
Collapse
Affiliation(s)
- Eric Gilson
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5239, IFR 128, Centre National de la Recherche Scientifique, University Lyon 1, Faculty of Medicine Lyon-Sud, Hospices Civils de Lyon, Ecole Normale Supérieure de Lyon,France.
| | | |
Collapse
|
243
|
Soutoglou E, Misteli T. Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 2007; 17:435-42. [PMID: 17905579 PMCID: PMC2118061 DOI: 10.1016/j.gde.2007.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 01/07/2023]
Abstract
Chromatin is increasingly recognized as a highly dynamic entity. Chromosome sites in lower and higher eukaryotes undergo frequent, rapid, and constrained local motion and occasional slow, long-range movements. Recent observations have revealed some of the functional relevance of chromatin mobility. Paradoxically, both the mobility and immobility of chromatin appear to have functional consequences: Local diffusional motion of chromatin is important in gene regulation, but global chromatin immobility plays a key role in maintenance of genomic stability.
Collapse
Affiliation(s)
- Evi Soutoglou
- National Cancer Institute, NIH, Bethesda, MD 20892, E:
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, E:
| |
Collapse
|
244
|
Chuang CH, Belmont AS. Moving chromatin within the interphase nucleus-controlled transitions? Semin Cell Dev Biol 2007; 18:698-706. [PMID: 17905613 PMCID: PMC2117624 DOI: 10.1016/j.semcdb.2007.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/17/2022]
Abstract
The past decade has seen an increasing appreciation for nuclear compartmentalization as an underlying determinant of interphase chromosome nuclear organization. To date, attention has focused primarily on describing differential localization of particular genes or chromosome regions as a function of differentiation, cell cycle position, and/or transcriptional activity. The question of how exactly interphase chromosome compartmentalization is established and in particular how interphase chromosomes might move during changes in nuclear compartmentalization has received less attention. Here we review what is known concerning chromatin mobility in relationship to physiologically regulated changes in nuclear interphase chromosome organization.
Collapse
Affiliation(s)
- Chien-Hui Chuang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, USA
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
245
|
Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 2007; 5:e192. [PMID: 17622196 PMCID: PMC1945077 DOI: 10.1371/journal.pbio.0050192] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/16/2007] [Indexed: 02/08/2023] Open
Abstract
Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.
Collapse
Affiliation(s)
- Cameron S Osborne
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
Cells have evolved sophisticated multi-protein complexes that can regulate gene activity at various steps of the transcription process. Recent advances highlight the role of nuclear positioning in the control of gene expression and have put nuclear envelope components at centre stage. On the inner face of the nuclear envelope, active genes localize to nuclear-pore structures whereas silent chromatin localizes to non-pore sites. Nuclear-pore components seem to not only recruit the RNA-processing and RNA-export machinery, but contribute a level of regulation that might enhance gene expression in a heritable manner.
Collapse
Affiliation(s)
- Asifa Akhtar
- EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
247
|
Levi V, Gratton E. Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 2007; 48:1-15. [PMID: 17703064 DOI: 10.1007/s12013-007-0010-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratorio de Electrónica Cuántica, Departamento de Física, Universidad de Buenos Aires, Pabellón I Ciudad Universitaria, Buenos Aires, Argentina
| | | |
Collapse
|
248
|
Davis SK, Bardeen CJ. Time-resolved Microscopy of Chromatin In Vitro and In Vivo¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00224.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
249
|
Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J Cell Biol 2007; 176:593-603. [PMID: 17312019 PMCID: PMC2064018 DOI: 10.1083/jcb.200607054] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 01/24/2007] [Indexed: 11/22/2022] Open
Abstract
Radial organization of nuclei with peripheral gene-poor chromosomes and central gene-rich chromosomes is common and could depend on the nuclear boundary as a scaffold or position marker. To test this, we studied the role of the ubiquitous nuclear envelope (NE) component lamin B1 in NE stability, chromosome territory position, and gene expression. The stability of the lamin B1 lamina is dependent on lamin endoproteolysis (by Rce1) but not carboxymethylation (by Icmt), whereas lamin C lamina stability is not affected by the loss of full-length lamin B1 or its processing. Comparison of wild-type murine fibroblasts with fibroblasts lacking full-length lamin B1, or defective in CAAX processing, identified genes that depend on a stable processed lamin B1 lamina for normal expression. We also demonstrate that the position of mouse chromosome 18 but not 19 is dependent on such a stable nuclear lamina. The results implicate processed lamin B1 in the control of gene expression as well as chromosome position.
Collapse
Affiliation(s)
- Ashraf Malhas
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK
| | | | | | | | | |
Collapse
|
250
|
Lavelle C, Sigal A. Systems biology meets chromatin function: a report on the Fourth Elmau Conference on Nuclear Organization. Chromosome Res 2007; 15:247-56. [PMID: 17279452 DOI: 10.1007/s10577-006-1118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 11/27/2022]
Abstract
The Fourth Elmau Conference on Nuclear Organization (information, abstracts, and list with addresses of speakers at http://www.nucleararchitecture.com/) took place in Gosau, Austria, between 12 and 15 October 2006. The workshop was organized by Dean Jackson, Roel van Driel, Hans Lipps and Hans Westerhoff, and was sponsored by ABCAM, Boehringer, EMBO, and VWR. It was mainly divided into two topics: dynamic analysis of gene activation and expression, and structure and dynamics of chromatin fibres, nuclear space and epigenetics. A particular emphasis was given this time to systems biology approaches, which drove the 40 participants to extensive discussions and highly interdisciplinary scientific exchanges. Some of the concepts discussed are presented here.
Collapse
Affiliation(s)
- Christophe Lavelle
- Cellular and Molecular Microscopy Group, CNRS-UMR 8126, Institut Gustave Roussy, Villejuif, France.
| | | |
Collapse
|