201
|
Murakami A, Nakatogawa H, Ito K. Translation arrest of SecM is essential for the basal and regulated expression of SecA. Proc Natl Acad Sci U S A 2004; 101:12330-5. [PMID: 15302932 PMCID: PMC514405 DOI: 10.1073/pnas.0404907101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SecM protein of Escherichia coli contains an arrest sequence (F(150)XXXXWIXXXXGIRAGP(166)), which interacts with the ribosomal exit tunnel to halt translation elongation beyond Pro-166. This inhibition is reversed by active export of the nascent SecM chain. Here, we studied the physiological roles of SecM. Arrest-alleviating mutations in the arrest sequence reduced the expression of secA, a downstream gene on the same mRNA. Among such mutations, the arrest-abolishing P166A substitution mutation on the chromosomal secM gene proved lethal unless the mutant cells are complemented with excess SecA. Whereas secretion defect due either to azide addition, a secY mutation, or low temperature leads to up-regulated SecA biosynthesis, this regulation was lost by a secM mutation, which synergistically retarded growth of cells with lowered secretion activity. Finally, an arrest-alleviating rRNA mutation affecting the constricted part of the exit tunnel lowered the basal level of SecA as well as its secretion defect-induced up-regulation. Thus, the arrest sequence of SecM has at least two roles in SecA translation. First, the transient elongation arrest in normal cells is required for the synthesis of SecA at levels sufficient to support cell growth. Second, the prolonged SecM elongation arrest under conditions of unfavorable protein secretion is required for the enhanced expression of SecA to cope with such conditions.
Collapse
Affiliation(s)
- Akiko Murakami
- Institute for Virus Research and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
202
|
Papanikou E, Karamanou S, Baud C, Sianidis G, Frank M, Economou A. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep 2004; 5:807-11. [PMID: 15272299 PMCID: PMC1299117 DOI: 10.1038/sj.embor.7400206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 11/09/2022] Open
Abstract
The SecA ATPase is a protein translocase motor and a superfamily 2 (SF2) RNA helicase. The ATPase catalytic core ('DEAD motor') contains the seven conserved SF2 motifs. Here, we demonstrate that Motif III is essential for SecA-mediated protein translocation and viability. SecA Motif III mutants can bind ligands (nucleotide, the SecYEG translocase 'channel', signal and mature preprotein domains), can catalyse basal and SecYEG-stimulated ATP hydrolysis and can be activated for catalysis. However, Motif III mutation specifically blocks the preprotein-stimulated 'translocation ATPase' at a step of the reaction pathway that lies downstream of ligand binding. A functional Motif III is required for optimal ligand-driven conformational changes and kinetic parameters that underlie optimal preprotein-modulated nucleotide cycling at the SecA DEAD motor. We propose that helicase Motif III couples preprotein binding to the SecA translocation ATPase and that catalytic activation of SF2 enzymes through Motif-III-mediated action is essential for both polypeptide and nucleic-acid substrates.
Collapse
Affiliation(s)
- Efrosyni Papanikou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Catherine Baud
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Giorgos Sianidis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Miriam Frank
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| |
Collapse
|
203
|
Osborne AR, Clemons WM, Rapoport TA. A large conformational change of the translocation ATPase SecA. Proc Natl Acad Sci U S A 2004; 101:10937-42. [PMID: 15256599 PMCID: PMC491988 DOI: 10.1073/pnas.0401742101] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Indexed: 11/18/2022] Open
Abstract
The ATPase SecA mediates the posttranslational translocation of a wide range of polypeptide substrates through the SecY channel in the cytoplasmic membrane of bacteria. We have determined the crystal structure of a monomeric form of Bacillus subtilis SecA at a 2.2-A resolution. A comparison with the previously determined structures of SecA reveals a nucleotide-independent, large conformational change that opens a deep groove similar to that in other proteins that interact with diverse polypeptides. We propose that the open form of SecA represents an activated state.
Collapse
Affiliation(s)
- Andrew R Osborne
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
204
|
Abstract
The chaperone SecB from Escherichia coli is primarily involved in passing precursor proteins into the Sec system via specific interactions with SecA. The crystal structure of SecB from E. coli has been solved to 2.35 A resolution. The structure shows flexibility in the crossover loop and the helix-connecting loop, regions that have been implicated to be part of the SecB substrate-binding site. Moreover conformational variability of Trp36 is observed as well as different loop conformations for the different monomers. Based on this, we speculate that SecB can regulate the access or extent of its hydrophobic substrate-binding site, by modulating the conformation of the crossover loop and the helix-connecting loop. The structure also clearly explains why the tetrameric equilibrium is shifted towards the dimeric state in the mutant SecBCys76Tyr. The buried cysteine residue is crucial for tight packing, and mutations are likely to disrupt the tetramer formation but not the dimer formation.
Collapse
Affiliation(s)
- Carien Dekker
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, England, NW7 1AA, UK.
| | | | | |
Collapse
|
205
|
Abstract
SecA, the protein translocation ATPase of E. coli is subject to secretion-defect-response control. SecM (secretion monitor) encoded by the 5' region of the secM-secA mRNA is involved in this regulation. SecM translation is subject to transient elongation arrest at Pro166, which is prolonged when export of the nascent SecM is blocked. An "arrest sequence", FXXXXWIXXXXGIRAGP, was identified at a carboxy-terminal region of SecM that interacts with the ribosomal exit tunnel. Presumably, the stalled ribosome disrupts the secondary structure of the secM-secA mRNA such that the Shine-Dalgarno sequence for translation of secA is exposed. Mutation studies established that the SecM elongation arrest is required for the viability of E. coli as well as for constitutive (in secretion-proficient cells) and upregulated (in secretion compromised cells) expression of SecA. Furthermore, evidence suggests that elongation-arresting SecM has a role of upregulating the functionality of newly synthesized SecA molecules, presumably by bringing the mRNA to the vicinity of the membrane/Sec translocation apparatus. These results are discussed in relation to the versatile nature of SecA in its localization and structure.
Collapse
|
206
|
Randall LL, Crane JM, Liu G, Hardy SJS. Sites of interaction between SecA and the chaperone SecB, two proteins involved in export. Protein Sci 2004; 13:1124-33. [PMID: 15010547 PMCID: PMC2280050 DOI: 10.1110/ps.03410104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SecB, a small tetrameric cytosolic chaperone in Escherichia coli, facilitates the export of precursor poly-peptides by maintaining them in a nonnative conformation and passing them to SecA, which is a peripheral member of the membrane-bound translocation apparatus. It has been proposed by several laboratories that as SecA interacts with various components along the export pathway, it undergoes conformational changes that are crucial to its function. Here we report details of molecular interactions between SecA and SecB, which may serve as conformational switches. One site of interaction involves the final C-terminal 21 amino acids of SecA, which are positively charged and contain zinc. The C terminus of each subunit of the SecA dimer makes contact with the flat beta-sheet that is formed by each dimer of the SecB tetramer. Here we demonstrate that a second interaction exists between the extreme C-terminal alpha-helix of SecB and a site on SecA, as yet undefined but different from the C terminus of SecA. We investigated the energetics of the interactions by titration calorimetry and characterized the hydrodynamic properties of complexes stabilized by both interactions or each interaction singly using sedimentation velocity centrifugation.
Collapse
Affiliation(s)
- Linda L Randall
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
207
|
Vrontou E, Karamanou S, Baud C, Sianidis G, Economou A. Global co-ordination of protein translocation by the SecA IRA1 switch. J Biol Chem 2004; 279:22490-7. [PMID: 15007058 DOI: 10.1074/jbc.m401008200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation. These interactions establish DEAD motor/C-domain conformational cross-talk that requires a functional IRA1. IRA1-controlled binding/release cycles of the C-domain to the DEAD motor couple this cross-talk to protein translocation chemistries, i.e. DEAD motor affinities for ligands (nucleotides, preprotein signal peptides, and SecYEG, the integral membrane component of translocase) and ATP turnover. IRA1-mediated global co-ordination of SecA catalysis is essential for protein translocation.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Department of Biology, University of Crete, PO Box 1527, GR-71110 Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
208
|
Natale P, Swaving J, van der Does C, de Keyzer J, Driessen AJM. Binding of SecA to the SecYEG complex accelerates the rate of nucleotide exchange on SecA. J Biol Chem 2004; 279:13769-77. [PMID: 14722060 DOI: 10.1074/jbc.m312892200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecYEG translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds the membrane-embedded SecYEG protein-conducting channel with high affinity and then drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the kinetics of nucleotide binding to SecA while associated with the SecYEG complex. Lipid-bound SecA was separated from Se-cYEG-bound SecA by sedimentation of the proteoliposomes through a glycerol cushion, which maintains the SecA native state and effectively removes the lipid-bound SecA fraction. Nucleotide binding was assessed by means of fluorescence resonance energy transfer using fluorescent ATP analogues as acceptors of the intrinsic SecA tryptophan fluorescence in the presence of a tryptophanless variant of the SecYEG complex. Binding of SecA to the SecYEG complex elevated the rate of nucleotide exchange at SecA independently of the presence of preprotein. This defines a novel pretranslocation activated state of SecA that is primed for ATP hydrolysis upon preprotein interaction.
Collapse
Affiliation(s)
- Paolo Natale
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
209
|
|
210
|
Abstract
Our studies of SecM (secretion monitor) in E. coli have revealed that some amino acid sequences can interact with ribosomal interior components, particularly with gate components of the exit tunnel, thereby interfering with their own translation elongation. Such translation arrest can be regulated by interaction of the N-terminal portion of the nascent polypeptide with other cellular components outside the ribosome. These properties of nascent proteins can in turn provide regulatory mechanisms by which the expression of genetic information at different levels is regulated.
Collapse
|
211
|
Berks BC, Palmer T, Sargent F. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 2003; 47:187-254. [PMID: 14560665 DOI: 10.1016/s0065-2911(03)47004-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Tat (twin arginine translocation) protein transport system functions to export folded protein substrates across the bacterial cytoplasmic membrane and to insert certain integral membrane proteins into that membrane. It is entirely distinct from the Sec pathway. Here, we describe our current knowledge of the molecular features of the Tat transport system. In addition, we discuss the roles that the Tat pathway plays in the bacterial cell, paying particular attention to the involvement of the Tat pathway in the biogenesis of cofactor-containing proteins, in cell wall biosynthesis and in bacterial pathogenicity.
Collapse
Affiliation(s)
- Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
212
|
Eser M, Ehrmann M. SecA-dependent quality control of intracellular protein localization. Proc Natl Acad Sci U S A 2003; 100:13231-4. [PMID: 14597695 PMCID: PMC263763 DOI: 10.1073/pnas.2234410100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex secretion machineries mediate protein translocation across cellular membranes. These machines typically recognize their substrates via signal sequences, which are required for proper targeting to the translocon. We report that during posttranslational secretion the widely conserved targeting factor SecA performs a quality-control function that is based on a general chaperone activity. This quality-control mechanism involves assisted folding of signal sequenceless proteins, thereby excluding them from the secretion process. These results suggest that SecA channels proteins into one of two key pathways, posttranslational secretion or folding in the cytoplasm. Implications of this finding for intracellular protein localization are discussed.
Collapse
Affiliation(s)
- Markus Eser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | | |
Collapse
|
213
|
Zito CR, Oliver D. Two-stage binding of SecA to the bacterial translocon regulates ribosome-translocon interaction. J Biol Chem 2003; 278:40640-6. [PMID: 12907673 DOI: 10.1074/jbc.m308025200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial translocon interacts with both SecA-bound preproteins and nascent chain-ribosome complexes during Sec and signal recognition particle-dependent protein translocation, respectively. In their inactive state, translocons are saturated with ribosomes and SecA protein, reflecting the inherent affinity of these components for one another. We found that SecA and ribosomes are bound simultaneously and noncompetitively to a common set of inactive translocons. Furthermore, we demonstrate that at a later stage in binding, SecA possesses a ribosome-translocon dissociation activity that is coupled to its ATP-dependent membrane insertion and retraction cycle that drives protein translocation. This novel activity is presumably important in the commitment of the translocon to the Sec-dependent pathway. These results also provide a rationale for the compatibility and regulation of multiple protein translocation pathways that each makes distinct demands on a common translocon core.
Collapse
Affiliation(s)
- Christopher R Zito
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
214
|
Zhou J, Xu Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat Struct Mol Biol 2003; 10:942-7. [PMID: 14517549 DOI: 10.1038/nsb980] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 07/31/2003] [Indexed: 11/09/2022]
Abstract
SecB is a bacterial chaperone involved in directing pre-protein to the translocation pathway by its specific interaction with the peripheral membrane ATPase SecA. The SecB-binding site on SecA is located at its C terminus and consists of a stretch of highly conserved residues. The crystal structure of SecB in complex with the C-terminal 27 amino acids of SecA from Haemophilus influenzae shows that the SecA peptide is structured as a CCCH zinc-binding motif. One SecB tetramer is bound by two SecA peptides, and the interface involves primarily salt bridges and hydrogen bonding interactions. The structure explains the importance of the zinc-binding motif and conserved residues at the C terminus of SecA in its high-affinity binding with SecB. It also suggests a model of SecB-SecA interaction and its implication for the mechanism of pre-protein transfer in bacterial protein translocation.
Collapse
Affiliation(s)
- Jiahai Zhou
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
215
|
Bu Z, Wang L, Kendall DA. Nucleotide binding induces changes in the oligomeric state and conformation of Sec A in a lipid environment: a small-angle neutron-scattering study. J Mol Biol 2003; 332:23-30. [PMID: 12946344 PMCID: PMC3086338 DOI: 10.1016/s0022-2836(03)00840-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, SecA is a large, multifunctional protein that is a vital component of the general protein secretion pathway. In its membrane-bound form it functions as the motor component of the protein translocase, perhaps through successive rounds of membrane insertion and ATP hydrolysis. To understand both the energy conversion process and translocase assembly, we have used contrast-matched, small-angle neutron-scattering (SANS) experiments to examine SecA in small unilamellar vesicles of E.coli phospholipids. In the absence of nucleotide, we observe a dimeric form of SecA with a radius of gyration comparable to that previously observed for SecA in solution. In contrast, the presence of either ADP or a non-hydrolyzable ATP analog induces conversion to a monomeric form. The larger radius of gyration for the ATP-bound relative to the ADP-bound form suggests the former has a more expanded global conformation. This is the first direct structural determination of SecA in a lipid bilayer. The SANS data indicate that nucleotide turnover can function as a switch of conformation of SecA in the membrane in a manner consistent with its proposed role in successive cycles of deep membrane penetration and release with concommitant preprotein insertion.
Collapse
|
216
|
Duong F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J 2003; 22:4375-84. [PMID: 12941690 PMCID: PMC202361 DOI: 10.1093/emboj/cdg418] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacterial preprotein translocase is comprised of a membrane-embedded oligomeric SecYEG structure and a cytosolic dimeric SecA ATPase. The associations within SecYEG oligomers and SecA dimers, as well as between these two domains are dynamic and reversible. Here, it is shown that a covalently linked SecYEG dimer forms a functional translocase and a high affinity binding site for monomeric and dimeric SecA in solution. The interaction between these two domains stimulates the SecA ATPase, and nucleotides modulate the affinity and ratio of SecA monomers and dimers bound to the linked SecYEG complex. During the translocation reaction, the SecA monomer remains in stable association with a SecYEG protomer and the translocating preprotein. The nucleotides and translocation-dependent changes of SecA-SecYEG associations and the SecA dimeric state may reflect important facets of the preprotein translocation reaction.
Collapse
Affiliation(s)
- Franck Duong
- Laboratoire Transports et Signalisations Cellulaires, CNRS-UMR 8619, Université de Paris XI, Bâtiment 430, Orsay 91405, France.
| |
Collapse
|
217
|
de Keyzer J, van der Does C, Kloosterman TG, Driessen AJM. Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance. J Biol Chem 2003; 278:29581-6. [PMID: 12771143 DOI: 10.1074/jbc.m303490200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane. Surface plasmon resonance allows an online monitoring of protein interactions. Here we report on the kinetic analysis of the interaction between SecA and the membrane-embedded SecYEG complex. Immobilization of membrane vesicles containing overproduced SecYEG on the Biacore Pioneer L1 chip allows the detection of high affinity SecA binding to the SecYEG complex and online monitoring of the translocation of the secretory protein proOmpA. SecA binds tightly to the SecYEG.proOmpA complex and is released only upon ATP hydrolysis. The results provide direct evidence for a model in which SecA cycles at the SecYEG complex during translocation.
Collapse
Affiliation(s)
- Jeanine de Keyzer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
218
|
Abstract
The targeting of proteins into and across biological membranes to their correct cellular locations is mediated by a variety of transport pathways. These systems must couple the thermodynamically unfavorable processes of substrate translocation and integration with the expenditure of metabolic energy, using the free energy of ATP and GTP hydrolysis and/or a transmembrane protonmotive force. Several recent advances in our knowledge of the structure and function of these transport systems have provided insights into the mechanisms of energy transduction, force generation and energy use by different protein transport pathways.
Collapse
Affiliation(s)
- Nathan N Alder
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | |
Collapse
|
219
|
Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 2003; 100:4221-6. [PMID: 12642659 PMCID: PMC153074 DOI: 10.1073/pnas.0737415100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembranes, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
220
|
Sharma V, Arockiasamy A, Ronning DR, Savva CG, Holzenburg A, Braunstein M, Jacobs WR, Sacchettini JC. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc Natl Acad Sci U S A 2003; 100:2243-8. [PMID: 12606717 PMCID: PMC151325 DOI: 10.1073/pnas.0538077100] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Accepted: 12/12/2002] [Indexed: 11/18/2022] Open
Abstract
In bacteria, the majority of exported proteins are translocated by the Sec system, which recognizes the signal sequence of a preprotein and uses ATP and the proton motive force to mediate protein translocation across the cytoplasmic membrane. SecA is an essential protein component of this system, containing the molecular motor that facilitates translocation. Here we report the three-dimensional structure of the SecA protein of Mycobacterium tuberculosis. Each subunit of the homodimer contains a "motor" domain and a translocation domain. The structure predicts that SecA can interact with the SecYEG pore and function as a molecular ratchet that uses ATP hydrolysis for physical movement of the preprotein. Knowledge of this structure provides a framework for further elucidation of the translocation process.
Collapse
Affiliation(s)
- Vivek Sharma
- Center for Structural Biology, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Benach J, Chou YT, Fak JJ, Itkin A, Nicolae DD, Smith PC, Wittrock G, Floyd DL, Golsaz CM, Gierasch LM, Hunt JF. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J Biol Chem 2003; 278:3628-38. [PMID: 12403785 DOI: 10.1074/jbc.m205992200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.
Collapse
Affiliation(s)
- Jordi Benach
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Tanner NK, Cordin O, Banroques J, Doère M, Linder P. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 2003; 11:127-38. [PMID: 12535527 DOI: 10.1016/s1097-2765(03)00006-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SF1 and SF2 helicases have structurally conserved cores containing seven to eight distinctive motifs and variable amino- and carboxyl-terminal flanking sequences. We have discovered a motif upstream of motif I that is unique to and characteristic of the DEAD box family of RNA helicases. It consists of a 9 amino acid sequence containing an invariant glutamine. A conserved phenylalanine occurs 17 aa further upstream. Sequence alignments, site-specific mutagenesis, and ATPase assays show that this motif and the upstream phenylalanine are highly conserved, that they are essential for viability in the yeast Saccharomyces cerevisiae, and that they control ATP binding and hydrolysis in the yeast translation-initiation factor eIF4A. These results are consistent with computer studies of the solved crystal structures.
Collapse
Affiliation(s)
- N Kyle Tanner
- Département de Biochimie Médicale, Centre Médical Universitaire, 1, rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
223
|
Chou YT, Swain JF, Gierasch LM. Functionally significant mobile regions of Escherichia coli SecA ATPase identified by NMR. J Biol Chem 2002; 277:50985-90. [PMID: 12397065 DOI: 10.1074/jbc.m209237200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, a 204-kDa homodimeric protein, is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. SecA promotes translocation by nucleotide-modulated insertion and deinsertion into the cytoplasmic membrane once bound to both the signal sequence and portions of the mature domain of the preprotein. SecA is proposed to undergo major conformational changes during translocation. These conformational changes are accompanied by major rearrangements of SecA structural domains. To understand the interdomain rearrangements, we have examined SecA by NMR and identified regions that display narrow resonances indicating high mobility. The mobile regions of SecA have been assigned to a sequence from the second of two domains with nucleotide-binding folds (NBF-II; residues 564-579) and to the extreme C-terminal segment of SecA (residues 864-901), both of which are essential for preprotein translocation activity. Interactions with ligands suggest that the mobile regions are involved in functionally critical regulatory steps in SecA.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-4510, USA
| | | | | |
Collapse
|